Review Article

融合偶氮喹啉类药物:药物化学候选。生物应用综述

卷 28, 期 4, 2021

发表于: 06 February, 2020

页: [712 - 749] 页: 38

弟呕挨: 10.2174/0929867327666200206114936

价格: $65

摘要

杂环化合物具有多种生物活性,在药物化学领域占有巨大的地位。由于不同的成键方法,它们的合成途径方便快捷,为药物传递提供了大量的多功能化合物。杂环化合物的合成如今已为大多数人所熟知,并在大量的文献中进行了描述和评述。在这篇综述中,我们选择收集和分类有关喹恶啉类化合物的生物活性的现有信息,在键a环包含一个或多个氮原子在熔合的唑环。

关键词: 偶氮喹啉,抗癌,抗寄生虫,抗菌,神经调节剂,免疫调节剂,抗病毒,心脏调节剂,抗肥胖。

[1]
Cheng, G.; Li, B.; Wang, C.; Zhang, H.; Liang, G.; Weng, Z.; Hao, H.; Wang, X.; Liu, Z.; Dai, M.; Wang, Y.; Yuan, Z. Systematic and molecular basis of the antibacterial action of Quinoxaline 1,4-Di-N-oxides against escherichia coli. PLoS One, 2015, 10(8)e0136450
[http://dx.doi.org/10.1371/journal.pone.0136450] [PMID: 26296207]
[2]
Vieira, M.; Pinheiro, C.; Fernandes, R.; Noronha, J.P.; Prudêncio, C. Antimicrobial activity of quinoxaline 1,4-dioxide with 2- and 3-substituted derivatives. Microbiol. Res., 2014, 169(4), 287-293.
[http://dx.doi.org/10.1016/j.micres.2013.06.015] [PMID: 23928379]
[3]
Carta, A.; Piras, S.; Loriga, G.; Paglietti, G. Chemistry, biological properties and SAR analysis of quinoxalinones. Mini Rev. Med. Chem., 2006, 6(11), 1179-1200.
[http://dx.doi.org/10.2174/138955706778742713] [PMID: 17100630]
[4]
Ajani, O.O.; Obafemi, C.A.; Nwinyi, O.C.; Akinpelu, D.A. Microwave assisted synthesis and antimicrobial activity of 2-quinoxalinone-3-hydrazone derivatives. Bioorg. Med. Chem., 2010, 18(1), 214-221.
[http://dx.doi.org/10.1016/j.bmc.2009.10.064] [PMID: 19948407]
[5]
Burguete, A.; Pontiki, E.; Hadjipavlou-Litina, D.; Ancizu, S.; Villar, R.; Solano, B.; Moreno, E.; Torres, E.; Pérez, S.; Aldana, I.; Monge, A. Synthesis and biological evaluation of new quinoxaline derivatives as antioxidant and anti-inflammatory agents. Chem. Biol. Drug Des., 2011, 77(4), 255-267.
[http://dx.doi.org/10.1111/j.1747-0285.2011.01076.x] [PMID: 21244639]
[6]
El-Sabbagh, O.I.; El-Sadek, M.E.; Lashine, S.M.; Yassin, S.H.; El-Nabtity, S.M. Synthesis of new 2(1H)-quino-xalinone derivatives for antimicrobial and antiinflammatory evaluation. Med. Chem. Res., 2009, 18(9), 782.
[http://dx.doi.org/10.1007/s00044-009-9203-y]
[7]
Rodrigues, F.A.R.; Bomfim, I. da S.; Cavalcanti, B.C. Pessoa, Cdo.Ó.; Wardell, J.L.; Wardell, S.M.; Pinheiro, A.C.; Kaiser, C.R.; Nogueira, T.C.; Low, J.N.; Gomes, L.R.; de Souza, M.V. Design, synthesis and biological evaluation of (E)-2-(2-arylhydrazinyl)quinoxalines, a promising and potent new class of anticancer agents. Bioorg. Med. Chem. Lett., 2014, 24(3), 934-939.
[http://dx.doi.org/10.1016/j.bmcl.2013.12.074] [PMID: 24398294]
[8]
Abbas, H-A.S.; Al-Marhabi, A.R.; Eissa, S.I.; Ammar, Y.A. Molecular modeling studies and synthesis of novel quinoxaline derivatives with potential anticancer activity as inhibitors of c-Met kinase. Bioorg. Med. Chem., 2015, 23(20), 6560-6572.
[http://dx.doi.org/10.1016/j.bmc.2015.09.023] [PMID: 26420384]
[9]
Mashevskaya, I.V.; Makhmudov, R.R.; Aleksandrova, G.A.; Golovnina, O.V.; Duvalov, A.V.; Maslivets, A.N. Synthesis and study of the antibacterial and analgesic activity of 3-acyl-1,2,4,5-tetrahydro-[1,2-a]quinoxaline-1,2,4-triones. Pharm. Chem. J., 2001, 35(4), 196-198.
[http://dx.doi.org/10.1023/A:1010475811489]
[10]
Abu-Hashem, A.A.; Gouda, M.A.; Badria, F.A. Synthesis of some new pyrimido[2′,1′:2,3]thiazolo[4,5-b]quinoxaline derivatives as anti-inflammatory and analgesic agents. Eur. J. Med. Chem., 2010, 45(5), 1976-1981.
[http://dx.doi.org/10.1016/j.ejmech.2010.01.042] [PMID: 20149490]
[11]
Pan, Y.; Li, P.; Xie, S.; Tao, Y.; Chen, D.; Dai, M.; Hao, H.; Huang, L.; Wang, Y.; Wang, L.; Liu, Z.; Yuan, Z. Synthesis, 3D-QSAR analysis and biological evaluation of quinoxaline 1,4-di-N-oxide derivatives as antituberculosis agents. Bioorg. Med. Chem. Lett., 2016, 26(16), 4146-4153.
[http://dx.doi.org/10.1016/j.bmcl.2016.01.066] [PMID: 27426298]
[12]
Moreno, E.; Ancizu, S.; Pérez-Silanes, S.; Torres, E.; Aldana, I.; Monge, A. Synthesis and antimycobacterial activity of new quinoxaline-2-carboxamide 1,4-di-N-oxide derivatives. Eur. J. Med. Chem., 2010, 45(10), 4418-4426.
[http://dx.doi.org/10.1016/j.ejmech.2010.06.036] [PMID: 20656380]
[13]
Puligheddu, M.; Pillolla, G.; Melis, M.; Lecca, S.; Marrosu, F.; De Montis, M.G.; Scheggi, S.; Carta, G.; Murru, E.; Aroni, S.; Muntoni, A.L.; Pistis, M. PPAR-alpha agonists as novel antiepileptic drugs: preclinical findings. PLoS One, 2013, 8(5)e64541
[http://dx.doi.org/10.1371/journal.pone.0064541] [PMID: 23724059]
[14]
Rogawski, M.A. Revisiting AMPA receptors as an antiepileptic drug target. Epilepsy Curr., 2011, 11(2), 56-63.
[http://dx.doi.org/10.5698/1535-7511-11.2.56] [PMID: 21686307]
[15]
Xu, B.; Sun, Y.; Guo, Y.; Cao, Y.; Yu, T. Synthesis and biological evaluation of N4-(hetero)arylsulfonylquinoxa-linones as HIV-1 reverse transcriptase inhibitors. Bioorg. Med. Chem., 2009, 17(7), 2767-2774.
[http://dx.doi.org/10.1016/j.bmc.2009.02.039] [PMID: 19269831]
[16]
Patel, S.B.; Patel, B.D.; Pannecouque, C.; Bhatt, H.G. Design, synthesis and anti-HIV activity of novel quinoxaline derivatives. Eur. J. Med. Chem., 2016, 117(Suppl. C), 230-240.
[http://dx.doi.org/10.1016/j.ejmech.2016.04.019] [PMID: 27105027]
[17]
Dudash, J., Jr; Zhang, Y.; Moore, J.B.; Look, R.; Liang, Y.; Beavers, M.P.; Conway, B.R.; Rybczynski, P.J.; Demarest, K.T. Synthesis and evaluation of 3-anilino-quinoxalinones as glycogen phosphorylase inhibitors. Bioorg. Med. Chem. Lett., 2005, 15(21), 4790-4793.
[http://dx.doi.org/10.1016/j.bmcl.2005.07.021] [PMID: 16143521]
[18]
Yang, Y.; Zhang, S.; Wu, B.; Ma, M.; Chen, X.; Qin, X.; He, M.; Hussain, S.; Jing, C.; Ma, B.; Zhu, C. An efficient synthesis of quinoxalinone derivatives as potent inhibitors of aldose reductase. ChemMedChem, 2012, 7(5), 823-835.
[http://dx.doi.org/10.1002/cmdc.201200054] [PMID: 22416050]
[19]
Xia, Q-H.; Hu, W.; Li, C.; Wu, J-F.; Yang, L.; Han, X-M.; Shen, Y-M.; Li, Z-Y.; Li, X. Design, synthesis, biological evaluation and molecular docking study on peptidomimetic analogues of XK469. Eur. J. Med. Chem., 2016, 124(Suppl. C), 311-325.
[http://dx.doi.org/10.1016/j.ejmech.2016.08.010] [PMID: 27597408]
[20]
Hajri, M.; Esteve, M-A.; Khoumeri, O.; Abderrahim, R.; Terme, T.; Montana, M.; Vanelle, P. Synthesis and evaluation of in vitro antiproliferative activity of new ethyl 3-(arylethynyl)quinoxaline-2-carboxylate and pyrido[4,3-b]quinoxalin-1(2H)-one derivatives. Eur. J. Med. Chem., 2016, 124(Suppl. C), 959-966.
[http://dx.doi.org/10.1016/j.ejmech.2016.10.025] [PMID: 27770736]
[21]
Russo, E.; Gitto, R.; Citraro, R.; Chimirri, A.; De Sarro, G. New AMPA antagonists in epilepsy. Expert Opin. Investig. Drugs, 2012, 21(9), 1371-1389.
[http://dx.doi.org/10.1517/13543784.2012.705277] [PMID: 22788917]
[22]
Nguyen, L.; Matsumoto, R.R. Involvement of AMPA receptors in the antidepressant-like effects of dextromethorphan in mice. Behav. Brain Res., 2015, 295(Suppl. C), 26-34.
[http://dx.doi.org/10.1016/j.bbr.2015.03.024] [PMID: 25804358]
[23]
Coe, J.W.; Rollema, H.; O’Neill, B.T.; Chantix, TM/ ChampixTM (varenicline tartrate), a nicotinic acetylcholine receptor partial agonist as a smoking cessation aid. Annu. Rep. Med. Chem., 2009, 44, 71-101.
[http://dx.doi.org/10.1016/S0065-7743(09)04404-2]
[24]
Møllegaard, N.E.; Bailly, C.; Waring, M.J.; Nielsen, P.E. Quinoxaline antibiotics enhance peptide nucleic acid binding to double-stranded DNA. Biochemistry, 2000, 39(31), 9502-9507.
[http://dx.doi.org/10.1021/bi000254x] [PMID: 10924146]
[25]
Kong, D.; Park, E.J.; Stephen, A.G.; Calvani, M.; Cardellina, J.H.; Monks, A.; Fisher, R.J.; Shoemaker, R.H.; Melillo, G. Echinomycin, a small-molecule inhibitor of hypoxia-inducible factor-1 DNA-binding activity. Cancer Res., 2005, 65(19), 9047-9055.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-1235] [PMID: 16204079]
[26]
Doležal, M.; Kráľová, K. Synthesis and evaluation of pyrazine derivatives with herbicidal activity in: Herbicides, Theory and Applications; Soloneski, S; Larramendy, M.L., Ed.; Ed InTech, 2011, pp. 581-610.
[http://dx.doi.org/10.5772/13482]
[27]
Sanchez-Bayo, F.; Goka, K. Pesticide residues and bees--a risk assessment. PLoS One, 2014, 9(4)e94482
[http://dx.doi.org/10.1371/journal.pone.0094482] [PMID: 24718419]
[28]
Gwinn, M.R.; Whipkey, D.L.; Weston, A. The effect of oxythioquinox exposure on normal human mammary epithelial cell gene expression: a microarray analysis study. Environ. Health, 2004, 3(1), 9.
[http://dx.doi.org/10.1186/1476-069X-3-9] [PMID: 15387888]
[29]
Obot, I.B.; Obi-Egbedi, N.O. Indeno-1-One [2,3-b]quinoxaline as an effective inhibitor for the corrosion of mild steel in 0.5M H2SO4 solution. Mater. Chem. Phys., 2010, 122(2), 325-328.
[http://dx.doi.org/10.1016/j.matchemphys.2010.03.037]
[30]
Justin Thomas, K.R.; Velusamy, M.; Lin, J.T.; Chuen, C-H.; Tao, Y-T. Chromophore-labeled quinoxaline derivatives as efficient electroluminescent materials. Chem. Mater., 2005, 17(7), 1860-1866.
[http://dx.doi.org/10.1021/cm047705a]
[31]
Iyer, A.; Bjorgaard, J.; Anderson, T.; Köse, M.E. Quinoxaline-based semiconducting polymers: effect of fluorination on the photophysical, thermal and charge transport properties. Macromolecules, 2012, 45(16), 6380-6389.
[http://dx.doi.org/10.1021/ma3009788]
[32]
Hinsberg, O. Ueber Chinoxaline. Ber. Dtsch. Chem. Ges., 1884, 17(1), 318-323.
[http://dx.doi.org/10.1002/cber.18840170193]
[33]
Kôrner, G. Ueber einige umwandlungen des orthonitranilins und der orthodiamine. Ber. Dtsch. Chem. Ges., 1884, 17(2), 572-573.
[34]
Saifina, D.F.; Mamedov, V.A. New and modified classical methods for the synthesis of quinoxalines. Russ. Chem. Rev., 2010, 79(5), 351.
[http://dx.doi.org/10.1070/RC2010v079n05ABEH004089]
[35]
Mamedov, V.A. Quinoxalines: Synthesis, Reactions, Mechanisms and Structure; Springer, 2016.
[http://dx.doi.org/10.1007/978-3-319-29773-6]
[36]
Mamedov, V.A.; Zhukova, N.A. Progress in Quinoxaline Synthesis. In: Progress in Heterocyclic Chemistry; Elsevier Inc, 2013, 25, pp. 1 -45.
[http://dx.doi.org/10.1016/B978-0-08-099406-2.00001-7]
[37]
Cheesman, G.; Tuck, B. A new synthesis of pyrrolo (1, 2-a) quinoxalines. Chem. Ind., 1965, 31, 1382-1385.
[38]
Mamedov, V.A.; Kalinin, A.A. Pyrrolo[1,2-a]quinoxalines based on quinoxalines. Chem. Heterocycl. Compd., 2010, 46(6), 641-664.
[http://dx.doi.org/10.1007/s10593-010-0565-3]
[39]
Kalinin, A.A.; Mamedov, V.A. Pyrrolo[1,2-a]quinoxalines based on pyrroles. Chem. Heterocycl. Compd., 2011, 46(12), 1423.
[http://dx.doi.org/10.1007/s10593-011-0688-1]
[40]
Mamedov, V.A.; Kalinin, A.A.; Gubaidullin, A.T.; Litvinov, I.A.; Azancheev, N.M.; Levin, Y.A. Fused polycyclic nitrogen-containing heterocycles: VI. Pyrrolo [1,2-a]quinoxalines. Russ. J. Org. Chem., 2004, 40(1), 114-123.
[http://dx.doi.org/10.1023/B:RUJO.0000034919.73409.b3]
[41]
Huang, A.; Liu, F.; Zhan, C.; Liu, Y.; Ma, C. One-pot synthesis of pyrrolo[1,2-a]quinoxalines. Org. Biomol. Chem., 2011, 9(21), 7351-7357.
[http://dx.doi.org/10.1039/c1ob05936j] [PMID: 21894335]
[42]
Piltan, M.; Moradi, L.; Abasi, G.; Zarei, S.A. A one-pot catalyst-free synthesis of functionalized pyrrolo[1,2-a]quinoxaline derivatives from benzene-1,2-diamine, acetylenedicarboxylates and ethyl bromopyruvate. Beilstein J. Org. Chem., 2013, 9, 510-515.
[http://dx.doi.org/10.3762/bjoc.9.55] [PMID: 23616791]
[43]
Alleca, S.; Corona, P.; Loriga, M.; Paglietti, G.; Loddo, R.; Mascia, V.; Busonera, B.; La Colla, P. Quinoxaline chemistry. Part 16. 4-substituted anilino and 4-substituted phenoxymethyl pyrrolo[1,2-a]quinoxalines and N-[4-(pyrrolo [1,2-a]quinoxalin-4-yl)amino and hydroxymethyl]benzoyl glutamates. Synthesis and evaluation of in vitro biological activity. Farmaco, 2003, 58(9), 639-650.
[http://dx.doi.org/10.1016/S0014-827X(03)00101-0] [PMID: 13679156]
[44]
Grande, F.; Aiello, F.; Grazia, O.D.; Brizzi, A.; Garofalo, A.; Neamati, N. Synthesis and antitumor activities of a series of novel quinoxalinhydrazides. Bioorg. Med. Chem., 2007, 15(1), 288-294.
[http://dx.doi.org/10.1016/j.bmc.2006.09.073] [PMID: 17085054]
[45]
Plasencia, C.; Grande, F.; Oshima, T.; Cao, X.; Yamada, R.; Sanchez, T.; Aiello, F.; Garofalo, A.; Neamati, N. Discovery of a novel quinoxalinhydrazide with a broad-spectrum anticancer activity. Cancer Biol. Ther., 2009, 8(5), 458-465.
[http://dx.doi.org/10.4161/cbt.8.5.7741] [PMID: 19221468]
[46]
Li, Q.; Zhu, G-D. Targeting serine/threonine protein kinase B/Akt and cell-cycle checkpoint kinases for treating cancer. Curr. Top. Med. Chem., 2002, 2(9), 939-971.
[http://dx.doi.org/10.2174/1568026023393318] [PMID: 12171565]
[47]
Desplat, V.; Geneste, A.; Begorre, M-A.; Fabre, S.B.; Brajot, S.; Massip, S.; Thiolat, D.; Mossalayi, D.; Jarry, C.; Guillon, J. Synthesis of new pyrrolo[1,2-a]quinoxaline derivatives as potential inhibitors of Akt kinase. J. Enzyme Inhib. Med. Chem., 2008, 23(5), 648-658.
[http://dx.doi.org/10.1080/14756360802205448] [PMID: 18821254]
[48]
Desplat, V.; Moreau, S.; Gay, A.; Fabre, S.B.; Thiolat, D.; Massip, S.; Macky, G.; Godde, F.; Mossalayi, D.; Jarry, C.; Guillon, J. Synthesis and evaluation of the antiproliferative activity of novel pyrrolo[1,2-a]quinoxaline derivatives, potential inhibitors of Akt kinase. Part II. J. Enzyme Inhib. Med. Chem., 2010, 25(2), 204-215.
[http://dx.doi.org/10.3109/14756360903169881] [PMID: 20222763]
[49]
Desplat, V.; Vincenzi, M.; Lucas, R.; Moreau, S.; Savrimoutou, S.; Rubio, S.; Pinaud, N.; Bigat, D.; Enriquez, E.; Marchivie, M.; Routier, S.; Sonnet, P.; Rossi, F.; Ronga, L.; Guillon, J. Synthesis and antiproliferative effect of ethyl 4-[4-(4-substituted piperidin-1-yl)]benzylpyrrolo[1,2-a]quinoxalinecarboxylate derivatives on human leukemia cells. ChemMedChem, 2017, 12(12), 940-953.
[http://dx.doi.org/10.1002/cmdc.201700049] [PMID: 28218826]
[50]
Guillon, J.; Le Borgne, M.; Rimbault, C.; Moreau, S.; Savrimoutou, S.; Pinaud, N.; Baratin, S.; Marchivie, M.; Roche, S.; Bollacke, A.; Pecci, A.; Alvarez, L.; Desplat, V.; Jose, J. Synthesis and biological evaluation of novel substituted pyrrolo[1,2-a]quinoxaline derivatives as inhibitors of the human protein kinase CK2. Eur. J. Med. Chem., 2013, 65, 205-222.
[http://dx.doi.org/10.1016/j.ejmech.2013.04.051] [PMID: 23711832]
[51]
Bonhert, J.A. Antimicrobial development and efflux pump inhibitors in: Efflux-Mediated Antimicrobial Resistance in Bacteria: Mechanisms, Regulation and Clinical Implications; Li, X-Z.; Elkins, C.A. Zgurskaya H.I. (Eds.); Springer; , 2016, pp. 755-795.
[http://dx.doi.org/10.1007/978-3-319-39658-3]
[52]
Vidaillac, C.; Guillon, J.; Moreau, S.; Arpin, C.; Lagardère, A.; Larrouture, S.; Dallemagne, P.; Caignard, D-H.; Quentin, C.; Jarry, C. Synthesis of new 4-[2-(alkylamino) ethylthio]pyrrolo[1,2-a]quinoxaline and 5-[2-(alkylamino) ethylthio]pyrrolo[1,2-a]thieno[3,2-e]pyrazine derivatives, as potential bacterial multidrug resistance pump inhibitors. J. Enzyme Inhib. Med. Chem., 2007, 22(5), 620-631.
[http://dx.doi.org/10.1080/14756360701485406] [PMID: 18035830]
[53]
Guillon, J.; Reynolds, R.C.; Leger, J-M.; Guie, M-A.; Massip, S.; Dallemagne, P.; Jarry, C. Synthesis and preliminary in vitro evaluation of antimycobacterial activity of new pyrrolo[1,2-a] quinoxaline-carboxylic acid hydrazide derivatives. J. Enzyme Inhib. Med. Chem., 2004, 19(6), 489-495.
[http://dx.doi.org/10.1080/14756360412331280464] [PMID: 15662953]
[54]
Keivanloo, A.; Soozani, A.; Bakherad, M.; Mirzaee, M.; Rudbari, H.A.; Bruno, G. Development of an unexpected reaction pathway for the synthesis of 1,2,4-trisubstituted pyrrolo[1,2-a]quinoxalines through palladium-catalyzed cascade reactions. Tetrahedron, 2017, 73(12), 1633-1639.
[http://dx.doi.org/10.1016/j.tet.2017.02.018]
[55]
de Koning, H.P. Drug resistance in protozoan parasites. Emerging Top. Life Sci., 2017, 1(6), 627-632.
[http://dx.doi.org/10.1042/ETLS20170113]
[56]
Guillon, J.; Forfar, I.; Mamani-Matsuda, M.; Desplat, V.; Saliège, M.; Thiolat, D.; Massip, S.; Tabourier, A.; Léger, J-M.; Dufaure, B.; Haumont, G.; Jarry, C.; Mossalayi, D. Synthesis, analytical behaviour and biological evaluation of new 4-substituted pyrrolo[1,2-a]quinoxalines as antileishmanial agents. Bioorg. Med. Chem., 2007, 15(1), 194-210.
[http://dx.doi.org/10.1016/j.bmc.2006.09.068] [PMID: 17049253]
[57]
Guillon, J.; Forfar, I.; Desplat, V.; Fabre, S.B.; Thiolat, D.; Massip, S.; Carrie, H.; Mossalayi, D.; Jarry, C. Synthesis of new 4-(E)-alkenylpyrrolo[1,2-a]quinoxalines as antileishmanial agents by Suzuki-Miyaura cross-coupling reactions. J. Enzyme Inhib. Med. Chem., 2007, 22(5), 541-549.
[http://dx.doi.org/10.1080/14756360701425089] [PMID: 18035821]
[58]
Ronga, L.; Del Favero, M.; Cohen, A.; Soum, C.; Le Pape, P.; Savrimoutou, S.; Pinaud, N.; Mullié, C.; Daulouede, S.; Vincendeau, P.; Farvacques, N.; Agnamey, P.; Pagniez, F.; Hutter, S.; Azas, N.; Sonnet, P.; Guillon, J. Design, synthesis and biological evaluation of novel 4-alkapolyenyl-pyrrolo[1,2-a]quinoxalines as antileishmanial agents--part III. Eur. J. Med. Chem., 2014, 81, 378-393.
[http://dx.doi.org/10.1016/j.ejmech.2014.05.037] [PMID: 24858543]
[59]
Guillon, J.; Dumoulin, H.; Dallemagne, P.; Reynolds, R.; Rault, S. Synthesis and antituberculosis activity of new phenylpyrrolo[1, 2-a]quinoxalinylpyrrole carboxylic acid derivatives. Pharm. Pharmacol. Commun., 1998, 4(1), 33-38.
[http://dx.doi.org/10.1111/j.2042-7158.1998.tb00314.x]]
[60]
Guillon, J.; Boulouard, M.; Lisowski, V.; Stiebing, S.; Lelong, V.; Dallemagne, P.; Rault, S. Synthesis of new 2-(aminomethyl)-4-phenylpyrrolo[1,2-a]-quinoxalines and their preliminary in-vivo central dopamine antagonist activity evaluation in mice. J. Pharm. Pharmacol., 2000, 52(11), 1369-1375.
[http://dx.doi.org/10.1211/0022357001777522] [PMID: 11186245]
[61]
Prunier, H.; Rault, S.; Lancelot, J-C.; Robba, M.; Renard, P.; Delagrange, P.; Pfeiffer, B.; Caignard, D-H.; Misslin, R.; Guardiola-Lemaitre, B.; Hamon, M. Novel and selective partial agonists of 5-HT3 receptors. 2. Synthesis and biological evaluation of piperazinopyridopyrrolopyrazines, piperazinopyrroloquinoxalines and piperazinopyridopyrroloquinoxalines. J. Med. Chem., 1997, 40(12), 1808-1819.
[http://dx.doi.org/10.1021/jm960501o] [PMID: 9191957]
[62]
Guillon, J.; Dallemagne, P.; Pfeiffer, B.; Renard, P.; Manechez, D.; Kervran, A.; Rault, S. Synthesis of new pyrrolo[1,2-a]quinoxalines: potential non-peptide glucagon receptor antagonists. Eur. J. Med. Chem., 1998, 33(4), 293-308.
[http://dx.doi.org/10.1016/S0223-5234(98)80063-9]
[63]
Guillon, J.; Grellier, P.; Labaied, M.; Sonnet, P.; Léger, J-M.; Déprez-Poulain, R.; Forfar-Bares, I.; Dallemagne, P.; Lemaître, N.; Péhourcq, F.; Rochette, J.; Sergheraert, C.; Jarry, C. Synthesis, antimalarial activity, and molecular modeling of new pyrrolo[1,2-a]quinoxalines, bispyrrolo [1,2-a]quinoxalines, bispyrido[3,2-e]pyrrolo[1,2-a]pyrazines, and bispyrrolo[1,2-a]thieno[3,2-e]pyrazines. J. Med. Chem., 2004, 47(8), 1997-2009.
[http://dx.doi.org/10.1021/jm0310840] [PMID: 15055999]
[64]
Guillon, J.; Cohen, A.; Gueddouda, N.M.; Das, R.N.; Moreau, S.; Ronga, L.; Savrimoutou, S.; Basmaciyan, L.; Monnier, A.; Monget, M.; Rubio, S.; Garnerin, T.; Azas, N.; Mergny, J.L.; Mullié, C.; Sonnet, P. Design, synthesis and antimalarial activity of novel bisN-[(pyrrolo[1,2-a]quinoxalin-4-yl)benzyl]-3-aminopropylamine derivatives. J. Enzyme Inhib. Med. Chem., 2017, 32(1), 547-563.
[http://dx.doi.org/10.1080/14756366.2016.1268608] [PMID: 28114821]
[65]
Guillon, J.; Moreau, S.; Mouray, E.; Sinou, V.; Forfar, I.; Fabre, S.B.; Desplat, V.; Millet, P.; Parzy, D.; Jarry, C.; Grellier, P. New ferrocenic pyrrolo[1,2-a]quinoxaline derivatives: synthesis, and in vitro antimalarial activity. Bioorg. Med. Chem., 2008, 16(20), 9133-9144.
[http://dx.doi.org/10.1016/j.bmc.2008.09.038] [PMID: 18819813]
[66]
Guillon, J.; Mouray, E.; Moreau, S.; Mullié, C.; Forfar, I.; Desplat, V.; Belisle-Fabre, S.; Pinaud, N.; Ravanello, F.; Le-Naour, A.; Léger, J.M.; Gosmann, G.; Jarry, C.; Déléris, G.; Sonnet, P.; Grellier, P. New ferrocenic pyrrolo[1,2-a]quinoxaline derivatives: synthesis, and in vitro antimalarial activity--Part II. Eur. J. Med. Chem., 2011, 46(6), 2310-2326.
[http://dx.doi.org/10.1016/j.ejmech.2011.03.014] [PMID: 21458112]
[67]
Primas, N.; Suzanne, P.; Verhaeghe, P.; Hutter, S.; Kieffer, C.; Laget, M.; Cohen, A.; Broggi, J.; Lancelot, J-C.; Lesnard, A.; Dallemagne, P.; Rathelot, P.; Rault, S.; Vanelle, P.; Azas, N. Synthesis and in vitro evaluation of 4-trichloromethylpyrrolo[1,2-a]quinoxalines as new antiplasmodial agents. Eur. J. Med. Chem., 2014, 83, 26-35.
[http://dx.doi.org/10.1016/j.ejmech.2014.06.014] [PMID: 24946216]
[68]
Sharma, A.X.; Quittner-Strom, E.B.; Lee, Y.; Johnson, J.A.; Martin, S.A.; Yu, X.; Li, J.; Lu, J.; Cai, Z.; Chen, S.; Wang, M.Y.; Zhang, Y.; Pearson, M.J.; Dorn, A.C.; McDonald, J.G.; Gordillo, R.; Yan, H.; Thai, D.; Wang, Z.V.; Unger, R.H.; Holland, W.L. Glucagon receptor antagonism improves glucose metabolism and cardiac function by promoting AMP-mediated protein kinase in diabetic mice. Cell Rep., 2018, 22(7), 1760-1773.
[http://dx.doi.org/10.1016/j.celrep.2018.01.065] [PMID: 29444429]
[69]
Sapse, A-M.; Lawton, S.; Rothchild, R.; Unson, C. An ab initio study of non-peptide glucagon receptor antagonists. Theocam, 2003, 638(1-3), 135-145.
[http://dx.doi.org/10.1016/j.theochem.2003.07.001]]
[70]
Pertwee, R.G. The pharmacology of cannabinoid receptors and their ligands: an overview. Int. J. Obes., 2006, 30(Suppl. 1), S13-S18.
[http://dx.doi.org/10.1038/sj.ijo.0803272] [PMID: 16570099]
[71]
Szabó, G.; Kiss, R.; Páyer-Lengyel, D.; Vukics, K.; Szikra, J.; Baki, A.; Molnár, L.; Fischer, J.; Keserű, G.M. Hit-to-lead optimization of pyrrolo[1,2-a]quinoxalines as novel cannabinoid type 1 receptor antagonists. Bioorg. Med. Chem. Lett., 2009, 19(13), 3471-3475.
[http://dx.doi.org/10.1016/j.bmcl.2009.05.010] [PMID: 19457667]
[72]
Campiani, G.; Aiello, F.; Fabbrini, M.; Morelli, E.; Ramunno, A.; Armaroli, S.; Nacci, V.; Garofalo, A.; Greco, G.; Novellino, E.; Maga, G.; Spadari, S.; Bergamini, A.; Ventura, L.; Bongiovanni, B.; Capozzi, M.; Bolacchi, F.; Marini, S.; Coletta, M.; Guiso, G.; Caccia, S. Quinoxalinylethylpyridylthioureas (QXPTs) as potent non-nucleoside HIV-1 reverse transcriptase (RT) inhibitors. Further SAR studies and identification of a novel orally bioavailable hydrazine-based antiviral agent. J. Med. Chem., 2001, 44(3), 305-315.
[http://dx.doi.org/10.1021/jm0010365] [PMID: 11462972]
[73]
Thompson, A.J.; Lummis, S.C.R. 5-HT3 receptors. Curr. Pharm. Des., 2006, 12(28), 3615-3630.
[http://dx.doi.org/10.2174/138161206778522029] [PMID: 17073663]
[74]
Campiani, G.; Morelli, E.; Gemma, S.; Nacci, V.; Butini, S.; Hamon, M.; Novellino, E.; Greco, G.; Cagnotto, A.; Goegan, M.; Cervo, L.; Dalla Valle, F.; Fracasso, C.; Caccia, S.; Mennini, T. Pyrroloquinoxaline derivatives as high-affinity and selective 5-HT(3) receptor agonists: synthesis, further structure-activity relationships, and biological studies. J. Med. Chem., 1999, 42(21), 4362-4379.
[http://dx.doi.org/10.1021/jm990151g] [PMID: 10543880]
[75]
Campiani, G.; Butini, S.; Fattorusso, C.; Trotta, F.; Franceschini, S.; De Angelis, M.; Sandager, N. Novel Aryl Piperazine Derivatives With Medical Utility. US, 2009, 2009/0238761, A1.
[76]
Butini, S.; Budriesi, R.; Hamon, M.; Morelli, E.; Gemma, S.; Brindisi, M.; Borrelli, G.; Novellino, E.; Fiorini, I.; Ioan, P.; Chiarini, A.; Cagnotto, A.; Mennini, T.; Fracasso, C.; Caccia, S.; Campiani, G. Novel, potent and selective quinoxaline-based 5-HT(3) receptor ligands. 1. Further structure-activity relationships and pharmacological characterization. J. Med. Chem., 2009, 52(21), 6946-6950.
[http://dx.doi.org/10.1021/jm901126m] [PMID: 19831400]
[77]
Morelli, E.; Gemma, S.; Budriesi, R.; Campiani, G.; Novellino, E.; Fattorusso, C.; Catalanotti, B.; Coccone, S.S.; Ros, S.; Borrelli, G.; Persico, M.; Fiorini, I.; Nacci, V.; Ioan, P.; Chiarini, A.; Hamon, M.; Cagnotto, A.; Mennini, T.; Fracasso, C.; Colovic, M.; Caccia, S.; Butini, S. Specific targeting of peripheral serotonin 5-HT(3) receptors. Synthesis, biological investigation, and structure-activity relationships. J. Med. Chem., 2009, 52(11), 3548-3562.
[http://dx.doi.org/10.1021/jm900018b] [PMID: 19425598]
[78]
Borea, P.A.; Gessi, S.; Merighi, S.; Vincenzi, F.; Varani, K. Pharmacology of Adenosine receptors: the state of the art. Physiol. Rev., 2018, 98(3), 1591-1625.
[http://dx.doi.org/10.1152/physrev.00049.2017] [PMID: 29848236]
[79]
Schann, S.; Mayer, S.; Gardan, S. Pyrrolo[1,2-a]quioxaline derivatives as adenosine A3 receptor modulators and uses thereof. US 2009/0093476 A1 2009.
[80]
Heine, H.W.; Brooker, A.C. The isomerization of aziridine derivatives. VI. The rearrangement of some 2-(1-aziridinyl). Quinoxalines. J. Org. Chem., 1962, 27(8), 2943-2944.
[http://dx.doi.org/10.1021/jo01055a522]
[81]
Mamedov, V.A.; Kalinin, A.A. Advances in the Synthesis of Imidazo[1,5-a]- and Imidazo. [1,2-a]Quinoxalines. Russ. Chem. Rev., 2014, 83(9), 820-847.
[http://dx.doi.org/10.1070/RC2014v083n09ABEH004424]
[82]
Liu, X.; Winey, M. The MPS1 family of protein kinases. Annu. Rev. Biochem., 2012, 81(1), 561-585.
[http://dx.doi.org/10.1146/annurev-biochem-061611-090435] [PMID: 22482908]
[83]
Koppitz, M.; Bader, B.; Bömer, U.; Kreft, B.; Lienau, P.; Marquardt, T.; Prechtl, S.; Siemeister, G.; Wegscheid-Gerlach, C. Substituted Imidazoquinoxalines. US 8,729,082 B2, 2014.
[84]
Moarbess, G.; Deleuze-Masquefa, C.; Bonnard, V.; Gayraud-Paniagua, S.; Vidal, J-R.; Bressolle, F.; Pinguet, F.; Bonnet, P-A. In vitro and in vivo anti-tumoral activities of imidazo[1,2-a]quinoxaline, imidazo[1,5-a]quinoxaline, and pyrazolo[1,5-a]quinoxaline derivatives. Bioorg. Med. Chem., 2008, 16(13), 6601-6610.
[http://dx.doi.org/10.1016/j.bmc.2008.05.022] [PMID: 18513976]
[85]
Deleuze-Masquefa, C.; Moarbess, G.; Khier, S.; David, N.; Gayraud-Paniagua, S.; Bressolle, F.; Pinguet, F.; Bonnet, P-A. New imidazo[1,2-a]quinoxaline derivatives: synthesis and in vitro activity against human melanoma. Eur. J. Med. Chem., 2009, 44(9), 3406-3411.
[http://dx.doi.org/10.1016/j.ejmech.2009.02.007] [PMID: 19278757]
[86]
Khier, S.; Deleuze-Masquéfa, C.; Moarbess, G.; Gattacceca, F.; Margout, D.; Solassol, I.; Cooper, J-F.; Pinguet, F.; Bonnet, P-A.; Bressolle, F.M.M. Pharmacology of EAPB0203, a novel imidazo[1,2-a]quinoxaline derivative with anti-tumoral activity on melanoma. Eur. J. Pharm. Sci., 2010, 39(1-3), 23-29.
[http://dx.doi.org/10.1016/j.ejps.2009.10.006] [PMID: 19854270]
[87]
Courbet, A.; Bec, N.; Constant, C.; Larroque, C.; Pugniere, M.; El Messaoudi, S.; Zghaib, Z.; Khier, S.; Deleuze-Masquefa, C.; Gattacceca, F. Imidazoquinoxaline anticancer derivatives and imiquimod interact with tubulin: Characterization of molecular microtubule inhibiting mechanisms in correlation with cytotoxicity. PLoS One, 2017, 12(8)e0182022
[http://dx.doi.org/10.1371/journal.pone.0182022] [PMID: 28797090]
[88]
Nabbouh, A.I.; Hleihel, R.S.; Saliba, J.L.; Karam, M.M.; Hamie, M.H.; Wu, H.J.M.; Berthier, C.P.; Tawil, N.M.; Bonnet, P-A.A.; Deleuze-Masquefa, C.; El Hajj, H.A. Imidazoquinoxaline derivative EAPB0503: A promising drug targeting mutant nucleophosmin 1 in acute myeloid leukemia. Cancer, 2017, 123(9), 1662-1673.
[http://dx.doi.org/10.1002/cncr.30515] [PMID: 28055106]
[89]
Chouchou, A.; Patinote, C.; Cuq, P.; Bonnet, P-A.; Deleuze-Masquéfa, C. Imidazo[1,2-a]quinoxalines derivatives grafted with amino acids: synthesis and evaluation on A375 melanoma cells. Molecules, 2018, 23(11)E2987
[http://dx.doi.org/10.3390/molecules23112987] [PMID: 30445763]
[90]
Deleuze-Masquefa, C.; Bonnet, P.A.; Cuq, P.; Patinote, C. New imidazo[1,2-a]quinoxalines and derivates thereof for the treatment of cancer. W.O. Patent 2016107895 A1 2018.
[91]
Moarbess, G.; El-Hajj, H.; Kfoury, Y.; El-Sabban, M.E.; Lepelletier, Y.; Hermine, O.; Deleuze-Masquéfa, C.; Bonnet, P-A.; Bazarbachi, A. EAPB0203, a member of the imidazoquinoxaline family, inhibits growth and induces caspase-dependent apoptosis in T-cell lymphomas and HTLV-I-associated adult T-cell leukemia/lymphoma. Blood, 2008, 111(7), 3770-3777.
[http://dx.doi.org/10.1182/blood-2007-11-121913] [PMID: 18218850]
[92]
Saliba, J.; Deleuze-Masquéfa, C.; Iskandarani, A.; El Eit, R.; Hmadi, R.; Mahon, F-X.; Bazarbachi, A.; Bonnet, P-A.; Nasr, R. EAPB0503, a novel imidazoquinoxaline derivative, inhibits growth and induces apoptosis in chronic myeloid leukemia cells. Anticancer Drugs, 2014, 25(6), 624-632.
[PMID: 24463483]
[93]
Zghaib, Z.; Guichou, J-F.; Vappiani, J.; Bec, N.; Hadj-Kaddour, K.; Vincent, L-A.; Paniagua-Gayraud, S.; Larroque, C.; Moarbess, G.; Cuq, P.; Kassab, I.; Deleuze-Masquéfa, C.; Diab-Assaf, M.; Bonnet, P.A. New imidazoquinoxaline derivatives: Synthesis, biological evaluation on melanoma, effect on tubulin polymerization and structure-activity relationships. Bioorg. Med. Chem., 2016, 24(11), 2433-2440.
[http://dx.doi.org/10.1016/j.bmc.2016.04.004] [PMID: 27094151]
[94]
Khier, S.; Gattacceca, F.; El Messaoudi, S.; Lafaille, F.; Deleuze-Masquéfa, C.; Bompart, J.; Cooper, J-F.; Solassol, I.; Pinguet, F.; Bonnet, P-A.; Bressolle, F.M. Metabolism and pharmacokinetics of EAPB0203 and EAPB0503, two imidazoquinoxaline compounds previously shown to have antitumoral activity on melanoma and T-lymphomas. Drug Metab. Dispos., 2010, 38(10), 1836-1847.
[http://dx.doi.org/10.1124/dmd.110.034579] [PMID: 20660102]
[95]
Puar, Y.R.; Shanmugam, M.K.; Fan, L.; Arfuso, F.; Sethi, G.; Tergaonkar, V. Evidence for the involvement of the master transcription factor NF-KB in cancer initiation and progression. Biomedicines, 2018, 6(3)E82
[http://dx.doi.org/10.3390/biomedicines6030082] [PMID: 30060453]
[96]
Richmond, A.; Yang, J.; Amiri, K.; Dhawan, P. Imidazoquinoxaline compound for the treatment of melanoma. U.S. Patent 0025419 A1 2006.
[97]
Cuní, S.; Pérez-Aciego, P.; Pérez-Chacón, G.; Vargas, J.A.; Sánchez, A.; Martín-Saavedra, F.M.; Ballester, S.; García-Marco, J.; Jordá, J.; Durántez, A. A sustained activation of PI3K/NF-kappaB pathway is critical for the survival of chronic lymphocytic leukemia B cells. Leukemia, 2004, 18(8), 1391-1400.
[http://dx.doi.org/10.1038/sj.leu.2403398] [PMID: 15175625]
[98]
Furman, R.R.; Asgary, Z.; Mascarenhas, J.O.; Liou, H.C.; Schattner, E.J. Modulation of NF-kappa B activity and apoptosis in chronic lymphocytic leukemia B cells. J. Immunol., 2000, 164(4), 2200-2206.
[http://dx.doi.org/10.4049/jimmunol.164.4.2200] [PMID: 10657675]
[99]
López-Guerra, M.; Roué, G.; Pérez-Galán, P.; Alonso, R.; Villamor, N.; Montserrat, E.; Campo, E.; Colomer, D. p65 activity and ZAP-70 status predict the sensitivity of chronic lymphocytic leukemia cells to the selective IkappaB kinase inhibitor BMS-345541. Clin. Cancer Res., 2009, 15(8), 2767-2776.
[http://dx.doi.org/10.1158/1078-0432.CCR-08-2382] [PMID: 19351760]
[100]
Berger, A.; Quast, S-A.; Plötz, M.; Kammermeier, A.; Eberle, J. Sensitization of melanoma cells for TRAIL-induced apoptosis by BMS-345541 correlates with altered phosphorylation and activation of Bax. Cell Death Dis., 2013, 4(1)e477
[http://dx.doi.org/10.1038/cddis.2012.198] [PMID: 23348591]
[101]
Jani, T.S.; DeVecchio, J.; Mazumdar, T.; Agyeman, A.; Houghton, J.A. Inhibition of NF-kappaB signaling by quinacrine is cytotoxic to human colon carcinoma cell lines and is synergistic in combination with tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) or oxaliplatin. J. Biol. Chem., 2010, 285(25), 19162-19172.
[http://dx.doi.org/10.1074/jbc.M109.091645] [PMID: 20424169]
[102]
Falschlehner, C.; Emmerich, C.H.; Gerlach, B.; Walczak, H. TRAIL signalling: decisions between life and death. Int. J. Biochem. Cell Biol., 2007, 39(7-8), 1462-1475.
[http://dx.doi.org/10.1016/j.biocel.2007.02.007] [PMID: 17403612]
[103]
Ehrhardt, H.; Fulda, S.; Schmid, I.; Hiscott, J.; Debatin, K-M.; Jeremias, I. TRAIL induced survival and proliferation in cancer cells resistant towards TRAIL-induced apoptosis mediated by NF-kappaB. Oncogene, 2003, 22(25), 3842-3852.
[http://dx.doi.org/10.1038/sj.onc.1206520] [PMID: 12813457]
[104]
Franco, A.V.; Zhang, X.D.; Van Berkel, E.; Sanders, J.E.; Zhang, X.Y.; Thomas, W.D.; Nguyen, T.; Hersey, P. The role of NF-kappa B in TNF-related apoptosis-inducing ligand (TRAIL)-induced apoptosis of melanoma cells. J. Immunol., 2001, 166(9), 5337-5345.
[http://dx.doi.org/10.4049/jimmunol.166.9.5337] [PMID: 11313369]
[105]
Ammann, J.U.; Haag, C.; Kasperczyk, H.; Debatin, K-M.; Fulda, S. Sensitization of neuroblastoma cells for TRAIL-induced apoptosis by NF-kappaB inhibition. Int. J. Cancer, 2009, 124(6), 1301-1311.
[http://dx.doi.org/10.1002/ijc.24068] [PMID: 19065652]
[106]
Mori, N.; Yamada, Y.; Ikeda, S.; Yamasaki, Y.; Tsukasaki, K.; Tanaka, Y.; Tomonaga, M.; Yamamoto, N.; Fujii, M. Bay 11-7082 inhibits transcription factor NF-kappaB and induces apoptosis of HTLV-I-infected T-cell lines and primary adult T-cell leukemia cells. Blood, 2002, 100(5), 1828-1834.
[http://dx.doi.org/10.1182/blood-2002-01-0151] [PMID: 12176906]
[107]
Mori, N.; Fujii, M.; Iwai, K.; Ikeda, S.; Yamasaki, Y.; Hata, T.; Yamada, Y.; Tanaka, Y.; Tomonaga, M.; Yamamoto, N. Constitutive activation of transcription factor AP-1 in primary adult T-cell leukemia cells. Blood, 2000, 95(12), 3915-3921.
[PMID: 10845928]
[108]
Schwabe, R.F.; Schnabl, B.; Kweon, Y.O.; Brenner, D.A. CD40 activates NF-kappa B and c-Jun N-terminal kinase and enhances chemokine secretion on activated human hepatic stellate cells. J. Immunol., 2001, 166(11), 6812-6819.
[http://dx.doi.org/10.4049/jimmunol.166.11.6812] [PMID: 11359840]
[109]
Hironaka, N.; Mochida, K.; Mori, N.; Maeda, M.; Yamamoto, N.; Yamaoka, S. Tax-independent constitutive IkappaB kinase activation in adult T-cell leukemia cells. Neoplasia, 2004, 6(3), 266-278.
[http://dx.doi.org/10.1593/neo.03388] [PMID: 15153339]
[110]
Agbottah, E.; Yeh, W-I.; Berro, R.; Klase, Z.; Pedati, C.; Kehn-Hall, K.; Wu, W.; Kashanchi, F. Two specific drugs, BMS-345541 and purvalanol A induce apoptosis of HTLV-1 infected cells through inhibition of the NF-kappaB and cell cycle pathways. AIDS Res. Ther., 2008, 5(1), 12.
[http://dx.doi.org/10.1186/1742-6405-5-12] [PMID: 18544167]
[111]
Grimaldo, S.; Tian, F.; Li, L-Y. Sensitization of endothelial cells to VEGI-induced apoptosis by inhibiting the NF-kappaB pathway. Apoptosis, 2009, 14(6), 788-795.
[http://dx.doi.org/10.1007/s10495-009-0351-9] [PMID: 19418226]
[112]
Moarbess, G.; Guichou, J-F.; Paniagua-Gayraud, S.; Chouchou, A.; Marcadet, O.; Leroy, F.; Ruédas, R.; Cuq, P.; Deleuze-Masquéfa, C.; Bonnet, P-A. New IKK inhibitors: Synthesis of new imidazo[1,2-a]quinoxaline derivatives using microwave assistance and biological evaluation as IKK inhibitors. Eur. J. Med. Chem., 2016, 115, 268-274.
[http://dx.doi.org/10.1016/j.ejmech.2016.03.006] [PMID: 27017554]
[113]
Liu, C-H.; Wang, B.; Li, W-Z.; Yun, L-H.; Liu, Y.; Su, R-B.; Li, J.; Liu, H. Design, synthesis, and biological evaluation of novel 4-alkylamino-1-hydroxymethylimidazo[1,2-a]quinoxalines as adenosine A(1) receptor antagonists. Bioorg. Med. Chem., 2004, 12(17), 4701-4707.
[http://dx.doi.org/10.1016/j.bmc.2004.06.026] [PMID: 15358296]
[114]
Ceccarelli, S.; D’Alessandro, A.; Prinzivalli, M.; Zanarella, S. Imidazo[1,2-a]quinoxalin-4-amines: a novel class of nonxanthine a1-adenosine receptor antagonists. Eur. J. Med. Chem., 1998, 33(12), 943-955.
[http://dx.doi.org/10.1016/S0223-5234(99)80019-1]
[115]
Potschka, H.; Löscher, W.; Wlaź, P.; Behl, B.; Hofmann, H.P.; Treiber, H-J.; Szabo, L. LU 73068, a new non-NMDA and glycine/NMDA receptor antagonist: pharmacological characterization and comparison with NBQX and L-701,324 in the kindling model of epilepsy. Br. J. Pharmacol., 1998, 125(6), 1258-1266.
[http://dx.doi.org/10.1038/sj.bjp.0702172] [PMID: 9863655]
[116]
Deleuze-Masquéfa, C.; Gerebtzoff, G.; Subra, G.; Fabreguettes, J-R.; Ovens, A.; Carraz, M.; Strub, M-P.; Bompart, J.; George, P.; Bonnet, P-A. Design and synthesis of novel imidazo[1,2-a]quinoxalines as PDE4 inhibitors. Bioorg. Med. Chem., 2004, 12(5), 1129-1139.
[http://dx.doi.org/10.1016/j.bmc.2003.11.034] [PMID: 14980625]
[117]
Parra, S.; Laurent, F.; Subra, G.; Deleuze-Masquefa, C.; Benezech, V.; Fabreguettes, J.; Vidal, J.; Pocock, T.; Elliott, K.; Small, R.; Escale, R.; Michel, A.; Chapat, J.; Bonnet, P. Imidazo[1,2-a]quinoxalines: synthesis and cyclic nucleotide phosphodiesterase inhibitory activity. Eur. J. Med. Chem., 2001, 36(3), 255-264.
[http://dx.doi.org/10.1016/S0223-5234(01)01213-2] [PMID: 11337104]
[118]
Li, B.; Cociorva, O.M.; Nomanbhoy, T.; Weissig, H.; Li, Q.; Nakamura, K.; Liyanage, M.; Zhang, M.C.; Shih, A.Y.; Aban, A.; Hu, Y.; Cajica, J.; Pham, L.; Kozarich, J.W.; Shreder, K.R. Hit-to-lead optimization and kinase selectivity of imidazo[1,2-a]quinoxalin-4-amine derived JNK1 inhibitors. Bioorg. Med. Chem. Lett., 2013, 23(18), 5217-5222.
[http://dx.doi.org/10.1016/j.bmcl.2013.06.087] [PMID: 23916259]
[119]
Sutton, J.; Feng, X.; Valiante, N.; Lan, J. Imidazoquinoxaline Compounds as Immunomodulators. EP 2 357 184 B1 2015.
[120]
Mamedov, V.A. Quinoxalines: Synthesis, Reactions, Mechanisms and Structure; Springer, 2016.
[http://dx.doi.org/10.1007/978-3-319-29773-6]
[121]
Joshi, G.; Chauhan, M.; Kumar, R.; Thakur, A.; Sharma, S.; Singh, R.; Wani, A.A.; Sharon, A.; Bharatam, P.V.; Kumar, R. Cyclocondensation reactions of an electron deactivated 2-aminophenyl tethered imidazole with mono/1,2-biselectrophiles: synthesis and DFT studies on the rationalisation of imidazo[1,2-a]quinoxaline versus benzo[f]imidazo [1,5-a][1,3,5]triazepine selectivity switches. Org. Chem. Front., 2018, 5(24), 3526-3533.
[http://dx.doi.org/10.1039/C8QO00706C]
[122]
Ager, I.R.; Barnes, A.C.; Danswan, G.W.; Hairsine, P.W.; Kay, D.P.; Kennewell, P.D.; Matharu, S.S.; Miller, P.; Robson, P.; Rowlands, D.A. Synthesis and oral antiallergic activity of carboxylic acids derived from imidazo[2,1-c][1,4] benzoxazines, imidazo[1,2-a]quinolines, imidazo[1,2-a]quinoxalines, imidazo[1,2-a]quinoxalinones, pyrrolo[1,2-a]quinoxalinones, pyrrolo[2,3-a]quinoxalinones, and imidazo[2,1-b]benzothiazoles. J. Med. Chem., 1988, 31(6), 1098-1115.
[http://dx.doi.org/10.1021/jm00401a009] [PMID: 2897466]
[123]
MacMaster, J.F.; Dambach, D.M.; Lee, D.B.; Berry, K.K.; Qiu, Y.; Zusi, F.C.; Burke, J.R. An inhibitor of IkappaB kinase, BMS-345541, blocks endothelial cell adhesion molecule expression and reduces the severity of dextran sulfate sodium-induced colitis in mice. Inflamm. Res., 2003, 52(12), 508-511.
[http://dx.doi.org/10.1007/s00011-003-1206-4] [PMID: 14991079]
[124]
Lorenz, W.; Buhrmann, C.; Mobasheri, A.; Lueders, C.; Shakibaei, M. Bacterial lipopolysaccharides form procollagen-endotoxin complexes that trigger cartilage inflammation and degeneration: implications for the development of rheumatoid arthritis. Arthritis Res. Ther., 2013, 15(5), R111.
[http://dx.doi.org/10.1186/ar4291] [PMID: 24020912]
[125]
GHO | By category | Number of cases of cutaneous leishmaniasis reported - Data by country. Available at: http://apps.who.int/gho/data/view.main.NTDLEISHCNUMvv (accessed Jul 15, 2019)
[126]
Testerman, T.L.; Gerster, J.F.; Imbertson, L.M.; Reiter, M.J.; Miller, R.L.; Gibson, S.J.; Wagner, T.L.; Tomai, M.A. Cytokine induction by the immunomodulators imiquimod and S-27609. J. Leukoc. Biol., 1995, 58(3), 365-372.
[http://dx.doi.org/10.1002/jlb.58.3.365] [PMID: 7665993]
[127]
Seeberger, J.; Daoud, S.; Pammer, J. Transient effect of topical treatment of cutaneous leishmaniasis with imiquimod. Int. J. Dermatol., 2003, 42(7), 576-579.
[http://dx.doi.org/10.1046/j.1365-4362.2003.01955.x] [PMID: 12839616]
[128]
Firooz, A.; Khamesipour, A.; Ghoorchi, M.H.; Nassiri-Kashani, M.; Eskandari, S.E.; Khatami, A.; Hooshmand, B.; Gorouhi, F.; Rashighi-Firoozabadi, M.; Dowlati, Y. Imiquimod in combination with meglumine antimoniate for cutaneous leishmaniasis: a randomized assessor-blind controlled trial. Arch. Dermatol., 2006, 142(12), 1575-1579.
[http://dx.doi.org/10.1001/archderm.142.12.1575] [PMID: 17178983]
[129]
Arevalo, I.; Ward, B.; Miller, R.; Meng, T.C.; Najar, E.; Alvarez, E.; Matlashewski, G.; Llanos-Cuentas, A. Successful treatment of drug-resistant cutaneous leishmaniasis in humans by use of imiquimod, an immunomodulator. Clin. Infect. Dis., 2001, 33(11), 1847-1851.
[http://dx.doi.org/10.1086/324161] [PMID: 11692295]
[130]
El Hajj, R.; Bou Youness, H.; Lachaud, L.; Bastien, P.; Masquefa, C.; Bonnet, P-A.; El Hajj, H.; Khalifeh, I. EAPB0503: an imiquimod analog with potent in vitro activity against cutaneous leishmaniasis caused by Leishmania major and Leishmania tropica. PLoS Negl. Trop. Dis., 2018, 12(11)e0006854
[http://dx.doi.org/10.1371/journal.pntd.0006854] [PMID: 30462645]
[131]
King, F.E.; Clark-Lewis, J.W. 682. The structures of some supposed azetid-2 : 4-diones. Part III. The “alloxan-5-o-dimethylaminoanil” of rudy and cramer and its alkali hydrolysis product. J. Chem. Soc., 1951, 3080-3085.
[http://dx.doi.org/10.1039/JR9510003080]
[132]
Benkovic, S.J.; Barrows, T.H.; Farina, P.R. Models for the tetrahydrofolic acid. IV. Reactions of amines with formamidinium tetrahydroquinoxaline analogs. J. Am. Chem. Soc., 1973, 95(25), 8414-8420.
[http://dx.doi.org/10.1021/ja00806a036]
[133]
Jacobsen, E.J.; TenBrink, R.E.; Stelzer, L.S.; Belonga, K.L.; Carter, D.B.; Im, H.K.; Im, W.B.; Sethy, V.H.; Tang, A.H.; VonVoigtlander, P.F.; Petke, J.D. High-affinity partial agonist imidazo[1,5-a]quinoxaline amides, carbamates, and ureas at the gamma-aminobutyric acid A/benzodia-zepine receptor complex. J. Med. Chem., 1996, 39(1), 158-175.
[http://dx.doi.org/10.1021/jm940765f] [PMID: 8568803]
[134]
Danswan, G.W.; Hairsine, P.W.; Rowlands, D.A.; Taylor, J.B.; Westwood, R. Synthesis and reactions of some novel imidazobenzoxazines and related systems. J. Chem. Soc., Perkin Trans. 1, 1982, 0(0), 1049-1058.
[http://dx.doi.org/10.1039/p19820001049]
[135]
Chen, B-C.; Zhao, R.; Bednarz, M.S.; Wang, B.; Sundeen, J.E.; Barrish, J.C. A new strategy for the construction of the imidazo[1,5-a]quinoxalin-4-one ring system and its application to the efficient synthesis of BMS-238497, a novel and potent Lck inhibitor. J. Org. Chem., 2004, 69(3), 977-979.
[http://dx.doi.org/10.1021/jo0355348] [PMID: 14750833]
[136]
Sundeen, J.E.; Chen, P.; Chen, B-C.; Bednarz, M.S. Imidazoquinoxalinones, Heterocyclic-Substituted Imidazopyrazinones, Imidazoquinoxalines and Heterocyclic-Substituted Imidazopyrazines. U.S. Patent 180898 A1 2004.
[137]
Pierre, F.; Regan, C.F.; Chevrel, M-C.; Siddiqui-Jain, A.; Macalino, D.; Streiner, N.; Drygin, D.; Haddach, M.; O’Brien, S.E.; Rice, W.G.; Ryckman, D.M. Novel potent dual inhibitors of CK2 and Pim kinases with antiproliferative activity against cancer cells. Bioorg. Med. Chem. Lett., 2012, 22(9), 3327-3331.
[http://dx.doi.org/10.1016/j.bmcl.2012.02.099] [PMID: 22460033]
[138]
Pierre, F.; Stefan, E.; Nédellec, A-S.; Chevrel, M-C.; Regan, C.F.; Siddiqui-Jain, A.; Macalino, D.; Streiner, N.; Drygin, D.; Haddach, M.; O’Brien, S.E.; Anderes, K.; Ryckman, D.M. 7-(4H-1,2,4-Triazol-3-yl)benzo[c][2,6] naphthyridines: a novel class of Pim kinase inhibitors with potent cell antiproliferative activity. Bioorg. Med. Chem. Lett., 2011, 21(22), 6687-6692.
[http://dx.doi.org/10.1016/j.bmcl.2011.09.059] [PMID: 21982499]
[139]
Niiro, H.; Clark, E.A. Regulation of B-cell fate by antigen-receptor signals. Nat. Rev. Immunol., 2002, 2(12), 945-956.
[http://dx.doi.org/10.1038/nri955] [PMID: 12461567]
[140]
Kim, K-H.; Maderna, A.; Schnute, M.E.; Hegen, M.; Mohan, S.; Miyashiro, J.; Lin, L.; Li, E.; Keegan, S.; Lussier, J.; Wrocklage, C.; Nickerson-Nutter, C.L.; Wittwer, A.J.; Soutter, H.; Caspers, N.; Han, S.; Kurumbail, R.; Dunussi-Joannopoulos, K.; Douhan, J., III; Wissner, A. Imidazo[1,5-a]quinoxalines as irreversible BTK inhibitors for the treatment of rheumatoid arthritis. Bioorg. Med. Chem. Lett., 2011, 21(21), 6258-6263.
[http://dx.doi.org/10.1016/j.bmcl.2011.09.008] [PMID: 21958547]
[141]
Ellmeier, W.; Jung, S.; Sunshine, M.J.; Hatam, F.; Xu, Y.; Baltimore, D.; Mano, H.; Littman, D.R.; Severe, B. Severe B cell deficiency in mice lacking the tec kinase family members Tec and Btk. J. Exp. Med., 2000, 192(11), 1611-1624.
[http://dx.doi.org/10.1084/jem.192.11.1611] [PMID: 11104803]
[142]
Molina, T.J.; Kishihara, K.; Siderovski, D.P.; van Ewijk, W.; Narendran, A.; Timms, E.; Wakeham, A.; Paige, C.J.; Hartmann, K-U.; Veillette, A. Profound block in thymocyte development in mice lacking p56lck. Nature, 1992, 357(6374), 161-164.
[http://dx.doi.org/10.1038/357161a0] [PMID: 1579166]
[143]
Straus, D.B.; Weiss, A. Genetic evidence for the involvement of the lck tyrosine kinase in signal transduction through the T cell antigen receptor. Cell, 1992, 70(4), 585-593.
[http://dx.doi.org/10.1016/0092-8674(92)90428-F] [PMID: 1505025]
[144]
Chan, A.C.; Desai, D.M.; Weiss, A. The role of protein tyrosine kinases and protein tyrosine phosphatases in T cell antigen receptor signal transduction. Annu. Rev. Immunol., 1994, 12, 555-592.
[http://dx.doi.org/10.1146/annurev.iy.12.040194.003011] [PMID: 8011291]
[145]
Chen, P.; Iwanowicz, E.J.; Norris, D.; Gu, H.H.; Lin, J.; Moquin, R.V.; Das, J.; Wityak, J.; Spergel, S.H.; de Fex, H.; Pang, S.; Pitt, S.; Shen, D.R.; Schieven, G.L.; Barrish, J.C. Synthesis and SAR of novel imidazoquinoxaline-based Lck inhibitors: improvement of cell potency. Bioorg. Med. Chem. Lett., 2002, 12(21), 3153-3156.
[http://dx.doi.org/10.1016/S0960-894X(02)00677-7] [PMID: 12372522]
[146]
Häcker, H.; Karin, M. Regulation and function of IKK and IKK-related kinases. Sci. STKE, 2006, 2006(357), re13-re13.
[http://dx.doi.org/10.1126/stke.3572006re13] [PMID: 17047224]
[147]
Patinote, C.; Bou Karroum, N.; Moarbess, G.; Deleuze-Masquefa, C.; Hadj-Kaddour, K.; Cuq, P.; Diab-Assaf, M.; Kassab, I.; Bonnet, P-A. Imidazo[1,2-a]pyrazine, Imidazo[1,5-a]quinoxaline and Pyrazolo[1,5-a]quinoxaline derivatives as IKK1 and IKK2 inhibitors. Eur. J. Med. Chem., 2017, 138, 909-919.
[http://dx.doi.org/10.1016/j.ejmech.2017.07.021] [PMID: 28750313]
[148]
Zhang, M.; Thurmond, R.L.; Dunford, P.J. The histamine H(4) receptor: a novel modulator of inflammatory and immune disorders. Pharmacol. Ther., 2007, 113(3), 594-606.
[http://dx.doi.org/10.1016/j.pharmthera.2006.11.008] [PMID: 17275092]
[149]
Borchardt, A.; Davis, R.; Beauregard, C.; Becker, D.; Gamache, D.; Noble, S.; Hellberg, M.; Klimko, P.; Zhihai, Q.; Payne, J. Heterocyclic Inhibitors of Histamine Receptors for the Treatment of Disease. W.O. Patent 2011/112731 2011.
[150]
Soderling, S.H.; Beavo, J.A. Regulation of cAMP and cGMP signaling: new phosphodiesterases and new functions. Curr. Opin. Cell Biol., 2000, 12(2), 174-179.
[http://dx.doi.org/10.1016/S0955-0674(99)00073-3] [PMID: 10712916]
[151]
Kaiya, H. Second messenger imbalance hypothesis of schizophrenia. Prostaglandins Leukot. Essent. Fatty Acids, 1992, 46(1), 33-38.
[http://dx.doi.org/10.1016/0952-3278(92)90056-O] [PMID: 1352895]
[152]
Garver, D.L.; Johnson, C.; Kanter, D.R. Schizophrenia and reduced cyclic AMP production: evidence for the role of receptor-linked events. Life Sci., 1982, 31(18), 1987-1992.
[http://dx.doi.org/10.1016/0024-3205(82)90037-6] [PMID: 6294425]
[153]
Malamas, M.S.; Ni, Y.; Erdei, J.J.; Egerland, U.; Langen, B. Substituted Imidazo[1,5-a]Quinoxalines as Inhibitors Of Phosphodiesterase 10. W.O. Patent 2010/138833, 2010.
[154]
Malamas, M.S.; Ni, Y.; Erdei, J.; Stange, H.; Schindler, R.; Lankau, H-J.; Grunwald, C.; Fan, K.Y.; Parris, K.; Langen, B.; Egerland, U.; Hage, T.; Marquis, K.L.; Grauer, S.; Brennan, J.; Navarra, R.; Graf, R.; Harrison, B.L.; Robichaud, A.; Kronbach, T.; Pangalos, M.N.; Hoefgen, N.; Brandon, N.J. Highly potent, selective, and orally active phosphodiesterase 10A inhibitors. J. Med. Chem., 2011, 54(21), 7621-7638.
[http://dx.doi.org/10.1021/jm2009138] [PMID: 21988093]
[155]
Jacobsen, E.J.; Stelzer, L.S.; Belonga, K.L.; Carter, D.B. Im, W. B.; Sethy, V. H.; Tang, A. H.; VonVoigtlander, P. F.; Petke, J. D. 3-phenyl-substituted imidazo[1,5-a]quinoxalin-4-ones and imidazo[1,5-a]quinoxaline ureas that have high affinity at the GABAA/benzodiazepine receptor complex. J. Med. Chem., 1996, 39(19), 3820-3836.
[http://dx.doi.org/10.1021/jm960070+] [PMID: 8809170]
[156]
Jacobsen, E.J.; Stelzer, L.S.; TenBrink, R.E.; Belonga, K.L.; Carter, D.B. Im, H.K.; Im, W.B.; Sethy, V.H.; Tang, A.H.; VonVoigtlander, P.F.; Petke, J.D.; Zhong, W.Z.; Mickelson, J.W. Piperazine imidazo[1,5-a]quinoxaline ureas as high-affinity GABAA ligands of dual functionality. J. Med. Chem., 1999, 42(7), 1123-1144.
[http://dx.doi.org/10.1021/jm9801307] [PMID: 10197957]
[157]
Tang, A.H.; Franklin, S.R.; Himes, C.S.; Ho, P.M. Behavioral effects of U-78875, a quinoxalinone anxiolytic with potent benzodiazepine antagonist activity. J. Pharmacol. Exp. Ther., 1991, 259(1), 248-254.
[PMID: 1681085]
[158]
TenBrink, R.E.; Im, W.B.; Sethy, V.H.; Tang, A.H.; Carter, D.B. Antagonist, partial agonist, and full agonist imidazo[1,5-a]quinoxaline amides and carbamates acting through the GABAA/benzodiazepine receptor. J. Med. Chem., 1994, 37(6), 758-768.
[http://dx.doi.org/10.1021/jm00032a008] [PMID: 8145225]
[159]
TenBrink, R.E. 4,5-Cyclicimidazo[1,5-A]Quinoxalines. U.S. Patent 5668282A, 1997.
[160]
Okada, M.; Sato, S.; Kawade, K.; Gotanda, K.; Shinbo, A.; Nakano, Y.; Kobayashi, H. Substituted Imidazo[1,5-A]Quinoxalines as Phosphodiesterase 9 Inhibitors. U.S. Patent 8829000B2, 2014.
[161]
Kaizawa, H.; Sugita, M.; Azami, H.; Seo, R.; Nomura, T.; Yamamoto, S.; Yamamoto, H.; Tsuchiya, K.; Kubota, H.; Kamijo, K. Quinoxaline Compound. U.S. Patent 20110319385A1 2011.
[162]
Kalinin, A.A.; Voloshina, A.D.; Kulik, N.V.; Zobov, V.V.; Mamedov, V.A. Antimicrobial activity of imidazo[1,5-a]quinoxaline derivatives with pyridinium moiety. Eur. J. Med. Chem., 2013, 66, 345-354.
[http://dx.doi.org/10.1016/j.ejmech.2013.05.038] [PMID: 23811259]
[163]
Faria, J.V.; Vegi, P.F.; Miguita, A.G.C.; Dos Santos, M.S.; Boechat, N.; Bernardino, A.M.R. Recently reported biological activities of pyrazole compounds. Bioorg. Med. Chem., 2017, 25(21), 5891-5903.
[http://dx.doi.org/10.1016/j.bmc.2017.09.035] [PMID: 28988624]
[164]
Pérez-Fernandez, R.; Goya, P.; Elguero, J. A review of recent progress (2002-2012) on the biological activities of pyrazoles. ARKIVOC, 2014, 2, 233-293.
[http://dx.doi.org/10.3998/ark.5550190.p008.131]
[165]
Broggini, G.; Garanti, L.; Molteni, G.; Zecchi, G. Synthesis of pyrazolo[1,5-a]quinoxalines. Synthesis, 1996, 1996(09), 1076-1078.
[http://dx.doi.org/10.1055/s-1996-4346]
[166]
Albini, A.; Bettinetti, G.; Minoli, G. Chemistry of nitrenes generated by the photocleavage of both azides and a five-membered heterocycle. J. Am. Chem. Soc., 1991, 113(18), 6928-6934.
[http://dx.doi.org/10.1021/ja00018a032]
[167]
Treuner, U.D. 4-substituted derivatives of pyrazolo [1,5-a]- quinoxaline-3-carboxylic acids and esters. U.S. Patent 4052393A, 1977.
[168]
Kauer, J.C.; Carboni, R.A. Aromatic Azapentalenes. III. 1,3a,6,6a-Tetraazapentalenes. J. Am. Chem. Soc., 1967, 89(11), 2633-2637.
[http://dx.doi.org/10.1021/ja00987a022]
[169]
Saha, B.; Sharma, S.; Sawant, D.; Kundu, B. Application of the Pictet-Spengler reaction to aryl amine substrates linked to deactivated aromatic heterosystems. Tetrahedron, 2008, 64(37), 8676-8684.
[http://dx.doi.org/10.1016/j.tet.2008.07.003]
[170]
Yan, J.; Zhou, F.; Qin, D.; Cai, T.; Ding, K.; Cai, Q. Synthesis of [1,2,3]triazolo[1,5-a]quinoxalin-4(5H)-ones through copper-catalyzed tandem reactions of N-(2-haloaryl)propiolamides with sodium azide. Org. Lett., 2012, 14(5), 1262-1265.
[http://dx.doi.org/10.1021/ol300114w] [PMID: 22335274]
[171]
Li, D.; Mao, T.; Huang, J.; Zhu, Q. A one-pot synthesis of [1,2,3]triazolo[1,5-a]quinoxalines from 1-azido-2-isocyanoarenes with high bond-forming efficiency. Chem. Commun. (Camb.), 2017, 53(7), 1305-1308.
[http://dx.doi.org/10.1039/C6CC08543A] [PMID: 28070580]
[172]
Bertelli, L.; Biagi, G.; Giorgi, I.; Livi, O.; Manera, C.; Scartoni, V.; Martini, C.; Giannaccini, G.; Trincavelli, L.; Barili, P.L. 1,2,3-Triazolo[1,5-a][1,4]- and 1,2,3-triazolo[1,5-a]-[1,5]benzodiazepine derivatives: synthesis and benzodiazepine receptor binding. Farmaco, 1998, 53(4), 305-311.
[http://dx.doi.org/10.1016/S0014-827X(98)00025-1] [PMID: 9658589]
[173]
Bertelli, L.; Biagi, G.; Giorgi, I.; Manera, C.; Livi, O.; Scartoni, V.; Betti, L.; Giannaccini, G.; Trincavelli, L.; Barili, P.L. 1,2,3-triazolo[1,5-a]quinoxalines: synthesis and binding to benzodiazepine and adenosine receptors. Eur. J. Med. Chem., 1998, 33(2), 113-122.
[http://dx.doi.org/10.1016/S0223-5234(98)80036-6]
[174]
Biagi, G.; Giorgi, I.; Livi, O.; Scartoni, V.; Betti, L.; Giannaccini, G. Trincavelli, M.L. New 1,2,3-triazolo[1,5-a]quinoxalines: synthesis and binding to benzodiazepine and adenosine receptors. II. Eur. J. Med. Chem., 2002, 37(7), 565-571.
[http://dx.doi.org/10.1016/S0223-5234(02)01376-4] [PMID: 12126775]
[175]
Shen, H.C.; Ding, F-X.; Deng, Q.; Wilsie, L.C.; Krsmanovic, M.L.; Taggart, A.K.; Carballo-Jane, E.; Ren, N.; Cai, T-Q.; Wu, T-J.; Wu, K.K.; Cheng, K.; Chen, Q.; Wolff, M.S.; Tong, X.; Holt, T.G.; Waters, M.G.; Hammond, M.L.; Tata, J.R.; Colletti, S.L. Discovery of novel tricyclic full agonists for the G-protein-coupled niacin receptor 109A with minimized flushing in rats. J. Med. Chem., 2009, 52(8), 2587-2602.
[http://dx.doi.org/10.1021/jm900151e] [PMID: 19309152]
[176]
Sarges, R.; Howard, H.R.; Browne, R.G.; Lebel, L.A.; Seymour, P.A.; Koe, B.K. 4-Amino[1,2,4]triazolo[4,3-a]quinoxalines. A novel class of potent adenosine receptor antagonists and potential rapid-onset antidepressants. J. Med. Chem., 1990, 33(8), 2240-2254.
[http://dx.doi.org/10.1021/jm00170a031] [PMID: 2374150]
[177]
Guirado, A.; López Sánchez, J.I.; Ruiz-Alcaraz, A.J.; Bautista, D.; Gálvez, J. Synthesis and biological evaluation of 4-alkoxy-6,9-dichloro[1,2,4]triazolo[4,3-a]quinoxalines as inhibitors of TNF-α and IL-6. Eur. J. Med. Chem., 2012, 54, 87-94.
[http://dx.doi.org/10.1016/j.ejmech.2012.04.035] [PMID: 22621841]
[178]
Trivedi, B.K.; Bruns, R.F. [1,2,4]Triazolo[4,3-a]quinoxalin-4-amines: a new class of A1 receptor selective adenosine antagonists. J. Med. Chem., 1988, 31(5), 1011-1014.
[http://dx.doi.org/10.1021/jm00400a021] [PMID: 3361571]
[179]
El-Hawash, S.A.M.; Habib, N.S.; Kassem, M.A. Synthesis of some new quinoxalines and 1,2,4-triazolo[4,3-a]-quinoxalines for evaluation of in vitro antitumor and antimicrobial activities. Arch. Pharm. (Weinheim), 2006, 339(10), 564-571.
[http://dx.doi.org/10.1002/ardp.200600061] [PMID: 17009301]
[180]
Ohmori, J.; Shimizu-Sasamata, M.; Okada, M.; Sakamoto, S. 8-(1H-imidazol-1-yl)-7-nitro-4(5H)-imidazo[1,2-alpha] quinoxalinone and related compounds: synthesis and structure-activity relationships for the AMPA-type non-NMDA receptor. J. Med. Chem., 1997, 40(13), 2053-2063.
[http://dx.doi.org/10.1021/jm960664c] [PMID: 9207947]
[181]
McQuaid, L.A.; Smith, E.C.R.; South, K.K.; Mitch, C.H.; Schoepp, D.D.; True, R.A.; Calligaro, D.O.; O’Malley, P.J.; Lodge, D.; Ornstein, P.L. Synthesis and excitatory amino acid pharmacology of a series of heterocyclic-fused quinoxalinones and quinazolinones. J. Med. Chem., 1992, 35(18), 3319-3324.
[http://dx.doi.org/10.1021/jm00096a002] [PMID: 1382133]
[182]
Shiho, D.; Tagami, S. Studies on compounds related to pyrazine. II. The reaction of 3-substituted-2-hydrazino-quinoxalines with carbonyl compounds. J. Am. Chem. Soc., 1960, 82(15), 4044-4054.
[http://dx.doi.org/10.1021/ja01500a058]
[183]
Potts, K.T.; Schneller, S.W. 1,2,4-Triazoles. XX. Pyrolytic decomposition of ketone hydrazones derived from pyrid-2-ylhydrazine and related bases. some further examples of the s-triazolo[4, 3-α]pyrazine and s-triazolo[4, 3-a]quinoxaline series. J. Heterocycl. Chem., 1968, 5(4), 485-495.
[http://dx.doi.org/10.1002/jhet.5570050408]
[184]
Ali, I.; Lee, J.; Go, A.; Choi, G.; Lee, K. Discovery of novel [1,2,4]triazolo[4,3-a]quinoxaline aminophenyl derivatives as BET inhibitors for cancer treatment. Bioorg. Med. Chem. Lett., 2017, 27(20), 4606-4613.
[http://dx.doi.org/10.1016/j.bmcl.2017.09.025] [PMID: 28939121]
[185]
Ibrahim, M.K.; Taghour, M.S.; Metwaly, A.M.; Belal, A.; Mehany, A.B.M.; Elhendawy, M.A.; Radwan, M.M.; Yassin, A.M.; El-Deeb, N.M.; Hafez, E.E.; ElSohly, M.A.; Eissa, I.H. Design, synthesis, molecular modeling and anti-proliferative evaluation of novel quinoxaline derivatives as potential DNA intercalators and topoisomerase II inhibitors. Eur. J. Med. Chem., 2018, 155, 117-134.
[http://dx.doi.org/10.1016/j.ejmech.2018.06.004] [PMID: 29885574]
[186]
Carosati, E.; Sforna, G.; Pippi, M.; Marverti, G.; Ligabue, A.; Guerrieri, D.; Piras, S.; Guaitoli, G.; Luciani, R.; Costi, M.P.; Cruciani, G. Ligand-based virtual screening and ADME-tox guided approach to identify triazolo-quinoxalines as folate cycle inhibitors. Bioorg. Med. Chem., 2010, 18(22), 7773-7785.
[http://dx.doi.org/10.1016/j.bmc.2010.09.065] [PMID: 20951595]
[187]
WHO | Tuberculosis (TB). Available at: http://www.who. int/tb/en/ (accessed Mar 21, 2019).
[188]
Sekhar, K.V.G.C.; Rao, V.S.; Kumar, D. Synthesis of triazoloquinoxalines as antitubercular agents. Bull. Korean Chem. Soc., 2011, 32(8), 2657-2660.
[http://dx.doi.org/10.5012/bkcs.2011.32.8.2657]
[189]
Issa, D.A.E.; Habib, N.S.; Wahab, A.E.A. Design, synthesis and biological evaluation of novel 1,2,4-triazolo and 1,2,4-triazino[4,3-a]quinoxalines as potential anticancer and antimicrobial agents. MedChemComm, 2015, 6(1), 202-211.
[http://dx.doi.org/10.1039/C4MD00257A]
[190]
El-Sawy, E.R.; Bassyouni, F.A.; Abu-Bakr, S.H.; Rady, H.M.; Abdlla, M.M. Synthesis and biological activity of some new 1-benzyl and 1-benzoyl-3-heterocyclic indole derivatives. Acta Pharm., 2010, 60(1), 55-71.
[http://dx.doi.org/10.2478/v10007-010-0004-0] [PMID: 20228041]
[191]
Nasr, M.N.A. Synthesis and antibacterial activity of fused 1, 2, 4-triazolo[4, 3-a]quinoxaline and oxopyrimido[2′, 1′:5, 1]-1, 2, 4-triazolo[4, 3-a]quinoxaline derivatives. Arch. Pharm. (Weinheim), 2002, 335(8), 389-394.
[http://dx.doi.org/10.1002/1521-4184(200211)335:8<389:AID-ARDP389>3.0.CO;2-X] [PMID: 12397623]
[192]
El‐Bendary, E.R.; Goda, F.E.; Maarouf, A.R.; Badria, F.A. Synthesis and antimicrobial evaluation of 3-hydrazino-quinoxaline derivatives and their cyclic analogues. ChemInform, 2004, 35(44)
[http://dx.doi.org/10.1002/chin.200444182]
[193]
Henen, M.A.; El Bialy, S.A.A.; Goda, F.E.; Nasr, M.N.A.; Eisa, H.M. [1,2,4]triazolo[4,3-a]quinoxaline: synthesis, antiviral, and antimicrobial activities. Med. Chem. Res., 2012, 21(9), 2368-2378.
[http://dx.doi.org/10.1007/s00044-011-9753-7]
[194]
Ajani, O.O.; Nwinyi, O.C. Synthesis and evaluation of antimicrobial activity of phenyl and furan-2-yl[1,2,4]triazolo [4,3-a]quinoxalin-4(5h)-one and their hydrazone precursors. Canad. J. Pure App. Sci., 2009, 3(3), 983-992.
[195]
el-Hawash, S.A.; Habib, N.S.; Fanaki, N.H. Quinoxaline derivatives. Part II: Synthesis and antimicrobial testing of 1,2,4-triazolo[4,3-a]quinoxalines, 1,2,4-triazino[4,3-a]quinoxalines and 2-pyrazolylquinoxalines. Pharmazie, 1999, 54(11), 808-813.
[PMID: 10603606]
[196]
Z El-Attar, M.A.; Elbayaa, R.Y.; Shaaban, O.G.; Habib, N.S.; Abdel Wahab, A.E.; Abdelwahab, I.A.; M El-Hawash, S.A. Synthesis of pyrazolo-1,2,4-triazolo[4,3-a]quinoxalines as antimicrobial agents with potential inhibition of DHPS enzyme. Future Med. Chem., 2018, 10(18), 2155-2175.
[http://dx.doi.org/10.4155/fmc-2018-0082] [PMID: 30088415]
[197]
El-Attar, M.A.Z.; Shaaban, O.G.; Elbayaa, R.Y.; Habib, N.S.; El-Hawash, S.A.M.; Wahab, A.A. Design and synthesis of some new 1, 2, 4-triazolo (4, 3a) quinoxaline derivatives as potential antimicrobialagents. Med. Chem., 2015, 5, pp, 489-495.
[198]
Ghiaty, A. Design, synthesis and biological evaluation of novel [1,2,4]triazolo[4,3-a]quinoxalinones. J. Pharm. Sci., 2015, 52(2), 208-218.
[199]
Suresh, M.; Lavanya, P.; Sudhakar, D.; Vasu, K.; Rao, C.V. Synthesis and biological activity of 8-chloro-[1,2,4]triazolo [4,3-a]quinoxalines. J. Chem. Pharm. Res., 2010, 2(1), 497-504.
[200]
Corona, P.; Vitale, G.; Loriga, M.; Paglietti, G.; La Colla, P.; Collu, G.; Sanna, G.; Loddo, R. 4-Substituted anilino imidazo[1,2-a] and triazolo[4,3-a]quinoxalines. Synthesis and evaluation of in vitro biological activity. Eur. J. Med. Chem., 2006, 41(9), 1102-1107.
[http://dx.doi.org/10.1016/j.ejmech.2006.05.015] [PMID: 16828932]
[201]
El-Tombary, A.A.; El-Hawash, S.A.M. Synthesis, antioxidant, anticancer and antiviral activities of novel quinoxaline hydrazone derivatives and their acyclic C-nucleosides. Med. Chem., 2014, 10(5), 521-532.
[http://dx.doi.org/10.2174/15734064113096660069] [PMID: 24151878]
[202]
Schatzberg, A.F.; Nemeroff, C.B. The American Psychiatric Association Publishing Textbook of Psychopharmacology. Chzpter 8: Monoamine Oxydase Inhibitors; American Psychiatric Pub, 2017, p. 283.
[http://dx.doi.org/10.1176/appi.books.9781615371624]
[203]
Khattab, S.N.; Hassan, S.Y.; Bekhit, A.A.; El Massry, A.M.; Langer, V.; Amer, A. Synthesis of new series of quinoxaline based MAO-inhibitors and docking studies. Eur. J. Med. Chem., 2010, 45(10), 4479-4489.
[http://dx.doi.org/10.1016/j.ejmech.2010.07.008] [PMID: 20708306]
[204]
Lankau, H-J.; Langen, B.; Grunwald, C.; Hoefgen, N.; Stange, H.; Dost, R.; Egerland, U. [1,2,4]triazolo[4,3-a]quinoxaline derivatives as inhibitors of phosphodiesterases.U.S. Patent 2012/0302564 A1, 2012.
[205]
Andrès-Gil, J.; Rombouts, F.; Trabanco-Suarez, A.; Vanhoof, G.; De Angelis, M.; Buijnsters, P.; Guillemont, J. 1-aryl-4-methyl-[1,2,4]triazolo[4,3-a]quinoxaline derivatives. E.U. Patent 2 723 744 B1, 2012.
[206]
Benbow, J.; Chu-Moyer, M.; Kung, D. Substituted 4- Amino[1,2,4]Triazolo[4,3-a]quinoxalines. US 2004/0192698 A1, 2004.
[207]
Jacobsen, P.; Flemming, N. Triazolo quinoxalines and their preparation and use. U.S. Patent 5,504,085 1996.
[208]
Trivedi, B. [1,2,4]triazolo[4,3-a]quinoxalin-4-amines. U.S. Patent 4,780,464, 1988.
[209]
Kadin, S.B.; Sarges, R. [1,2,4]triazolo[4,3-a]quinoxaline-4-amine derivatives. U.S. Patent 4623725A, 1986.
[210]
Colotta, V.; Catarzi, D.; Varano, F.; Filacchioni, G.; Martini, C.; Trincavelli, L.; Lucacchini, A. Synthesis and structure-activity relationships of a new set of 1,2,4-triazolo[4,3-a]quinoxalin-1-one derivatives as adenosine receptor antagonists. Bioorg. Med. Chem., 2003, 11(16), 3541-3550.
[http://dx.doi.org/10.1016/S0968-0896(03)00338-9] [PMID: 12878146]
[211]
Lenzi, O.; Colotta, V.; Catarzi, D.; Varano, F.; Filacchioni, G.; Martini, C.; Trincavelli, L.; Ciampi, O.; Varani, K.; Marighetti, F.; Morizzo, E.; Moro, S. 4-amido-2-aryl-1,2,4-triazolo[4,3-a]quinoxalin-1-ones as new potent and selective human A3 adenosine receptor antagonists. synthesis, pharmacological evaluation, and ligand-receptor modeling studies. J. Med. Chem., 2006, 49(13), 3916-3925.
[http://dx.doi.org/10.1021/jm060373w] [PMID: 16789747]
[212]
Colotta, V.; Catarzi, D.; Varano, F.; Calabri, F.R.; Lenzi, O.; Filacchioni, G.; Martini, C.; Trincavelli, L.; Deflorian, F.; Moro, S. 1,2,4-triazolo[4,3-a]quinoxalin-1-one moiety as an attractive scaffold to develop new potent and selective human A3 adenosine receptor antagonists: synthesis, pharmacological, and ligand-receptor modeling studies. J. Med. Chem., 2004, 47(14), 3580-3590.
[http://dx.doi.org/10.1021/jm031136l] [PMID: 15214785]
[213]
Catarzi, D.; Colotta, V.; Varano, F.; Calabri, F.R.; Lenzi, O.; Filacchioni, G.; Trincavelli, L.; Martini, C.; Tralli, A.; Montopoli, C.; Moro, S. 2-aryl-8-chloro-1,2,4-triazolo[1,5-a]quinoxalin-4-amines as highly potent A1 and A3 adenosine receptor antagonists. Bioorg. Med. Chem., 2005, 13(3), 705-715.
[http://dx.doi.org/10.1016/j.bmc.2004.10.050] [PMID: 15653338]
[214]
Colotta, V.; Catarzi, D.; Varano, F.; Lenzi, O.; Filacchioni, G.; Martini, C.; Trincavelli, L.; Ciampi, O.; Traini, C.; Pugliese, A.M.; Pedata, F.; Morizzo, E.; Moro, S. Synthesis, ligand-receptor modeling studies and pharmacological evaluation of novel 4-modified-2-aryl-1,2,4-triazolo[4,3-a]quinoxalin-1-one derivatives as potent and selective human A3 adenosine receptor antagonists. Bioorg. Med. Chem., 2008, 16(11), 6086-6102.
[http://dx.doi.org/10.1016/j.bmc.2008.04.039] [PMID: 18468446]
[215]
Gao, M.; Gao, A.C.; Wang, M.; Zheng, Q-H. Simple synthesis of new carbon-11-labeled 1,2,4-triazolo[4,3-a]quinoxalin-1-one derivatives for PET imaging of A3 adenosine receptor. Appl. Radiat. Isot., 2014, 91, 71-78.
[http://dx.doi.org/10.1016/j.apradiso.2014.05.005] [PMID: 24908190]
[216]
Bhattacharya, P.; Roy, K. QSAR of adenosine A3 receptor antagonist 1,2,4-triazolo[4,3-a]quinoxalin-1-one derivatives using chemometric tools. Bioorg. Med. Chem. Lett., 2005, 15(16), 3737-3743.
[http://dx.doi.org/10.1016/j.bmcl.2005.05.051] [PMID: 15993066]
[217]
Liu, X-K.; Ma, L-X.; Wei, Z-Y.; Cui, X.; Zhan, S.; Yin, X-M.; Piao, H-R. Synthesis and positive inotropic activity of [1,2,4]triazolo[4,3-a] quinoxaline derivatives bearing substituted benzylpiperazine and benzoylpiperazine moieties. Molecules, 2017, 22(2), 273.
[http://dx.doi.org/10.3390/molecules22020273] [PMID: 28208674]
[218]
Alswah, M.; Ghiaty, A.; El-Morsy, A.; El-Gamal, K. Synthesis and biological evaluation of some [1,2,4]triazolo[4,3-a]quinoxaline derivatives as novel anticonvulsant agents. ISRN Org. Chem., 2013, 2013587054
[http://dx.doi.org/10.1155/2013/587054] [PMID: 24198971]
[219]
Wagle, S.; Adhikari, A.V.; Kumari, N.S. Synthesis of some new 4-styryltetrazolo[1,5-a]quinoxaline and 1-substituted-4-styryl[1,2,4]triazolo[4,3-a]quinoxaline derivatives as potent anticonvulsants. Eur. J. Med. Chem., 2009, 44(3), 1135-1143.
[http://dx.doi.org/10.1016/j.ejmech.2008.06.006] [PMID: 18672315]
[220]
Bayoumi, A.; Ghiaty, A.; El-Morsy, A.; Abul-Khair, H.; Hassan, M.H.; Elmeligie, S. Synthesis and evaluation of some new 1,2,4-triazolo(4,3-a)quinoxalin-4-5h-one derivatives as AMPA receptor antagonists. Bull. Fac. Pharm. Cairo Univ., 2012, 50(2), 141-146.
[http://dx.doi.org/10.1016/j.bfopcu.2012.05.002]
[221]
Ruiz-Alcaraz, A.J.; Tristán-Manzano, M.; Guirado, A.; Gálvez, J.; Martínez-Esparza, M.; García-Peñarrubia, P. Intracellular signaling modifications involved in the anti-inflammatory effect of 4-alkoxy-6,9-dichloro[1,2,4] triazolo[4,3-a]quinoxalines on macrophages. Eur. J. Pharm. Sci., 2017, 99, 292-298.
[http://dx.doi.org/10.1016/j.ejps.2016.12.037] [PMID: 28057547]
[222]
Gururaja, T.L.; Yung, S.; Ding, R.; Huang, J.; Zhou, X.; McLaughlin, J.; Daniel-Issakani, S.; Singh, R.; Cooper, R.D.G.; Payan, D.G.; Masuda, E.S.; Kinoshita, T. A class of small molecules that inhibit TNFalpha-induced survival and death pathways via prevention of interactions between TNFalphaRI, TRADD, and RIP1. Chem. Biol., 2007, 14(10), 1105-1118.
[http://dx.doi.org/10.1016/j.chembiol.2007.08.012] [PMID: 17961823]
[223]
Hutchinson, J.H.; Seiders, T.J.; Stears, B.A.; Wang, B.; Scott, J.M.; Truong, Y.U.S.U.S. Patent 2011/0112106, 2011.
[224]
Loev, B.; Musser, J.H.; Brown, R.E.; Jones, H.; Kahen, R.; Huang, F.C.; Khandwala, A.; Sonnino-Goldman, P.; Leibowitz, M.J. 1,2,4-Triazolo[4,3-a]quinoxaline-1,4-diones as antiallergic agents. J. Med. Chem., 1985, 28(3), 363-366.
[http://dx.doi.org/10.1021/jm00381a016] [PMID: 2579236]
[225]
Lee, S.; Cil, O.; Diez-Cecilia, E.; Anderson, M.O.; Verkman, A.S. Nanomolar-potency 1,2,4-triazoloquinoxaline inhibitors of the kidney urea transporter UT-A1. J. Med. Chem., 2018, 61(7), 3209-3217.
[http://dx.doi.org/10.1021/acs.jmedchem.8b00343] [PMID: 29589443]
[226]
Kaizawa, H.; Sugita, M.; Azami, H.; Seo, R.; Nomura, T.; Yamamoto, S.; Yamamoto, H.; Tsuchiya, K.; Kubota, H.; Kamijo, K. Quinoxaline Compound. E.U. Patent 2,404,922 B1, 2011.
[227]
Catarzi, D.; Cecchi, L.; Colotta, V.; Filacchioni, G.; Melani, F. Tricyclic heteroatomic systems. 1,2,4-triazolo [1,5-a] quinoxaline. J. Heterocycl. Chem., 1992, 29, 1162.
[http://dx.doi.org/10.1002/jhet.5570290520]
[228]
Heckendorn, R. Novel polycyclic polyazaheterocycles, processes for their manufacture and pharamceutical preparations containing them. AU Patent A-88402/82 1982.
[229]
Heckendorn, R.D. Polycyclic polyazaheterocycles, process for their preparation and pharmaceutical preparations containing them. Patent 0074929 A1, 1983.
[230]
Heckendorn, R. Tricyclic Polyazaheterocycles for Treating Depression or Anxiety 4510141, 1985. United States Patent: 4510141.
[231]
Colotta, V.; Catarzi, D.; Varano, F.; Cecchi, L.; Filacchioni, G.; Galli, A.; Costagli, C. Tricyclic heteroaromatic systems. 1,2,4-triazolo[4,3-a]quinoxalines and 1,2,4-Triazino[4,3-a]quinoxalines: synthesis and central benzodiazepine receptor activity. Arch. Pharm. (Weinheim), 1997, 330(12), 387-391.
[http://dx.doi.org/10.1002/ardp.19973301206] [PMID: 9474898]
[232]
Colotta, V.; Cecchi, L.; Catarzi, D.; Conti, G.; Filacchioni, G.; Martini, C.; Giusti, L.; Lucacchini, A. Tricyclic heteroaromatic systems pyrazolo[1,5-a]quinoxalines: synthesis and benzodiazepine receptor activity. Farmaco, 1993, 48(8), 1051-1063.
[PMID: 8216668]
[233]
Catarzi, D.; Colotta, V.; Varano, F.; Filacchioni, G.; Martini, C.; Trincavelli, L.; Lucacchini, A. 1,2,4-Triazolo[1,5-a]quinoxaline derivatives: synthesis and biological evaluation as adenosine receptor antagonists. Farmaco, 2004, 59(2), 71-81.
[http://dx.doi.org/10.1016/j.farmac.2003.09.005] [PMID: 14871498]
[234]
Catarzi, D.; Colotta, V.; Varano, F.; Lenzi, O.; Filacchioni, G.; Trincavelli, L.; Martini, C.; Montopoli, C.; Moro, S. 1,2,4-Triazolo[1,5-a]quinoxaline as a versatile tool for the design of selective human A3 adenosine receptor antagonists: synthesis, biological evaluation, and molecular modeling studies of 2-(hetero)aryl- and 2-carboxy-substituted derivatives. J. Med. Chem., 2005, 48(25), 7932-7945.
[http://dx.doi.org/10.1021/jm0504149] [PMID: 16335918]
[235]
Catarzi, D.; Lenzi, O.; Colotta, V.; Varano, F.; Poli, D.; Filacchioni, G.; Lingenhöhl, K.; Ofner, S. Pharmacological characterization of some selected 4,5-dihydro-4-oxo-1,2,4-triazolo[1,5-a]quinoxaline-2-carboxylates and 3-hydroxy-quinazoline-2,4-diones as (S)-2-amino-3-(3-hydroxy-5-methylisoxazol-4-yl)-propionic acid receptor antagonists. Chem. Pharm. Bull. (Tokyo), 2010, 58(7), 908-911.
[http://dx.doi.org/10.1248/cpb.58.908] [PMID: 20606335]
[236]
Catarzi, D.; Varano, F.; Poli, D.; Squarcialupi, L.; Betti, M.; Trincavelli, L.; Martini, C.; Dal Ben, D.; Thomas, A.; Volpini, R.; Colotta, V. 1,2,4-triazolo[1,5-a]quinoxaline derivatives and their simplified analogues as adenosine A3 receptor antagonists. Synthesis, structure-affinity relationships and molecular modeling studies. Bioorg. Med. Chem., 2015, 23(1), 9-21.
[http://dx.doi.org/10.1016/j.bmc.2014.11.033] [PMID: 25497490]
[237]
Colotta, V.; Cecchi, L.; Catarzi, D.; Filacchioni, G.; Martini, C.; Tacchi, P.; Lucacchini, A. Synthesis of some tricyclic heteroaromatic systems and their A1 and A2a adenosine binding activity. Eur. J. Med. Chem., 1995, 30(2), 133-139.
[http://dx.doi.org/10.1016/0223-5234(96)88218-3]
[238]
Catarzi, D.; Cecchi, L.; Colotta, V.; Filacchioni, G.; Melani, F. Tricyclic heteroaromatic systems. 1,2,4-triazolo [1,5-a] quinoxaline. J. Heterocycl. Chem., 1992, 29(5), 1161-1163.
[http://dx.doi.org/10.1002/jhet.5570290520]
[239]
Martínez, A.; Gutiérrez-de-Terán, H.; Brea, J.; Raviña, E.; Loza, M.I.; Cadavid, M.I.; Sanz, F.; Vidal, B.; Segarra, V.; Sotelo, E. Synthesis, adenosine receptor binding and 3D-QSAR of 4-substituted 2-(2′-furyl)-1,2,4-triazolo[1,5-a]quinoxalines. Bioorg. Med. Chem., 2008, 16(4), 2103-2113.
[http://dx.doi.org/10.1016/j.bmc.2007.10.103] [PMID: 18249548]
[240]
Traynelis, S.F.; Wollmuth, L.P.; McBain, C.J.; Menniti, F.S.; Vance, K.M.; Ogden, K.K.; Hansen, K.B.; Yuan, H.; Myers, S.J.; Dingledine, R. Glutamate receptor ion channels: structure, regulation, and function. Pharmacol. Rev., 2010, 62(3), 405-496.
[http://dx.doi.org/10.1124/pr.109.002451] [PMID: 20716669]
[241]
Michaelis, E.K. Molecular biology of glutamate receptors in the central nervous system and their role in excitotoxicity, oxidative stress and aging. Prog. Neurobiol., 1998, 54(4), 369-415.
[http://dx.doi.org/10.1016/S0301-0082(97)00055-5] [PMID: 9522394]
[242]
Bräuner-Osborne, H.; Egebjerg, J.; Nielsen, E.Ø.; Madsen, U.; Krogsgaard-Larsen, P. Ligands for glutamate receptors: design and therapeutic prospects. J. Med. Chem., 2000, 43(14), 2609-2645.
[http://dx.doi.org/10.1021/jm000007r] [PMID: 10893301]
[243]
Bigge, C.F.; Nikam, S.S. AMPA receptor agonists, antagonists and modulators: their potential for clinical utility. Expert Opin. Ther. Pat., 1997, 7(10), 1099-1114.
[http://dx.doi.org/10.1517/13543776.7.10.1099]
[244]
Lees, G.J. Pharmacology of AMPA/kainate receptor ligands and their therapeutic potential in neurological and psychiatric disorders. Drugs, 2000, 59(1), 33-78.
[http://dx.doi.org/10.2165/00003495-200059010-00004] [PMID: 10718099]
[245]
Arias, R.L.; Tasse, J.R.; Bowlby, M.R. Neuroprotective interaction effects of NMDA and AMPA receptor antagonists in an in vitro model of cerebral ischemia. Brain Res., 1999, 816(2), 299-308.
[http://dx.doi.org/10.1016/S0006-8993(98)01051-8] [PMID: 9878799]
[246]
Catarzi, D.; Colotta, V.; Varano, F.; Cecchi, L.; Filacchioni, G.; Galli, A.; Costagli, C.; Carlà, V. 7-Chloro-4,5-dihydro-8-(1,2,4-triazol-4-yl)-4-oxo-1,2,4-triazolo[1, 5-a]quinoxaline-2- carboxylates as novel highly selective AMPA receptor antagonists. J. Med. Chem., 2000, 43(21), 3824-3826.
[http://dx.doi.org/10.1021/jm0009686] [PMID: 11052786]
[247]
Catarzi, D.; Colotta, V.; Varano, F.; Filacchioni, G.; Galli, A.; Costagli, C.; Carlà, V. Synthesis, ionotropic glutamate receptor binding affinity, and structure-activity relationships of a new set of 4,5-dihydro-8-heteroaryl-4-oxo-1,2,4-triazolo[1,5-a]quinoxaline-2-carboxylates analogues of TQX-173. J. Med. Chem., 2001, 44(19), 3157-3165.
[http://dx.doi.org/10.1021/jm010862q] [PMID: 11543685]
[248]
Catarzi, D.; Colotta, V.; Varano, F.; Cecchi, L.; Filacchioni, G.; Galli, A.; Costagli, C. 4,5-Dihydro-1,2,4-triazolo[1,5-a]quinoxalin-4-ones: excitatory amino acid antagonists with combined glycine/NMDA and AMPA receptor affinity. J. Med. Chem., 1999, 42(13), 2478-2484.
[http://dx.doi.org/10.1021/jm981102r] [PMID: 10395489]
[249]
Catarzi, D.; Colotta, V.; Varano, F.; Calabri, F.R.; Filacchioni, G.; Galli, A.; Costagli, C.; Carlà, V. Synthesis and biological evaluation of analogues of 7-chloro-4,5-dihydro-4- oxo-8-(1,2,4-triazol-4-yl)-1,2,4-triazolo[1,5-a]quinoxaline-2-carboxylic acid (TQX-173) as novel selective AMPA receptor antagonists. J. Med. Chem., 2004, 47(1), 262-272.
[http://dx.doi.org/10.1021/jm030906q] [PMID: 14695840]
[250]
Le Bourdonnec, B.; Meulon, E.; Yous, S.; Goossens, J-F.; Houssin, R.; Hénichart, J-P. Synthesis and pharmacological evaluation of new pyrazolidine-3, 5-diones as AT(1) angiotensin II receptor antagonists. J. Med. Chem., 2000, 43(14), 2685-2697.
[http://dx.doi.org/10.1021/jm9904147] [PMID: 10893306]
[251]
Liljebris, C.; Larsen, S.D.; Ogg, D.; Palazuk, B.J.; Bleasdale, J.E. Investigation of potential bioisosteric replacements for the carboxyl groups of peptidomimetic inhibitors of protein tyrosine phosphatase 1B: identification of a tetrazole-containing inhibitor with cellular activity. J. Med. Chem., 2002, 45(9), 1785-1798.
[http://dx.doi.org/10.1021/jm011100y] [PMID: 11960490]
[252]
Hashimoto, A.; Shi, Y.; Drake, K.; Koh, J.T. Design and synthesis of complementing ligands for mutant thyroid hormone receptor TRbeta(R320H): a tailor-made approach toward the treatment of resistance to thyroid hormone. Bioorg. Med. Chem., 2005, 13(11), 3627-3639.
[http://dx.doi.org/10.1016/j.bmc.2005.03.040] [PMID: 15862991]
[253]
Stolle, R.; Hanusch, F. Über Die Umsetzung von Dichlor-2,4-Chinazolin Und Dichlor-2,3-Chinoxalin Mit Natriumazid. J. Prakt. Chem., 1933, 136(1-2), 9-14.
[http://dx.doi.org/10.1002/prac.19331360103]
[254]
Park, K.L.; Ko, N.Y.; Lee, J.H.; Kim, D.K.; Kim, H.S.; Kim, A-R.; Her, E.; Kim, B.; Kim, H.S.; Moon, E-Y.; Kim, Y.M.; Kim, H.R.; Choi, W.S. 4-Chlorotetrazolo[1,5-a]quinoxaline inhibits activation of Syk kinase to suppress mast cells in vitro and mast cell-mediated passive cutaneous anaphylaxis in mice. Toxicol. Appl. Pharmacol., 2011, 257(2), 235-241.
[http://dx.doi.org/10.1016/j.taap.2011.09.009] [PMID: 21958720]
[255]
Natarajan, U.; Kaliappan, I.; Singh, N.K. A facile design and efficient synthesis of schiff’s bases of tetrazolo [1,5-a] quinoxalines as potential anti-inflammatory and anti-microbial agents. Pharma Chem., 2010, 2(1), 159-167.
[256]
Gemma, S.; Colombo, L.; Forloni, G.; Savini, L.; Fracasso, C.; Caccia, S.; Salmona, M.; Brindisi, M.; Joshi, B.P.; Tripaldi, P.; Giorgi, G.; Taglialatela-Scafati, O.; Novellino, E.; Fiorini, I.; Campiani, G.; Butini, S. Pyrroloquinoxalinehydrazones as fluorescent probes for amyloid fibrils. . Org. Biomol. Chem.,, 2011, 9(14), 5137-5148.
[http://dx.doi.org/10.1039/c1ob05288h] [PMID: 21629961]
[257]
Mamedov, V.A.; Kalinin, A.A. Advances in the synthesis of imidazo[1,5-a]- and imidazo[1,2-a]quinoxalines. Russ. Chem. Rev., 2014, 83(9), 820-847.
[http://dx.doi.org/10.1070/RC2014v083n09ABEH004424]
[258]
Fredholm, B.B.; Lindström, K. Autoradiographic comparison of the potency of several structurally unrelated adenosine receptor antagonists at adenosine A1 and A2A receptors. Eur. J. Pharmacol., 1999, 380(2-3), 197-202.
[http://dx.doi.org/10.1016/S0014-2999(99)00533-6] [PMID: 10513579]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy