Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

Induction of Apoptosis by Nano-Synthesized Complexes of H2L and its Cu(II) Complex in Human Hepatocellular Carcinoma Cells

Author(s): Thoria Diab*, Tarek M. Mohamed, Alaa Hamed and Mohamed Gaber

Volume 21, Issue 9, 2021

Published on: 04 February, 2020

Page: [1151 - 1159] Pages: 9

DOI: 10.2174/1871520620666200204103756

Price: $65

Abstract

Background: Chemotherapy is currently the most utilized treatment for cancer. Therapeutic potential of metal complexes in cancer therapy has attracted a lot of interest. The mechanisms of action of most organometallic complexes are poorly understood.

Objective: This study was designed to explore the mechanisms governing the anti-proliferative effect of the free ligand N1,N6-bis((2-hydroxynaphthalin-1-yl)methinyl)) adipohydrazone (H2L) and its complexes of Mn(II), Co(II), Ni(II) and Cu(II).

Methods: Cells were exposed to H2L or its metal complexes where cell viability determined by MTT assay. Cell cycle was analysed by flow cytometry. In addition, qRT-PCR was used to monitor the expression of Bax and Bcl-2. Moreover, molecular docking was carried out to find the potentiality of Cu(II) complex as an inhibitor of Adenosine Deaminase (ADA). ADA, Superoxide Dismutase (SOD) and reduced Glutathione (GSH) levels were measured in the most affected cancer cell line.

Results: The obtained results demonstrated that H2L and its Cu(II) complex exhibited a strong cytotoxic activity compared to other complexes against HepG2 cells (IC50=4.14±0.036μM/ml and 3.2±0.02μM/ml), respectively. Both H2L and its Cu(II) complex induced G2/M phase cell cycle arrest in HepG2 cells. Additionally, they induced apoptosis in HepG2 cells via upregulation of Bax and downregulation of Bcl-2. Interestingly, the activity of ADA was decreased by 2.8 fold in HepG2 cells treated with Cu(II) complex compared to untreated cells. An increase of SOD activity and GSH level in HepG2 cells compared to control was observed.

Conclusion: The results concluded that Cu(II) complex of H2L induced apoptosis in HepG2 cells. Further studies are needed to confirm its anti-cancer effect in vivo.

Keywords: Apoptosis, cytotoxicity, hepatocellular carcinoma, Cu(II) complex, H2L, ADA.

Graphical Abstract

[1]
Atawodi, S.E. Nigerian foodstuffs with prostate cancer chemopreventive polyphenols. Infect. Agent. Cancer, 2011, 6, S9.
[2]
El-Serag, H.B. Epidemiology of viral hepatitis and hepatocellular carcinoma. Gastroenterology, 2012, 142(6), 1264-1273.
[http://dx.doi.org/10.1053/j.gastro.2011.12.061] [PMID: 22537432]
[3]
Hosseini, F.S.; Falahati-Pour, S.K.; Hajizadeh, M.R.; Khoshdel, A.; Mirzaei, M.R.; Ahmadirad, H.; Behroozi, R.; Jafari, N.; Mahmoodi, M. Persian shallot, Allium hirtifolium Boiss, induced apoptosis in human hepatocellular carcinoma cells. Cytotechnology, 2017, 69(4), 551-563.
[http://dx.doi.org/10.1007/s10616-017-0093-4] [PMID: 28397098]
[4]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[5]
Franke, T.F.; Hornik, C.P.; Segev, L.; Shostak, G.A.; Sugimoto, C. PI3K/Akt and apoptosis: Size matters. Oncogene, 2003, 22(56), 8983-8998.
[http://dx.doi.org/10.1038/sj.onc.1207115] [PMID: 14663477]
[6]
Sheikhrezaei, Z.; Heydari, P.; Farsinezhad, A.; Fatemi, A.; Khanamani Falahati-Pour, S.; Darakhshan, S.; Noroozi Karimabad, M.; Darekordi, A.; Khorramdelazad, H.; Hassanshahi, G. A new indole derivative decreased SALL4 gene expression in acute promyelocytic leukemia cell line (NB4). Iran. Biomed. J., 2018, 22(2), 99-106.
[PMID: 28800701]
[7]
Wang, X.; Wang, X.; Jin, S.; Muhammad, N.; Guo, Z. Stimuli-responsive therapeutic metallodrugs. Chem. Rev., 2019, 119(2), 1138-1192.
[http://dx.doi.org/10.1021/acs.chemrev.8b00209] [PMID: 30299085]
[8]
Bagrezaei, F.; Hassanshahi, G.; Mahmoodi, M.; Khanamani Falahati-Pour, S.; Mirzaei, M.R. Expression of inhibitor of apoptosis gene family members in bladder cancer tissues and the 5637 tumor cell line. Asian Pac. J. Cancer Prev., 2018, 19(2), 529-532.
[PMID: 29480996]
[9]
Kim, H.K.; Choi, I.J.; Kim, C.G.; Kim, H.S.; Oshima, A.; Michalowski, A.; Green, J.E. A gene expression signature of acquired chemoresistance to cisplatin and fluorouracil combination chemotherapy in gastric cancer patients. PLoS One, 2011, 6(2), e16694.
[http://dx.doi.org/10.1371/journal.pone.0016694] [PMID: 21364753]
[10]
Zainodini, N.; Hassanshahi, G.; Hajizadeh, M.; Khanamani Falahati-Pour, S.; Mahmoodi, M.; Mirzaei, M.R. Nisin induces cytotoxicity and apoptosis in human asterocytoma cell line (SW1088). Asian Pac. J. Cancer Prev., 2018, 19(8), 2217-2222.
[PMID: 30139228]
[11]
Munteanu, C.R.; Suntharalingam, K. Advances in cobalt complexes as anticancer agents. Dalton Trans., 2015, 44(31), 13796-13808.
[http://dx.doi.org/10.1039/C5DT02101D] [PMID: 26148776]
[12]
Santini, C.; Pellei, M.; Gandin, V.; Porchia, M.; Tisato, F.; Marzano, C. Advances in copper complexes as anticancer agents. Chem. Rev., 2014, 114(1), 815-862.
[http://dx.doi.org/10.1021/cr400135x] [PMID: 24102434]
[13]
Mohammadizadeh, F.; Falahati-Pour, S.K.; Rezaei, A.; Mohamadi, M.; Hajizadeh, M.R.; Mirzaei, M.R.; Khoshdel, A.; Fahmidehkar, M.A.; Mahmoodi, M. The cytotoxicity effects of a novel Cu complex on MCF-7 human breast cancerous cells. Biometals, 2018, 31(2), 233-242.
[http://dx.doi.org/10.1007/s10534-018-0079-5] [PMID: 29429042]
[14]
Brem, S. Angiogenesis and cancer control: From concept to therapeutic trial. Cancer Contr., 1999, 6(5), 436-458.
[http://dx.doi.org/10.1177/107327489900600502] [PMID: 10758576]
[15]
Brewer, G.J. Copper control as an antiangiogenic anticancer therapy: lessons from treating Wilson’s disease. Exp. Biol. Med. (Maywood), 2001, 226(7), 665-673.
[http://dx.doi.org/10.1177/153537020222600712] [PMID: 11444102]
[16]
Theophanides, T.; Anastassopoulou, J. Copper and carcinogenesis. Crit. Rev. Oncol. Hematol., 2002, 42(1), 57-64.
[http://dx.doi.org/10.1016/S1040-8428(02)00007-0] [PMID: 11923068]
[17]
Tisato, F.; Marzano, C.; Porchia, M.; Pellei, M.; Santini, C. Copper in diseases and treatments, and copper-based anticancer strategies. Med. Res. Rev., 2010, 30(4), 708-749.
[PMID: 19626597]
[18]
Nassar, N.T. Anthropospheric Losses of Platinum Group Elements. In:Element 576 Recovery and Sustainability; Hunt, A., Ed.; The Royal Society of Chemistry: Cambridge, UK, 2013.
[http://dx.doi.org/10.1039/9781849737340-00185]
[19]
Rezaei, A.; Khanamani Falahati-Pour, S.; Mohammadizadeh, F.; Hajizadeh, M.R.; Mirzaei, M.R.; Khoshdel, A.; Fahmidehkar, M.A.; Mahmoodi, M. Effect of a Copper (II) complex on the induction of apoptosis in human hepatocellular carcinoma cells. Asian Pac. J. Cancer Prev., 2018, 19(10), 2877-2884.
[PMID: 30362316]
[20]
Fan, L.; Tian, M.; Liu, Y.; Deng, Y.; Liao, Z.; Xu, J. Salicylate •Phenanthroline copper (II) complex induces apoptosis in triple-negative breast cancer cells. Oncotarget, 2017, 8(18), 29823-29832.
[http://dx.doi.org/10.18632/oncotarget.16161] [PMID: 28415735]
[21]
Hurtado, M.; Sankpal, U.T.; Kaba, A.; Mahammad, S.; Chhabra, J.; Brown, D.T.; Gurung, R.K.; Holder, A.A.; Vishwanatha, J.K.; Basha, R. Novel survivin inhibitor for suppressing pancreatic cancer cells growth via downregulating Sp1 and Sp3 transcription factors. Cell. Physiol. Biochem., 2018, 51(4), 1894-1907.
[http://dx.doi.org/10.1159/000495715] [PMID: 30504717]
[22]
Goh, Y-Y.; Yan, Y-K.; Tan, N.S.; Goh, S-A.; Li, S.; Teoh, Y-C.; Lee, P.P.F. Downregulation of oncogenic RAS and c-Myc expression in MOLT-4 leukaemia cells by a salicylaldehyde semicarbazone copper(II) complex. Sci. Rep., 2016, 6, 36868.
[http://dx.doi.org/10.1038/srep36868] [PMID: 27841290]
[23]
Gou, Y.; Zhang, Y.; Qi, J.; Chen, S.; Zhou, Z.; Wu, X.; Liang, H.; Yang, F. Developing an anticancer copper(II) pro-drug based on the nature of cancer cell and human serum albumin carrier IIA subdomain: mouse model of breast cancer. Oncotarget, 2016, 7(41), 67004-67019.
[http://dx.doi.org/10.18632/oncotarget.11465] [PMID: 27564255]
[24]
Rezaei, A.; Mahmoodi, M.; Mohammadizadeh, F.; Mohamadi, M.; Hajizadeh, M.R.; Mirzaei, M.R.; Khanamani Falahati-Pour, S. A novel copper (II) complex activated both extrinsic and intrinsic apoptotic pathways in liver cancerous cells. J. Cell. Biochem., 2019, 120(8), 12280-12289.
[http://dx.doi.org/10.1002/jcb.28491] [PMID: 30793365]
[25]
Huang, Y.; Luo, Y.; Zheng, W.; Chen, T. Rational design of cancer-targeted BSA protein nanoparticles as radiosensitizer to overcome cancer radioresistance. ACS Appl. Mater. Interfaces, 2014, 6(21), 19217-19228.
[http://dx.doi.org/10.1021/am505246w] [PMID: 25314331]
[26]
Gaber, M.; Khedr, A.M.; Elsharkawy, M. Characterization and thermal studies of nano-synthesized Mn(II), Co(II), Ni(II) and Cu(II) complexes with adipohydrazone ligand as new promising antimicrobial and antitumor agents. Appl. Organomet. Chem., 2017, 31(12), e3885.
[http://dx.doi.org/10.1002/aoc.3885]
[27]
Yuan, Y.V.; Walsh, N.A. Antioxidant and antiproliferative activities of extracts from a variety of edible seaweeds. Food Chem. Toxicol., 2006, 44(7), 1144-1150.
[http://dx.doi.org/10.1016/j.fct.2006.02.002] [PMID: 16554116]
[28]
Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Δ Δ C(T)). Method. Methods, 2001, 25(4), 402-408.
[http://dx.doi.org/10.1006/meth.2001.1262] [PMID: 11846609]
[29]
Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 1976, 72(1), 248-254.
[http://dx.doi.org/10.1016/0003-2697(76)90527-3] [PMID: 942051]
[30]
Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera--a visualization system for exploratory research and analysis. J. Comput. Chem., 2004, 25(13), 1605-1612.
[http://dx.doi.org/10.1002/jcc.20084] [PMID: 15264254]
[31]
Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 2010, 31(2), 455-461.
[PMID: 19499576]
[32]
Behrsin, R.F.; Junior, C.T.; Cardoso, G.P.; Barillo, J.L.; de Souza, J.B.; de Araújo, E.G. Combined evaluation of adenosine deaminase level and histopathological findings from pleural biopsy with Cope’s needle for the diagnosis of tuberculous pleurisy. Int. J. Clin. Exp. Pathol., 2015, 8(6), 7239-7246.
[PMID: 26261621]
[33]
Rahman, I.; Kode, A.; Biswas, S.K. Assay for quantitative determination of glutathione and glutathione disulfide levels using enzymatic recycling method. Nat. Protoc., 2006, 1(6), 3159-3165.
[http://dx.doi.org/10.1038/nprot.2006.378] [PMID: 17406579]
[34]
Nishikimi, M.; Appaji, N.; Yagi, K. The occurrence of superoxide anion in the reaction of reduced phenazine methosulfate and molecular oxygen. Biochem. Biophys. Res. Commun., 1972, 46(2), 849-854.
[http://dx.doi.org/10.1016/S0006-291X(72)80218-3] [PMID: 4400444]
[35]
van Tonder, A.; Joubert, A.M.; Cromarty, A.D. Limitations of the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay when compared to three commonly used cell enumeration assays. BMC Res. Notes, 2015, 8(1), 47.
[http://dx.doi.org/10.1186/s13104-015-1000-8] [PMID: 25884200]
[36]
Gan, Q.; Fu, X.; Chen, W.; Xiong, Y.; Fu, Y.; Chen, S.; Le, X. Synthesis, DNA/HSA interaction spectroscopic studies and in vitro cytotoxicity of a new mixed ligand Cu(II) complex. J. Fluoresc., 2016, 26(3), 905-918.
[http://dx.doi.org/10.1007/s10895-016-1779-2] [PMID: 26961845]
[37]
Yu, H.; Yang, Y.; Li, Q.; Ma, T.; Xu, J.; Zhu, T.; Xie, J.; Zhu, W.; Cao, Z.; Dong, K.; Huang, J.; Jia, L. Ternary dinuclear Copper(II) complexes of a reduced schiff base ligand with diimine coligands: DNA binding, cytotoxic cell apoptosis, and apoptotic mechanism. Chem. Biol. Drug Des., 2016, 87(3), 398-408.
[http://dx.doi.org/10.1111/cbdd.12669] [PMID: 26427013]
[38]
Thati, B.; Noble, A.; Creaven, B.S.; Walsh, M.; Kavanagh, K.; Egan, D.A. Apoptotic cell death: A possible key event in mediating the in vitro anti-proliferative effect of a novel copper(II) complex, [Cu(4-Mecdoa)(phen)(2)] (phen=phenanthroline, 4-Mecdoa=4-methylcoumarin-6,7-dioxactetate), in human malignant cancer cells. Eur. J. Pharmacol., 2007, 569(1-2), 16-28.
[http://dx.doi.org/10.1016/j.ejphar.2007.04.064] [PMID: 17585902]
[39]
Kumar, A.; Chinta, J.P.; Ajay, A.K.; Bhat, M.K.; Rao, C.P. Synthesis, characterization, plasmid cleavage and cytotoxicity of cancer cells by a copper(II) complex of anthracenyl-terpyridine. Dalton Trans., 2011, 40(41), 10865-10872.
[http://dx.doi.org/10.1039/c1dt10201j] [PMID: 21709916]
[40]
Stark, G.R.; Taylor, W.R. Analyzing the G2/M checkpoint. Methods Mol. Biol., 2004, 280, 51-82.
[PMID: 15187249]
[41]
Singh, M.; Bhatnagar, P.; Mishra, S.; Kumar, P.; Shukla, Y.; Gupta, K.C. PLGA-encapsulated tea polyphenols enhance the chemotherapeutic efficacy of cisplatin against human cancer cells and mice bearing Ehrlich ascites carcinoma. Int. J. Nanomedicine, 2015, 10, 6789-6809.
[http://dx.doi.org/10.2147/IJN.S79489] [PMID: 26586942]
[42]
Pravin, N.; Kumaravel, G.; Senthilkumar, R.; Raman, N. Water-soluble schiff base Cu(II) and Zn(II) complexes: Synthesis, DNA targeting ability and chemotherapeutic potential of Cu(II) complex for hepatocellular carcinoma-in vitro and in vivo approach. Appl. Organomet. Chem., 2017, 31(10), e3739.
[http://dx.doi.org/10.1002/aoc.3739]
[43]
Cohen, A.; Hirschhorn, R.; Horowitz, S.D.; Rubinstein, A.; Polmar, S.H.; Hong, R.; Martin, D.W., Jr Deoxyadenosine triphosphate as a potentially toxic metabolite in adenosine deaminase deficiency. Proc. Natl. Acad. Sci. USA, 1978, 75(1), 472-476.
[http://dx.doi.org/10.1073/pnas.75.1.472] [PMID: 272665]
[44]
Nogi, Y.; Kanno, T.; Nakano, T.; Fujita, Y.; Tabata, C.; Fukuoka, K.; Gotoh, A.; Nishizaki, T. AMP converted from intracellularly transported adenosine upregulates p53 expression to induce malignant pleural mesothelioma cell apoptosis. Cell. Physiol. Biochem., 2012, 30(1), 61-74.
[http://dx.doi.org/10.1159/000339048] [PMID: 22759956]
[45]
Saitoh, M.; Nagai, K.; Nakagawa, K.; Yamamura, T.; Yamamoto, S.; Nishizaki, T. Adenosine induces apoptosis in the human gastric cancer cells via an intrinsic pathway relevant to activation of AMP-activated protein kinase. Biochem. Pharmacol., 2004, 67(10), 2005-2011.
[http://dx.doi.org/10.1016/j.bcp.2004.01.020] [PMID: 15130776]
[46]
Tsuchiya, A.; Kanno, T.; Saito, M.; Miyoshi, Y.; Gotoh, A.; Nakano, T.; Nishizaki, T. Intracellularly transported adenosine induces apoptosis in [corrected] MCF-7 human breast cancer cells by accumulating AMID in the nucleus. Cancer Lett., 2012, 321(1), 65-72.
[http://dx.doi.org/10.1016/j.canlet.2012.02.023] [PMID: 22388174]
[47]
Koç, Y.; Urbano, A.G.; Sweeney, E.B.; McCaffrey, R. Induction of apoptosis by cordycepin in ADA-inhibited TdT-positive leukemia cells. Leukemia, 1996, 10(6), 1019-1024.
[PMID: 8667637]
[48]
Bijvoet, A.G.; Kroos, M.A.; Pieper, F.R.; Van der Vliet, M.; De Boer, H.A.; Van der Ploeg, A.T.; Verbeet, M.P.; Reuser, A.J. Recombinant human acid α-glucosidase: High level production in mouse milk, biochemical characteristics, correction of enzyme deficiency in GSDII KO mice. Hum. Mol. Genet., 1998, 7(11), 1815-1824.
[http://dx.doi.org/10.1093/hmg/7.11.1815] [PMID: 9736785]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy