Abstract
Background: Fluid flow in microchannels is restricted to low Reynolds number regimes and hence inducing chaotic mixing in such devices is a major challenge. Over the years, the Immersed Boundary Method (IBM) has proved its ability in handling complex fluid-structure interaction problems.
Objectives: Inspired by recent patents in microchannel mixing devices, we study passive mixing effects by performing two-dimensional numerical simulations of wavy wall in channel flow using IBM.
Methods: The continuity and Navier-Stokes equations governing the flow are solved by fractional step based finite volume method on a staggered Cartesian grid system. Fluid variables are described by Eulerian coordinates and solid boundary by Lagrangian coordinates. A four-point Dirac delta function is used to couple both the coordinate variables. A momentum forcing term is added to the governing equation in order to impose the no-slip boundary condition between the wavy wall and fluid interface.
Results: Parametric study is carried out to analyze the fluid flow characteristics by varying amplitude and wavelength of wavy wall configurations for different Reynolds number.
Conclusion: Configurations of wavy wall microchannels having a higher amplitude and lower wavelengths show optimum results for mixing applications.
Keywords: Dirac delta function, fractional-step method, immersed boundary method, momentum forcing, passive mixing, wavy walled microchannel.
[http://dx.doi.org/10.1016/j.ijheatfluidflow.2010.02.021]
[http://dx.doi.org/10.1016/j.ces.2008.03.007]
[http://dx.doi.org/10.1016/0017-9310(90)90067-5]
[http://dx.doi.org/10.1016/0017-9310(95)00051-A]
[http://dx.doi.org/10.1080/10407780590891218]
[http://dx.doi.org/10.1007/s00231-015-1571-x]
[http://dx.doi.org/10.1016/j.cep.2018.12.011]
[http://dx.doi.org/10.1063/1.4892345]
[http://dx.doi.org/10.1016/j.ijheatmasstransfer.2017.10.111]
[http://dx.doi.org/10.1016/j.physa.2014.01.057]
[http://dx.doi.org/10.1016/j.physa.2018.06.011]
[http://dx.doi.org/10.1016/j.physa.2018.06.030]
[http://dx.doi.org/10.1016/j.physa.2019.01.034]
[http://dx.doi.org/10.1016/j.physa.2018.09.177]
[http://dx.doi.org/10.1016/j.molliq.2018.11.057]
[http://dx.doi.org/10.1016/j.physa.2017.07.013]
[http://dx.doi.org/10.1016/j.physb.2017.05.014]
[http://dx.doi.org/10.1007/s00231-014-1441-y]
[http://dx.doi.org/10.1007/s00231-013-1231-y]
[http://dx.doi.org/10.1007/s00231-010-0747-7]
[http://dx.doi.org/10.1007/s00231-009-0566-x]
[http://dx.doi.org/10.1016/j.physe.2017.10.012]
[http://dx.doi.org/10.1016/j.physe.2016.06.006]
[http://dx.doi.org/10.1016/j.physa.2018.05.141]
[http://dx.doi.org/10.1016/j.physa.2019.04.243]
[http://dx.doi.org/10.1016/j.physa.2019.121066]
[http://dx.doi.org/10.1016/j.ijheatmasstransfer.2019.06.064]
[http://dx.doi.org/10.1016/j.chemphys.2019.110505]
[http://dx.doi.org/10.1016/j.molliq.2019.111474]
[http://dx.doi.org/10.1016/j.physa.2019.122486]
[http://dx.doi.org/10.1016/j.physa.2019.122439]
[http://dx.doi.org/10.1016/j.molliq.2019.111721]
[http://dx.doi.org/10.1016/j.cmpb.2019.105169]
[http://dx.doi.org/10.1146/annurev.fluid.37.061903.175743]
[http://dx.doi.org/10.1016/j.compfluid.2018.02.003]
[http://dx.doi.org/10.1016/j.oceaneng.2019.05.060]
[http://dx.doi.org/10.1016/j.ijheatmasstransfer.2019.03.147]
[http://dx.doi.org/10.1016/S1001-6058(16)60675-3]
[http://dx.doi.org/10.1016/j.jcp.2009.07.023]
[http://dx.doi.org/10.1016/j.jcp.2011.05.028]
[http://dx.doi.org/10.1016/j.euromechflu.2019.04.010]
[http://dx.doi.org/10.1016/j.jcp.2007.07.002]
[http://dx.doi.org/10.1007/s12206-019-0224-2]
[http://dx.doi.org/10.1142/S0129183113400147]
[http://dx.doi.org/10.1016/j.compfluid.2014.02.025]
[http://dx.doi.org/10.1016/j.compfluid.2019.03.009]
[http://dx.doi.org/10.1016/j.compfluid.2019.02.004]
[http://dx.doi.org/10.1016/j.compfluid.2018.02.031]
[http://dx.doi.org/10.1016/j.ijheatfluidflow.2019.01.010]
[http://dx.doi.org/10.1088/1742-6596/574/1/012165]
[http://dx.doi.org/10.1016/j.compfluid.2018.04.008]
[http://dx.doi.org/10.1115/1.4026197]
[http://dx.doi.org/10.1016/j.jcp.2011.11.010]
[http://dx.doi.org/10.1016/j.camwa.2010.03.022]
[http://dx.doi.org/10.1016/j.camwa.2014.01.006]
[http://dx.doi.org/10.1016/j.jfluidstructs.2014.11.010]
[http://dx.doi.org/10.1016/j.camwa.2015.03.012]
[http://dx.doi.org/10.1016/j.camwa.2017.11.007]
[http://dx.doi.org/10.1016/j.ijmultiphaseflow.2007.10.004]
[http://dx.doi.org/10.5220/0004049303090314]
[http://dx.doi.org/10.1017/jfm.2019.266]
[http://dx.doi.org/10.1016/j.jfluidstructs.2019.07.003]
[http://dx.doi.org/10.1016/j.compfluid.2018.07.010]
[http://dx.doi.org/10.1063/1.5008474]
[http://dx.doi.org/10.1016/j.jcp.2005.03.017]
[http://dx.doi.org/10.1016/j.jcp.2017.06.008]
[http://dx.doi.org/10.1016/j.jcp.2011.01.045]
[http://dx.doi.org/10.1063/1.5041358]
[http://dx.doi.org/10.1590/S1678-58782007000400006]
[http://dx.doi.org/10.1006/jcph.2001.6778]
[http://dx.doi.org/10.1016/j.ijheatfluidflow.2015.04.006]
[http://dx.doi.org/10.1016/j.cma.2009.03.008]
[http://dx.doi.org/10.17950/ijer/v3s4/406]
[http://dx.doi.org/10.1115/1.1563627]
[http://dx.doi.org/10.1137/S1064827502417477]
[http://dx.doi.org/10.1016/j.cma.2015.02.026]
[http://dx.doi.org/10.1016/j.jcp.2010.03.020]
[http://dx.doi.org/10.1016/j.ijheatmasstransfer.2017.03.012]
[http://dx.doi.org/10.1016/j.compfluid.2005.09.004]
[http://dx.doi.org/10.1006/jcph.2000.6483]
[http://dx.doi.org/10.1016/j.apm.2013.11.059]
[http://dx.doi.org/10.1016/j.compfluid.2012.03.012]
[http://dx.doi.org/10.1504/PCFD.2014.065466]
[http://dx.doi.org/10.1007/s12206-012-0312-z]
[http://dx.doi.org/10.1016/j.ijheatfluidflow.2019.04.011]
[http://dx.doi.org/10.1108/HFF-06-2019-0467]
[http://dx.doi.org/10.1115/1.4045575]
[http://dx.doi.org/10.1109/TCPMT.2011.2125963]
[http://dx.doi.org/10.26701/ems.320250]
[http://dx.doi.org/10.1115/1.4003284]
[http://dx.doi.org/10.1016/j.ijthermalsci.2012.12.005]