Review Article

大麻二酚(CBD)的化学性质及其生物活性数据的协调

卷 28, 期 2, 2021

发表于: 10 February, 2020

页: [213 - 237] 页: 25

弟呕挨: 10.2174/0929867327666200210144847

价格: $65

摘要

大麻二酚(Cannabidiol, CBD)是一种非精神性的植物大麻素,它代表了大麻“植物复合体”的成分之一。自基于cbd的药物和商业产品上市以来,这种天然化合物吸引了越来越多的兴趣。这项审查的目的是彻底解决为分离和定量CBD而制定的提取和分析方法。从产量、灵敏度、灵活性和总体性能等方面对最新的尖端技术进行了严格的审查,并与原始的代表性结果一起进行了审查。作为对现有文献的补充,本文还讨论了制备CBD的新型、高效合成方法的发展,这是一种对制药工业很有吸引力的过程。此外,随着人们对CBD的治疗潜力越来越感兴趣,以及对正在进行的生物化学途径的有限了解,读者将了解最近关于试图填补这一空白的CBD分子间相互作用的硅研究。从文献中检索到的计算数据已经与新颖的硅实验相结合,批判性地讨论了提供一个关于CBD无可争议的潜力及其治疗概况的全面和更新的概述。

关键词: 大麻,大麻二酚,提取方法,色谱,CBD的合成,硅研究。

[1]
Bonini, S.A.; Premoli, M.; Tambaro, S.; Kumar, A.; Maccarinelli, G.; Memo, M.; Mastinu, A. Cannabis sativa: a comprehensive ethnopharmacological review of a medicinal plant with a long history. J. Ethnopharmacol., 2018, 227, 300-315.
[http://dx.doi.org/10.1016/j.jep.2018.09.004] [PMID: 30205181]
[2]
Kumar, A.; Premoli, M.; Aria, F.; Bonini, S.A.; Maccarinelli, G.; Gianoncelli, A.; Memo, M.; Mastinu, A. Cannabimimetic plants: are they new cannabinoidergic modulators? Planta, 2019, 249(6), 1681-1694.
[http://dx.doi.org/10.1007/s00425-019-03138-x] [PMID: 30877436]
[3]
Mastinu, A.; Premoli, M.; Ferrari-Toninelli, G.; Tambaro, S.; Maccarinelli, G.; Memo, M.; Bonini, S.A. Cannabinoids in health and disease: pharmacological potential in metabolic syndrome and neuroinflammation. Horm. Mol. Biol. Clin. Investig., 2018, 36(2)
[http://dx.doi.org/10.1515/hmbci-2018-0013] [PMID: 29601300]
[4]
Lazzari, P.; Pau, A.; Tambaro, S.; Asproni, B.; Ruiu, S.; Pinna, G.; Mastinu, A.; Curzu, M.M.; Reali, R.; Bottazzi, M.E.; Pinna, G.A.; Murineddu, G. Synthesis and pharmacological evaluation of novel 4-alkyl-5-thien-2′-yl pyrazole carboxamides. Cent. Nerv. Syst. Agents Med. Chem., 2012, 12(4), 254-276.
[http://dx.doi.org/10.2174/187152412803760636] [PMID: 22931442]
[5]
Lazzari, P.; Sanna, A.; Mastinu, A.; Cabasino, S.; Manca, I.; Pani, L. Weight loss induced by rimonabant is associated with an altered leptin expression and hypothalamic leptin signaling in diet-induced obese mice. Behav. Brain Res., 2011, 217(2), 432-438.
[http://dx.doi.org/10.1016/j.bbr.2010.11.022] [PMID: 21074566]
[6]
Lazzari, P.; Serra, V.; Marcello, S.; Pira, M.; Mastinu, A. Metabolic side effects induced by olanzapine treatment are neutralized by CB1 receptor antagonist compounds co-administration in female rats. Eur. Neuropsychopharmacol., 2017, 27(7), 667-678.
[http://dx.doi.org/10.1016/j.euroneuro.2017.03.010] [PMID: 28377074]
[7]
Manca, I.; Mastinu, A.; Olimpieri, F.; Falzoi, M.; Sani, M.; Ruiu, S.; Loriga, G.; Volonterio, A.; Tambaro, S.; Bottazzi, M.E.; Zanda, M.; Pinna, G.A.; Lazzari, P. Novel pyrazole derivatives as neutral CB1 antagonists with significant activity towards food intake. Eur. J. Med. Chem., 2013, 62, 256-269.
[http://dx.doi.org/10.1016/j.ejmech.2012.12.056] [PMID: 23357307]
[8]
Mastinu, A.; Pira, M.; Pani, L.; Pinna, G.A.; Lazzari, P. NESS038C6, a novel selective CB1 antagonist agent with anti-obesity activity and improved molecular profile. Behav. Brain Res., 2012, 234(2), 192-204.
[http://dx.doi.org/10.1016/j.bbr.2012.06.033] [PMID: 22771813]
[9]
Mastinu, A.; Pira, M.; Pinna, G.A.; Pisu, C.; Casu, M.A.; Reali, R.; Marcello, S.; Murineddu, G.; Lazzari, P. NESS06SM reduces body weight with an improved profile relative to SR141716A. Pharmacol. Res., 2013, 74, 94-108.
[http://dx.doi.org/10.1016/j.phrs.2013.06.001] [PMID: 23756200]
[10]
Tambaro, S.; Casu, M.A.; Mastinu, A.; Lazzari, P. Evaluation of selective cannabinoid CB(1) and CB(2) receptor agonists in a mouse model of lipopolysaccharide-induced interstitial cystitis. Eur. J. Pharmacol., 2014, 729, 67-74.
[http://dx.doi.org/10.1016/j.ejphar.2014.02.013] [PMID: 24561047]
[11]
Klieger, S.B.; Gutman, A.; Allen, L.; Pacula, R.L.; Ibrahim, J.K.; Burris, S. Mapping medical marijuana: state laws regulating patients, product safety, supply chains and dispensaries, 2017. Addiction, 2017, 112(12), 2206-2216.
[http://dx.doi.org/10.1111/add.13910] [PMID: 28696583]
[12]
Pollastro, F.; De Petrocellis, L.; Schiano-Moriello, A.; Chianese, G.; Heyman, H.; Appendino, G.; Taglialatela-Scafati, O. Amorfrutin-type phytocannabinoids from Helichrysum umbraculigerum. Fitoterapia, 2017, 123, 13-17.
[http://dx.doi.org/10.1016/j.fitote.2017.09.010] [PMID: 28941742]
[13]
Starks, C.M.; Williams, R.B.; Norman, V.L.; Rice, S.M.; O’Neil-Johnson, M.; Lawrence, J.A.; Eldridge, G.R. Antibacterial chromene and chromane stilbenoids from Hymenocardia acida. Phytochemistry, 2014, 98, 216-222.
[http://dx.doi.org/10.1016/j.phytochem.2013.11.012] [PMID: 24361290]
[14]
Quaghebeur, K.; Coosemans, J.; Toppet, S.; Compernolle, F. Cannabiorci- and 8-chlorocannabiorcichromenic acid as fungal antagonists from Cylindrocarpon olidum. Phytochemistry, 1994, 37(1), 159-161.
[http://dx.doi.org/10.1016/0031-9422(94)85016-X] [PMID: 7765609]
[15]
Weidner, C.; de Groot, J.C.; Prasad, A.; Freiwald, A.; Quedenau, C.; Kliem, M.; Witzke, A.; Kodelja, V.; Han, C.T.; Giegold, S.; Baumann, M.; Klebl, B.; Siems, K.; Müller-Kuhrt, L.; Schürmann, A.; Schüler, R.; Pfeiffer, A.F.; Schroeder, F.C.; Büssow, K.; Sauer, S. Amorfrutins are potent antidiabetic dietary natural products. Proc. Natl. Acad. Sci. USA, 2012, 109(19), 7257-7262.
[http://dx.doi.org/10.1073/pnas.1116971109] [PMID: 22509006]
[16]
Lourens, A.C.; Viljoen, A.M.; van Heerden, F.R. South African Helichrysum species: a review of the traditional uses, biological activity and phytochemistry. J. Ethnopharmacol., 2008, 119(3), 630-652.
[http://dx.doi.org/10.1016/j.jep.2008.06.011] [PMID: 18606217]
[17]
Iijima, M.; Munakata, R.; Takahashi, H.; Kenmoku, H.; Nakagawa, R.; Kodama, T.; Asakawa, Y.; Abe, I.; Yazaki, K.; Kurosaki, F.; Taura, F. Identification and characterization of daurichromenic acid synthase active in anti-HIV biosynthesis. Plant Physiol., 2017, 174(4), 2213-2230.
[http://dx.doi.org/10.1104/pp.17.00586] [PMID: 28679557]
[18]
Morales, P.; Reggio, P.H.; Jagerovic, N. An overview on medicinal chemistry of Synthetic and natural derivatives of cannabidiol. Front. Pharmacol., 2017, 8, 422.
[http://dx.doi.org/10.3389/fphar.2017.00422] [PMID: 28701957]
[19]
Pacifici, R.; Pichini, S.; Pellegrini, M.; Tittarelli, R.; Pantano, F.; Mannocchi, G.; Rotolo, M.C.; Busardò, F.P. Determination of cannabinoids in oral fluid and urine of “light cannabis” consumers: a pilot study. Clin. Chem. Lab. Med., 2018, 57(2), 238-243.
[http://dx.doi.org/10.1515/cclm-2018-0566] [PMID: 30332386]
[20]
Jikomes, N.; Zoorob, M. The cannabinoid content of legal cannabis in Washington State varies systematically across testing facilities and popular consumer products. Sci. Rep., 2018, 8(1), 4519.
[http://dx.doi.org/10.1038/s41598-018-22755-2] [PMID: 29540728]
[21]
Fasinu, P.S.; Phillips, S.; ElSohly, M.A.; Walker, L.A. Current status and prospects for cannabidiol preparations as new therapeutic agents. Pharmacotherapy, 2016, 36(7), 781-796.
[http://dx.doi.org/10.1002/phar.1780] [PMID: 27285147]
[22]
Pickrell, W.O.; Robertson, N.P. Cannabidiol as a treatment for epilepsy. J. Neurol., 2017, 264(12), 2506-2508.
[http://dx.doi.org/10.1007/s00415-017-8663-0] [PMID: 29124331]
[23]
Ridler, C. Epilepsy: Cannabidiol reduces seizure frequency in Dravet syndrome. Nat. Rev. Neurol., 2017, 13(7), 383.
[http://dx.doi.org/10.1038/nrneurol.2017.86] [PMID: 28621765]
[24]
Citti, C.; Linciano, P.; Russo, F.; Luongo, L.; Iannotta, M.; Maione, S.; Laganà, A.; Capriotti, A.L.; Forni, F.; Vandelli, M.A.; Gigli, G.; Cannazza, G. A novel phytocannabinoid isolated from Cannabis sativa L. with an in vivo cannabimimetic activity higher than Δ9-tetrahydrocannabinol: Δ9-tetrahydrocannabiphorol. Sci. Rep., 2019, 9(1), 20335.
[http://dx.doi.org/10.1038/s41598-019-56785-1] [PMID: 31889124]
[25]
Tham, M.; Yilmaz, O.; Alaverdashvili, M.; Kelly, M.E.M.; Denovan-Wright, E.M.; Laprairie, R.B. Allosteric and orthosteric pharmacology of cannabidiol and cannabidiol-dimethylheptyl at the type 1 and type 2 cannabinoid receptors. Br. J. Pharmacol., 2018.
[http://dx.doi.org/10.1016/j.phytochem.2013.11.012] [PMID: 29981240]
[26]
Leweke, F.M.; Piomelli, D.; Pahlisch, F.; Muhl, D.; Gerth, C.W.; Hoyer, C.; Klosterkötter, J.; Hellmich, M.; Koethe, D. Cannabidiol enhances anandamide signaling and alleviates psychotic symptoms of schizophrenia. Transl. Psychiatry, 2012, 2(3)e94
[http://dx.doi.org/10.1038/tp.2012.15] [PMID: 22832859]
[27]
Bakas, T.; van Nieuwenhuijzen, P.S.; Devenish, S.O.; McGregor, I.S.; Arnold, J.C.; Chebib, M. The direct actions of cannabidiol and 2-arachidonoyl glycerol at GABAA receptors. Pharmacol. Res., 2017, 119, 358-370.
[http://dx.doi.org/10.1016/j.phrs.2017.02.022] [PMID: 28249817]
[28]
Gonca, E.; Darıcı, F. The effect of cannabidiol on ischemia/reperfusion-induced ventricular arrhythmias: the role of adenosine A1 receptors. J. Cardiovasc. Pharmacol. Ther., 2015, 20(1), 76-83.
[http://dx.doi.org/10.1177/1074248414532013] [PMID: 24853683]
[29]
Mahgoub, M.; Keun-Hang, S.Y.; Sydorenko, V.; Ashoor, A.; Kabbani, N.; Al Kury, L.; Sadek, B.; Howarth, C.F.; Isaev, D.; Galadari, S.; Oz, M. Effects of cannabidiol on the function of α7-nicotinic acetylcholine receptors. Eur. J. Pharmacol., 2013, 720(1-3), 310-319.
[http://dx.doi.org/10.1016/j.ejphar.2013.10.011] [PMID: 24140434]
[30]
Sartim, A.G.; Guimarães, F.S.; Joca, S.R. Antidepressant-like effect of cannabidiol injection into the ventral medial prefrontal cortex-Possible involvement of 5-HT1A and CB1 receptors. Behav. Brain Res., 2016, 303, 218-227.
[http://dx.doi.org/10.1016/j.bbr.2016.01.033] [PMID: 26801828]
[31]
Seeman, P. Cannabidiol is a partial agonist at dopamine D2 High receptors, predicting its antipsychotic clinical dose. Transl. Psychiatry, 2016, 6(10)e920
[http://dx.doi.org/10.1038/tp.2016.195] [PMID: 27754480]
[32]
Watkins, A.R. Cannabinoid interactions with ion channels and receptors. Channels (Austin), 2019, 13(1), 162-167.
[http://dx.doi.org/10.1080/19336950.2019.1615824] [PMID: 31088312]
[33]
Bondarenko, A.I.; Panasiuk, O.; Drachuk, K.; Montecucco, F.; Brandt, K.J.; Mach, F. The quest for endothelial atypical cannabinoid receptor: BKCa channels act as cellular sensors for cannabinoids in in vitro and in situ endothelial cells. Vascul. Pharmacol., 2018, 102, 44-55.
[http://dx.doi.org/10.1016/j.vph.2018.01.004] [PMID: 29355732]
[34]
Premoli, M.; Aria, F.; Bonini, S.A.; Maccarinelli, G.; Gianoncelli, A.; Pina, S.D.; Tambaro, S.; Memo, M.; Mastinu, A. Cannabidiol: Recent advances and new insights for neuropsychiatric disorders treatment. Life Sci., 2019, 224, 120-127.
[http://dx.doi.org/10.1016/j.lfs.2019.03.053] [PMID: 30910646]
[35]
Citti, C.; Pacchetti, B.; Vandelli, M.A.; Forni, F.; Cannazza, G. Analysis of cannabinoids in commercial hemp seed oil and decarboxylation kinetics studies of cannabidiolic acid (CBDA). J. Pharm. Biomed. Anal., 2018, 149, 532-540.
[http://dx.doi.org/10.1016/j.jpba.2017.11.044] [PMID: 29182999]
[36]
Jenkins, R.W.; Patterson, D.A. The relationship between chemical composition and geographical origin of cannabis. Forensic Sci., 1973, 2(1), 59-66.
[http://dx.doi.org/10.1016/0300-9432(73)90014-9] [PMID: 4266193]
[37]
Vollner, L.; Bieniek, D.; Korte, F. Review of analytical methods for identification and quantification of cannabis products. Regul. Toxicol. Pharmacol., 1986, 6(4), 348-358.
[http://dx.doi.org/10.1016/0273-2300(86)90003-6] [PMID: 3027768]
[38]
Raharjo, T.J.; Verpoorte, R. Methods for the analysis of cannabinoids in biological materials: a review. Phytochem. Anal., 2004, 15(2), 79-94.
[http://dx.doi.org/10.1002/pca.753] [PMID: 15116938]
[39]
Aizpurua-Olaizola, O.; Omar, J.; Navarro, P.; Olivares, M.; Etxebarria, N.; Usobiaga, A. Identification and quantification of cannabinoids in Cannabis sativa L. plants by high performance liquid chromatography-mass spectrometry. Anal. Bioanal. Chem., 2014, 406(29), 7549-7560.
[http://dx.doi.org/10.1007/s00216-014-8177-x] [PMID: 25338935]
[40]
Giese, M.W.; Lewis, M.A.; Giese, L.; Smith, K.M. Development and validation of a reliable and robust method for the analysis of cannabinoids and terpenes in Cannabis. J. AOAC Int., 2015, 98(6), 1503-1522.
[http://dx.doi.org/10.5740/jaoacint.15-116] [PMID: 26651562]
[41]
Villamor, J.L.; Bermejo, A.M.; Tabernero, M.J.; Fernández, P. Determination of cannabinoids in human hair by GC/MS. Anal. Lett., 2007, 37(3), 517-528.
[http://dx.doi.org/10.1081/AL-120028624]
[42]
Lehmann, T.; Brenneisen, R. A new chromatographic method for the isolation of (−)-Δ9-(trans)-tetrahydro-cannabinolic acid A. Phytochem. Anal., 1992, 3(2), 88-90.
[http://dx.doi.org/10.1002/pca.2800030210]
[43]
Alemany, G.; Gamundí, A.; Nicolau, M.C.; Saro, D. A simple method for plasma cannabinoid separation and quantification. Biomed. Chromatogr., 1993, 7(5), 273-274.
[http://dx.doi.org/10.1002/bmc.1130070507] [PMID: 8305858]
[44]
Joern, W.A. Marijuana testing in urine: use of a hexadeuterated internal standard for extended linearity, and ion trap vs. mass selective detector gas chromatograph/mass spectrometer systems. Clin. Chem., 1992, 38(5), 717-719.
[http://dx.doi.org/10.1093/clinchem/38.5.717] [PMID: 1316244]
[45]
Heo, S.; Yoo, G.J.; Choi, J.Y.; Park, H.J.; Do, J.A.; Cho, S.; Baek, S.Y.; Park, S.K. Simultaneous analysis of cannabinoid and synthetic cannabinoids in dietary supplements using UPLC with UV and UPLC-MS-MS. J. Anal. Toxicol., 2016, 40(5), 350-359.
[http://dx.doi.org/10.1093/jat/bkw027] [PMID: 27185817]
[46]
Lacorte, S.; Fernandez-Alba, A.R. Time of flight mass spectrometry applied to the liquid chromatographic analysis of pesticides in water and food. Mass Spectrom. Rev., 2006, 25(6), 866-880.
[http://dx.doi.org/10.1002/mas.20094] [PMID: 16752429]
[47]
Pavlovic, R.; Nenna, G.; Calvi, L.; Panseri, S.; Borgonovo, G.; Giupponi, L.; Cannazza, G.; Giorgi, A. Quality traits of “cannabidiol oils”: cannabinoids content, terpene fingerprint and oxidation stability of european commercially available preparations. Molecules, 2018, 23(5)E1230
[http://dx.doi.org/10.3390/molecules23051230] [PMID: 29783790]
[48]
Bacigalupo, M.A.; Ius, A.; Meroni, G.; Grassi, G.; Moschella, A. Time-resolved fluoroimmunoassay for delta(9)-tetrahydrocannabinol as applied to early discrimination of Cannabis sativa plants. J. Agric. Food Chem., 1999, 47(7), 2743-2745.
[http://dx.doi.org/10.1021/jf981141b] [PMID: 10552557]
[49]
Schwope, D.M.; Milman, G.; Huestis, M.A. Validation of an enzyme immunoassay for detection and semiquantification of cannabinoids in oral fluid. Clin. Chem., 2010, 56(6), 1007-1014.
[http://dx.doi.org/10.1373/clinchem.2009.141754] [PMID: 20360126]
[50]
Castaneto, M.S.; Scheidweiler, K.B.; Gandhi, A.; Wohlfarth, A.; Klette, K.L.; Martin, T.M.; Huestis, M.A. Quantitative urine confirmatory testing for synthetic cannabinoids in randomly collected urine specimens. Drug Test. Anal., 2015, 7(6), 483-493.
[http://dx.doi.org/10.1002/dta.1709] [PMID: 25231213]
[51]
Backstrom, B.; Cole, M.D.; Carrott, M.J.; Jones, D.C.; Davidson, G.; Coleman, K. A preliminary study of the analysis of Cannabis by supercritical fluid chromatography with atmospheric pressure chemical ionisation mass spectroscopic detection. Sci. Just, 1997, 37(2), 91-97.
[http://dx.doi.org/10.1016/s1355-0306(97)72153-1] [PMID: 9206314]
[52]
Mazina, J.; Spiljova, A.; Vaher, M.; Kaljurand, M.; Kulp, M. A rapid capillary electrophoresis method with LED-induced native fluorescence detection for the analysis of cannabinoids in oral fluid. Anal. Methods, 2015, 7(18), 7741-7747.
[http://dx.doi.org/10.1039/C5AY01595B]
[53]
Adams, R.; Hunt, M.; Clark, J.H. Structure of cannabidiol, a product isolated from the marihuana extract of minnesota wild hemp. I. J. Am. Chem. Soc., 1940, 62(1), 196-200.
[http://dx.doi.org/10.1021/ja01858a058]
[54]
Jacob, A.; Sutcliffe, F.K.; Todd, A.R. 67. Studies on vitamin E. Part VII. Further investigations on homologues of α-tocopherol. J. Chem. Soc., 1940, 0(0), 327-332.
[http://dx.doi.org/10.1039/JR9400000327]
[55]
Mechoulam, R.; Shvo, Y.; Hashish, I. The structure of cannabidiol. Tetrahedron, 1963, 19(12), 2073-2078.
[http://dx.doi.org/10.1016/0040-4020(63)85022-X] [PMID: 5879214]
[56]
Wang, M.; Wang, Y.H.; Avula, B.; Radwan, M.M.; Wanas, A.S.; van Antwerp, J.; Parcher, J.F.; ElSohly, M.A.; Khan, I.A. Decarboxylation study of acidic cannabinoids: a novel approach using ultra-high-performance supercritical fluid chromatography/photodiode array-mass spectrometry. Cannabis Cannabinoid Res., 2016, 1(1), 262-271.
[http://dx.doi.org/10.1089/can.2016.0020] [PMID: 28861498]
[57]
Shani, A.; Mechoulam, R. Cannabielsoic acids. Tetrahedron, 1974, 30(15), 2437-2446.
[http://dx.doi.org/10.1016/S0040-4020(01)97114-5]
[58]
Hazekamp, A.; Peltenburg, A.; Verpoorte, R.; Giroud, C. Chromatographic and spectroscopic data of cannabinoids from Cannabis sativa L. J. Liq. Chromatogr. Relat. Technol., 2005, 28(15), 2361-2382.
[http://dx.doi.org/10.1080/10826070500187558]
[59]
Perrotin-Brunel, H.; Kroon, M.C.; van Roosmalen, M.J.E.; van Spronsen, J.; Peters, C.J.; Witkamp, G-J. Solubility of non-psychoactive cannabinoids in supercritical carbon dioxide and comparison with psychoactive cannabinoids. J. Supercrit. Fluids, 2010, 55(2), 603-608.
[http://dx.doi.org/10.1016/j.supflu.2010.09.011]
[60]
Grijó, R.D.; Vieitez Osorio, I.A.; Cardozo-Filho, L. Supercritical extraction strategies using CO2 and ethanol to obtain cannabinoid compounds from Cannabis hybrid flowers.J. CO2 Util. 2019, 30, 241-248.
[http://dx.doi.org/10.1016/j.jcou.2018.12.014]
[61]
Carcieri, C.; Tomasello, C.; Simiele, M.; De Nicolò, A.; Avataneo, V.; Canzoneri, L.; Cusato, J.; Di Perri, G.; D’Avolio, A. Cannabinoids concentration variability in Cannabis olive oil galenic preparations. J. Pharm. Pharmacol., 2018, 70(1), 143-149.
[http://dx.doi.org/10.1111/jphp.12845] [PMID: 29057480]
[62]
Romano, L.L.; Hazekamp, A. Cannabis Oil: chemical evaluation of an upcoming cannabis-based medicine. Cannabinoids, 2013, 1(1), 1-11.
[63]
Calvi, L.; Pentimalli, D.; Panseri, S.; Giupponi, L.; Gelmini, F.; Beretta, G.; Vitali, D.; Bruno, M.; Zilio, E.; Pavlovic, R.; Giorgi, A. Comprehensive quality evaluation of medical Cannabis sativa L. inflorescence and macerated oils based on HS-SPME coupled to GC-MS and LC-HRMS (q-exactive orbitrap®) approach. J. Pharm. Biomed. Anal., 2018, 150, 208-219.
[http://dx.doi.org/10.1016/j.jpba.2017.11.073] [PMID: 29247961]
[64]
Pacifici, R.; Marchei, E.; Salvatore, F.; Guandalini, L.; Busardò, F.P.; Pichini, S. Evaluation of cannabinoids concentration and stability in standardized preparations of cannabis tea and cannabis oil by ultra-high performance liquid chromatography tandem mass spectrometry. Clin. Chem. Lab. Med., 2017, 55(10), 1555-1563.
[http://dx.doi.org/10.1515/cclm-2016-1060] [PMID: 28207408]
[65]
Papaseit, E.; Pérez-Mañá, C.; Pérez-Acevedo, A.P.; Hladun, O.; Torres-Moreno, M.C.; Muga, R.; Torrens, M.; Farré, M. Cannabinoids: from pot to lab. Int. J. Med. Sci., 2018, 15(12), 1286-1295.
[http://dx.doi.org/10.7150/ijms.27087] [PMID: 30275754]
[66]
Merrick, J.; Lane, B.; Sebree, T.; Yaksh, T.; O’Neill, C.; Banks, S.L. Identification of psychoactive degradants of cannabidiol in simulated gastric and physiological fluid. Cannabis Cannabinoid Res., 2016, 1(1), 102-112.
[http://dx.doi.org/10.1089/can.2015.0004] [PMID: 28861485]
[67]
Abrahams, S.; Haylett, W.L.; Johnson, G.; Carr, J.A.; Bardien, S. Antioxidant effects of curcumin in models of neurodegeneration, aging, oxidative and nitrosative stress: a review. Neuroscience, 2019, 406, 1-21.
[http://dx.doi.org/10.1016/j.neuroscience.2019.02.020] [PMID: 30825584]
[68]
Bhawana; Basniwal, R.K.; Buttar, H.S.; Jain, V.K.; Jain, N. Curcumin nanoparticles: preparation, characterization, and antimicrobial study. J. Agric. Food Chem., 2011, 59(5), 2056-2061.
[http://dx.doi.org/10.1021/jf104402t] [PMID: 21322563]
[69]
Petrzilka, T.; Haefliger, W.; Sikemeier, C.; Ohloff, G.; Eschenmoser, A. Synthesis and optical rotation of the (-)-cannabidiols. Helv. Chim. Acta, 1967, 50(2), 719-723.
[http://dx.doi.org/10.1002/hlca.19670500235] [PMID: 5587099]
[70]
Mechoulam, R.; Braun, P.; Gaoni, Y. Syntheses of 1-tetrahydrocannabinol and related cannabinoids. J. Am. Chem. Soc., 1972, 94(17), 6159-6165.
[http://dx.doi.org/10.1021/ja00772a038] [PMID: 5054408]
[71]
Petrzilka, T.; Haefliger, W.; Sikemeier, C. Synthese von Haschisch-Inhaltsstoffen. 4. Mitteilung. Helv. Chim. Acta., 1969, 52(4), 1102-1134.
[http://dx.doi.org/10.1002/hlca.19690520427]
[72]
Baek, S-H.; Srebnik, M.; Mechoulam, R. Boron triflouride etherate on alimina - a modified Lewis acid reagent. Tetrahedron Lett., 1985, 26(8), 1083-1086.
[http://dx.doi.org/10.1016/S0040-4039(00)98518-6]
[73]
Vaillancourt, V.; Albizati, K.F. A one-step method for the. alpha.-arylation of camphor. Synthesis of (-)-cannabidiol and (-)-cannabidiol dimethyl ether. J. Org. Chem., 1992, 57(13), 3627-3631.
[http://dx.doi.org/10.1021/jo00039a022]
[74]
Kobayashi, Y.; Takeuchi, A.; Wang, Y.G. Synthesis of cannabidiols via alkenylation of cyclohexenyl monoacetate. Org. Lett., 2006, 8(13), 2699-2702.
[http://dx.doi.org/10.1021/ol060692h] [PMID: 16774235]
[75]
Shultz, Z.P.; Lawrence, G.A.; Jacobson, J.M.; Cruz, E.J.; Leahy, J.W. Enantioselective total synthesis of cannabinoids-a route for analogue development. Org. Lett., 2018, 20(2), 381-384.
[http://dx.doi.org/10.1021/acs.orglett.7b03668] [PMID: 29293352]
[76]
Russo, E.B.; Taming, T.H.C. Taming THC: potential cannabis synergy and phytocannabinoid-terpenoid entourage effects. Br. J. Pharmacol., 2011, 163(7), 1344-1364.
[http://dx.doi.org/10.1111/j.1476-5381.2011.01238.x] [PMID: 21749363]
[77]
Massimino, L. In silico discovery of terpenoid metabolism in Cannabis sativa. F1000 Res., 2017, 6, 107.
[http://dx.doi.org/10.12688/f1000research.10778.1] [PMID: 28690830]
[78]
Meng, X.Y.; Zhang, H.X.; Mezei, M.; Cui, M. Molecular docking: a powerful approach for structure-based drug discovery. Curr. Comput. Aided Drug Des., 2011, 7(2), 146-157.
[http://dx.doi.org/10.2174/157340911795677602] [PMID: 21534921]
[79]
Huang, S.Y.; Zou, X. Advances and challenges in protein-ligand docking. Int. J. Mol. Sci., 2010, 11(8), 3016-3034.
[http://dx.doi.org/10.3390/ijms11083016] [PMID: 21152288]
[80]
Ferreira, L.G.; Dos Santos, R.N.; Oliva, G.; Andricopulo, A.D. Molecular docking and structure-based drug design strategies. Molecules, 2015, 20(7), 13384-13421.
[http://dx.doi.org/10.3390/molecules200713384] [PMID: 26205061]
[81]
Salsbury, F.R., Jr Molecular dynamics simulations of protein dynamics and their relevance to drug discovery. Curr. Opin. Pharmacol., 2010, 10(6), 738-744.
[http://dx.doi.org/10.1016/j.coph.2010.09.016] [PMID: 20971684]
[82]
Durrant, J.D.; McCammon, J.A. Molecular dynamics simulations and drug discovery. BMC Biol., 2011, 9, 71.
[http://dx.doi.org/10.1186/1741-7007-9-71] [PMID: 22035460]
[83]
Bian, Y.M.; He, X.B.; Jing, Y.K.; Wang, L.R.; Wang, J.M.; Xie, X.Q. Computational systems pharmacology analysis of cannabidiol: a combination of chemogenomics-knowledgebase network analysis and integrated in silico modeling and simulation. Acta Pharmacol. Sin., 2019, 40(3), 374-386.
[http://dx.doi.org/10.1038/s41401-018-0071-1] [PMID: 30202014]
[84]
Ongaro, A.; Zagotto, G.; Memo, M.; Gianoncelli, A.; Ribaudo, G. Natural phosphodiesterase 5 (PDE5) inhibitors: a computational approach. Nat. Prod. Res., 2019, 1-6.
[http://dx.doi.org/10.1080/14786419.2019.1619726] [PMID: 31140295]
[85]
Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera-a visualization system for exploratory research and analysis. J. Comput. Chem., 2004, 25(13), 1605-1612.
[http://dx.doi.org/10.1002/jcc.20084] [PMID: 15264254]
[86]
Aso, E.; Sánchez-Pla, A.; Vegas-Lozano, E.; Maldonado, R.; Ferrer, I. Cannabis-based medicine reduces multiple pathological processes in AβPP/PS1 mice. J. Alzheimers Dis., 2015, 43(3), 977-991.
[http://dx.doi.org/10.3233/JAD-141014] [PMID: 25125475]
[87]
Cheng, D.; Spiro, A.S.; Jenner, A.M.; Garner, B.; Karl, T. Long-term cannabidiol treatment prevents the development of social recognition memory deficits in Alzheimer’s disease transgenic mice. J. Alzheimers Dis., 2014, 42(4), 1383-1396.
[http://dx.doi.org/10.3233/JAD-140921] [PMID: 25024347]
[88]
Devinsky, O. Transition to adult care for children with epilepsy-a call for action. Epilepsia, 2014, 55(Suppl. 3), 54-55.
[http://dx.doi.org/10.1111/epi.12630] [PMID: 25209089]
[89]
Costa, B.; Giagnoni, G.; Franke, C.; Trovato, A.E.; Colleoni, M. Vanilloid TRPV1 receptor mediates the antihyperalgesic effect of the nonpsychoactive cannabinoid, cannabidiol, in a rat model of acute inflammation. Br. J. Pharmacol., 2004, 143(2), 247-250.
[http://dx.doi.org/10.1038/sj.bjp.0705920] [PMID: 15313881]
[90]
Singh, D.K.; Karthikeyan, M.; Kirubakaran, P.; Sathya, V.; Nagamani, S. Structure-based drug discovery of ApoE4 inhibitors from the plant compounds. Med. Chem. Res., 2011, 21(6), 825-833.
[http://dx.doi.org/10.1007/s00044-011-9595-3]
[91]
Bales, K.R. Brain lipid metabolism, apolipoprotein E and the pathophysiology of Alzheimer’s disease. Neuropharmacology, 2010, 59(4-5), 295-302.
[http://dx.doi.org/10.1016/j.neuropharm.2010.01.005] [PMID: 20079752]
[92]
Seniya, C.; Khan, G.J.; Uchadia, K. Identification of potential herbal inhibitor of acetylcholinesterase associated Alzheimer’s disorders using molecular docking and molecular dynamics simulation. Biochem. Res. Int., 2014, 2014705451
[http://dx.doi.org/10.1155/2014/705451] [PMID: 25054066]
[93]
Ahmed, A.; van der Marck, M.A.; van den Elsen, G.; Olde Rikkert, M. Cannabinoids in late-onset Alzheimer’s disease. Clin. Pharmacol. Ther., 2015, 97(6), 597-606.
[http://dx.doi.org/10.1002/cpt.117] [PMID: 25788394]
[94]
Kotula, L.; Petniak, A.; Kolodziej, E.; Amarowicz, M.; Urbanczuk, M.; Schab, K.; Gil-Kulik, P.; Karwat, J.; Kotula, J.; Mulawka, P.; Mulawka, D.; Kocki, J. Application of medical cannabis in patients with central nerve system disorders. Mod. Phytomorphol., 2015, 8, 65-70.
[http://dx.doi.org/10.5281/zenodo.159835]
[95]
Watt, G.; Karl, T. In vivo evidence for therapeutic properties of cannabidiol (CBD) for Alzheimer’s Disease. Front. Pharmacol., 2017, 8, 20.
[http://dx.doi.org/10.3389/fphar.2017.00020] [PMID: 28217094]
[96]
Hughes, B.; Herron, C.E. Cannabidiol reverses deficits in hippocampal LTP in a model of Alzheimer’s disease. Neurochem. Res., 2019, 44(3), 703-713.
[http://dx.doi.org/10.1007/s11064-018-2513-z] [PMID: 29574668]
[97]
Weier, M.; Hall, W. The use of cannabinoids in treating dementia. Curr. Neurol. Neurosci. Rep., 2017, 17(8), 56.
[http://dx.doi.org/10.1007/s11910-017-0766-6] [PMID: 28631194]
[98]
Zanforlin, E.; Zagotto, G.; Ribaudo, G. An overview of new possible treatments of Alzheimer’s disease, based on natural products and semi-synthetic compounds. Curr. Med. Chem., 2017, 24(34), 3749-3773.
[http://dx.doi.org/10.2174/0929867324666170712161829] [PMID: 28707586]
[99]
Eubanks, L.M.; Rogers, C.J.; Beuscher, A.E., IV; Koob, G.F.; Olson, A.J.; Dickerson, T.J.; Janda, K.D. A molecular link between the active component of marijuana and Alzheimer’s disease pathology. Mol. Pharm., 2006, 3(6), 773-777.
[http://dx.doi.org/10.1021/mp060066m] [PMID: 17140265]
[100]
Trott, O.; Olson, A.J. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 2010, 31(2), 455-461.
[http://dx.doi.org/10.1002/jcc.21334] [PMID: 19499576]
[101]
Elmes, M.W.; Kaczocha, M.; Berger, W.T.; Leung, K.; Ralph, B.P.; Wang, L.; Sweeney, J.M.; Miyauchi, J.T.; Tsirka, S.E.; Ojima, I.; Deutsch, D.G. Fatty acid-binding proteins (FABPs) are intracellular carriers for Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD). J. Biol. Chem., 2015, 290(14), 8711-8721.
[http://dx.doi.org/10.1074/jbc.M114.618447] [PMID: 25666611]
[102]
Zanelati, T.V.; Biojone, C.; Moreira, F.A.; Guimarães, F.S.; Joca, S.R. Antidepressant-like effects of cannabidiol in mice: possible involvement of 5-HT1A receptors. Br. J. Pharmacol., 2010, 159(1), 122-128.
[http://dx.doi.org/10.1111/j.1476-5381.2009.00521.x] [PMID: 20002102]
[103]
Berger, W.T.; Ralph, B.P.; Kaczocha, M.; Sun, J.; Balius, T.E.; Rizzo, R.C.; Haj-Dahmane, S.; Ojima, I.; Deutsch, D.G. Targeting fatty acid binding protein (FABP) anandamide transporters - a novel strategy for development of anti-inflammatory and anti-nociceptive drugs. PLoS One, 2012, 7(12)e50968
[http://dx.doi.org/10.1371/journal.pone.0050968] [PMID: 23236415]
[104]
Kaczocha, M.; Rebecchi, M.J.; Ralph, B.P.; Teng, Y.H.; Berger, W.T.; Galbavy, W.; Elmes, M.W.; Glaser, S.T.; Wang, L.; Rizzo, R.C.; Deutsch, D.G.; Ojima, I. Inhibition of fatty acid binding proteins elevates brain anandamide levels and produces analgesia. PLoS One, 2014, 9(4)e94200
[http://dx.doi.org/10.1371/journal.pone.0094200] [PMID: 24705380]
[105]
Hassan, S.; Eldeeb, K.; Millns, P.J.; Bennett, A.J.; Alexander, S.P.; Kendall, D.A. Cannabidiol enhances microglial phagocytosis via transient receptor potential (TRP) channel activation. Br. J. Pharmacol., 2014, 171(9), 2426-2439.
[http://dx.doi.org/10.1111/bph.12615] [PMID: 24641282]
[106]
Iannotti, F.A.; Hill, C.L.; Leo, A.; Alhusaini, A.; Soubrane, C.; Mazzarella, E.; Russo, E.; Whalley, B.J.; Di Marzo, V.; Stephens, G.J. Nonpsychotropic plant cannabinoids, cannabidivarin (CBDV) and cannabidiol (CBD), activate and desensitize transient receptor potential vanilloid 1 (TRPV1) channels in vitro: potential for the treatment of neuronal hyperexcitability. ACS Chem. Neurosci., 2014, 5(11), 1131-1141.
[http://dx.doi.org/10.1021/cn5000524] [PMID: 25029033]
[107]
Sanson, B.; Wang, T.; Sun, J.; Wang, L.; Kaczocha, M.; Ojima, I.; Deutsch, D.; Li, H. Crystallographic study of FABP5 as an intracellular endocannabinoid transporter. Acta Crystallogr. D Biol. Crystallogr., 2014, 70(Pt 2), 290-298.
[http://dx.doi.org/10.1107/S1399004713026795] [PMID: 24531463]
[108]
Suzen, S.; Buyukbingol, E. Recent studies of aldose reductase enzyme inhibition for diabetic complications. Curr. Med. Chem., 2003, 10(15), 1329-1352.
[http://dx.doi.org/10.2174/0929867033457377] [PMID: 12871133]
[109]
El-Remessy, A.B.; Al-Shabrawey, M.; Khalifa, Y.; Tsai, N.T.; Caldwell, R.B.; Liou, G.I. Neuroprotective and blood-retinal barrier-preserving effects of cannabidiol in experimental diabetes. Am. J. Pathol., 2006, 168(1), 235-244.
[http://dx.doi.org/10.2353/ajpath.2006.050500] [PMID: 16400026]
[110]
Smeriglio, A.; Giofrè, S.V.; Galati, E.M.; Monforte, M.T.; Cicero, N.; D’Angelo, V.; Grassi, G.; Circosta, C. Inhibition of aldose reductase activity by Cannabis sativa chemotypes extracts with high content of cannabidiol or cannabigerol. Fitoterapia, 2018, 127, 101-108.
[http://dx.doi.org/10.1016/j.fitote.2018.02.002] [PMID: 29427593]
[111]
D’Aniello, E.; Fellous, T.; Iannotti, F.A.; Gentile, A.; Allarà, M.; Balestrieri, F.; Gray, R.; Amodeo, P.; Vitale, R.M.; Di Marzo, V. Identification and characterization of phytocannabinoids as novel dual PPARα/γ agonists by a computational and in vitro experimental approach. Biochim. Biophys. Acta, Gen. Subj., 2019, 1863(3), 586-597.
[http://dx.doi.org/10.1016/j.bbagen.2019.01.002] [PMID: 30611848]
[112]
Lefebvre, P.; Chinetti, G.; Fruchart, J.C.; Staels, B. Sorting out the roles of PPAR alpha in energy metabolism and vascular homeostasis. J. Clin. Invest., 2006, 116(3), 571-580.
[http://dx.doi.org/10.1172/JCI27989] [PMID: 16511589]
[113]
van Bakel, H.; Stout, J.M.; Cote, A.G.; Tallon, C.M.; Sharpe, A.G.; Hughes, T.R.; Page, J.E. The draft genome and transcriptome of Cannabis sativa. Genome Biol., 2011, 12(10), R102.
[http://dx.doi.org/10.1186/gb-2011-12-10-r102] [PMID: 22014239]
[114]
Zaka, M.; Sehgal, S.A.; Shafique, S.; Abbasi, B.H. Comparative in silico analyses of Cannabis sativa, Prunella vulgaris and Withania somnifera compounds elucidating the medicinal properties against rheumatoid arthritis. J. Mol. Graph. Model., 2017, 74, 296-304.
[http://dx.doi.org/10.1016/j.jmgm.2017.04.013] [PMID: 28472734]
[115]
Choi, Y.; Arron, J.R.; Townsend, M.J. Promising bone-related therapeutic targets for rheumatoid arthritis. Nat. Rev. Rheumatol., 2009, 5(10), 543-548.
[http://dx.doi.org/10.1038/nrrheum.2009.175] [PMID: 19798028]
[116]
Tian, Z.; Wang, Z.; Han, X.; Wang, N.; Wang, R. Study on the interaction between cannabinol and DNA using acridine orange as a fluorescence probe. J. Mol. Recog, 2018, 31(2)e2682
[http://dx.doi.org/10.1002/jmr.2682] [PMID: 29067762]
[117]
O’Sullivan, S.E. An update on PPAR activation by cannabinoids. Br. J. Pharmacol., 2016, 173(12), 1899-1910.
[http://dx.doi.org/10.1111/bph.13497] [PMID: 27077495]
[118]
Montes-Grajales, D.; Martínez-Romero, E.; Olivero-Verbel, J. Phytoestrogens and mycoestrogens interacting with breast cancer proteins. Steroids, 2018, 134, 9-15.
[http://dx.doi.org/10.1016/j.steroids.2018.03.010] [PMID: 29608946]
[119]
Proto, M.C.; Fiore, D.; Piscopo, C.; Franceschelli, S.; Bizzarro, V.; Laezza, C.; Lauro, G.; Feoli, A.; Tosco, A.; Bifulco, G.; Sbardella, G.; Bifulco, M.; Gazzerro, P. Inhibition of Wnt/β-catenin pathway and histone acetyltransferase activity by rimonabant: a therapeutic target for colon cancer. Sci. Rep., 2017, 7(1), 11678.
[http://dx.doi.org/10.1038/s41598-017-11688-x] [PMID: 28916833]
[120]
Rehman, M.T.; AlAjmi, M.F.; Hussain, A.; Rather, G.M.; Khan, M.A. High-throughput virtual screening, molecular dynamics simulation, and enzyme kinetics identified ZINC84525623 as a potential inhibitor of NDM-1. Int. J. Mol. Sci., 2019, 20(4)E819
[http://dx.doi.org/10.3390/ijms20040819] [PMID: 30769822]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy