Review Article

环状RNA和糖尿病:具有诊断作用的表观遗传调节剂

卷 20, 期 7, 2020

页: [516 - 526] 页: 11

弟呕挨: 10.2174/1566524020666200129142106

价格: $65

摘要

环状RNA是一组内源性非编码RNA,其特征是共价闭合的环状结构,无聚腺苷化的尾部。 最近已经建议,cirRNA通过充当翻译调节子,RNA结合蛋白海绵和microRNA海绵而在调节基因表达中起重要作用。 由于circRNA与糖尿病等各种疾病的发展密切相关,因此已成为研究的热点。 已经证明许多circRNA(即circRNA_0054633,circHIPK3,circANKRD36和circRNA11783-2)与糖尿病的发生和发展有关。 根据报道,在组织中,一些circRNA以发育阶段特异性的方式表达。 在这项研究中,我们回顾了关于环状RNA参与糖尿病的发病机制和诊断及其预后作用的研究。

关键词: 环状RNA,糖尿病,生物标志物,circRNA_0054633,circHIPK3,circANKRD36。

[1]
Reddy MA, Zhang E, Natarajan R. Epigenetic mechanisms in diabetic complications and metabolic memory. Diabetologia 2015; 58(3): 443-55.
[http://dx.doi.org/10.1007/s00125-014-3462-y] [PMID: 25481708]
[2]
Saeedi Borujeni MJ, Esfandiary E, Baradaran A, et al. Molecular aspects of pancreatic β‐cell dysfunction: Oxidative stress, microRNA, and long noncoding RNA. J Cell Physiol 2019; 234(6): 8411-25.
[PMID: 30565679]
[3]
Saeedi Borujeni MJ, Esfandiary E, Taheripak G, Codoner-Franch P, Alonso-Iglesias E, Mirzaei H. Molecular aspects of diabetes mellitus: Resistin, microRNA, and exosome. J Cell Physiol 2018; 119(2): 1257-72.
[4]
Liu L, Wang J, Khanabdali R, Kalionis B, Tai X, Xia S. Circular RNAs: Isolation, characterization and their potential role in diseases. RNA Biol 2017; 14(12): 1715-21.
[5]
Shabaninejad Z, Vafadar A, Movahedpour A, et al. Circular RNAs in cancer: new insights into functions and implications in ovarian cancer. J Ovarian Res 2019; 12(1): 84.
[http://dx.doi.org/10.1186/s13048-019-0558-5] [PMID: 31481095]
[6]
Lei B, Tian Z, Fan W, Ni B. Circular RNA: a novel biomarker and therapeutic target for human cancers. Int J Med Sci 2019; 16(2): 292-301.
[http://dx.doi.org/10.7150/ijms.28047] [PMID: 30745810]
[7]
Kristensen LS, Andersen MS, Stagsted LVW, Ebbesen KK, Hansen TB, Kjems J. The biogenesis, biology and characterization of circular RNAs. Nat Rev Genet 2019; 20(11): 675-91.
[http://dx.doi.org/10.1038/s41576-019-0158-7] [PMID: 31395983]
[8]
Ragan C, Goodall GJ, Shirokikh NE, Preiss T. Insights into the biogenesis and potential functions of exonic circular RNA. Sci Rep 2019; 9(1): 2048.
[http://dx.doi.org/10.1038/s41598-018-37037-0] [PMID: 30765711]
[9]
Haddad G, Lorenzen JM. Biogenesis and function of circular RNAs in health and in disease. Front Pharmacol 2019; 10: 428.
[http://dx.doi.org/10.3389/fphar.2019.00428] [PMID: 31080413]
[10]
Glažar P, Papavasileiou P, Rajewsky N. circBase: a database for circular RNAs. RNA 2014; 20(11): 1666-70.
[http://dx.doi.org/10.1261/rna.043687.113] [PMID: 25234927]
[11]
Qin M, Liu G, Huo X, et al. Hsa_circ_0001649: A circular RNA and potential novel biomarker for hepatocellular carcinoma. Cancer Biomark 2016; 16(1): 161-9.
[http://dx.doi.org/10.3233/CBM-150552] [PMID: 26600397]
[12]
Ghosal S, Das S, Sen R, Basak P, Chakrabarti J. Circ2Traits: a comprehensive database for circular RNA potentially associated with disease and traits. Front Genet 2013; 4: 283.
[http://dx.doi.org/10.3389/fgene.2013.00283] [PMID: 24339831]
[13]
Wang J, Zhu M, Pan J, Chen C, Xia S, Song Y. Circular RNAs: a rising star in respiratory diseases. Respir Res 2019; 20(1): 3.
[http://dx.doi.org/10.1186/s12931-018-0962-1] [PMID: 30611252]
[14]
Jeck WR, Sorrentino JA, Wang K, et al. Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA 2013; 19(2): 141-57.
[http://dx.doi.org/10.1261/rna.035667.112] [PMID: 23249747]
[15]
Patop IL, Wüst S, Kadener S. Past, present, and future of circRNAs. EMBO J 2019; 38(16)e100836
[http://dx.doi.org/10.15252/embj.2018100836] [PMID: 31343080]
[16]
Wilusz JE. Repetitive elements regulate circular RNA biogenesis. Mob Genet Elements 2015; 5(3): 1-7.
[http://dx.doi.org/10.1080/2159256X.2015.1045682] [PMID: 26442181]
[17]
Ebbesen KK, Kjems J, Hansen TB. Circular RNAs: identification, biogenesis and function. Biochimica et Biophysica Acta (BBA)-. Gene Regulatory Mechanisms 2016; 1859(1): 163-8.
[18]
Shang Q, Yang Z, Jia R, Ge S. The novel roles of circRNAs in human cancer. Mol Cancer 2019; 18(1): 6.
[http://dx.doi.org/10.1186/s12943-018-0934-6] [PMID: 30626395]
[19]
Zhang Y, Zhang XO, Chen T, et al. Circular intronic long noncoding RNAs. Mol Cell 2013; 51(6): 792-806.
[http://dx.doi.org/10.1016/j.molcel.2013.08.017] [PMID: 24035497]
[20]
Conn SJ, Pillman KA, Toubia J, et al. The RNA binding protein quaking regulates formation of circRNAs. Cell 2015; 160(6): 1125-34.
[http://dx.doi.org/10.1016/j.cell.2015.02.014] [PMID: 25768908]
[21]
Santer L, Bär C, Thum T. Circular RNAs, a novel class of functional RNA molecules with therapeutic perspective. Mol Ther 2019; 27(8): 1350-63.
[http://dx.doi.org/10.1016/j.ymthe.2019.07.001] [PMID: 31324392]
[22]
Zhao X, Cai Y, Xu J. Circular RNAs: Biogenesis, mechanism, and function in human cancers. Int J Mol Sci 2019; 20(16): 3926.
[http://dx.doi.org/10.3390/ijms20163926] [PMID: 31412535]
[23]
Zhao W, Dong M, Pan J, et al. Circular RNAs: A novel target among non coding RNAs with potential roles in malignant tumors. (Review) Mol Med Rep 2019; 20(4): 3463-74.
[http://dx.doi.org/10.3892/mmr.2019.10637] [PMID: 31485661]
[24]
Kulcheski FR, Christoff AP, Margis R. Circular RNAs are miRNA sponges and can be used as a new class of biomarker. J Biotechnol 2016; 238: 42-51.
[http://dx.doi.org/10.1016/j.jbiotec.2016.09.011] [PMID: 27671698]
[25]
Zhao Z-J, Shen J. Circular RNA participates in the carcinogenesis and the malignant behavior of cancer. RNA Biol 2017; 14(5): 514-21.
[http://dx.doi.org/10.1080/15476286.2015.1122162] [PMID: 26649774]
[26]
Xie H, Ren X, Xin S, et al. Emerging roles of circRNA_001569 targeting miR-145 in the proliferation and invasion of colorectal cancer. Oncotarget 2016; 7(18): 26680-91.
[http://dx.doi.org/10.18632/oncotarget.8589] [PMID: 27058418]
[27]
Liu Q, Zhang X, Hu X, et al. Circular RNA related to the chondrocyte ECM regulates MMP13 expression by functioning as a MiR-136 ‘Sponge’in human cartilage degradation. Sci Rep 2016; 6: 22572.
[http://dx.doi.org/10.1038/srep22572] [PMID: 26931159]
[28]
Lukiw WJ. Circular RNA (circRNA) in Alzheimer’s disease (AD). Front Genet 2013; 4: 307.
[http://dx.doi.org/10.3389/fgene.2013.00307] [PMID: 24427167]
[29]
Li F, Zhang L, Li W, et al. Circular RNA ITCH has inhibitory effect on ESCC by suppressing the Wnt/β-catenin pathway. Oncotarget 2015; 6(8): 6001-13.
[http://dx.doi.org/10.18632/oncotarget.3469] [PMID: 25749389]
[30]
Zheng Q, Bao C, Guo W, et al. Circular RNA profiling reveals an abundant circHIPK3 that regulates cell growth by sponging multiple miRNAs. Nat Commun 2016; 7: 11215.
[http://dx.doi.org/10.1038/ncomms11215] [PMID: 27050392]
[31]
Thomson DW, Dinger ME. Endogenous microRNA sponges: evidence and controversy. Nat Rev Genet 2016; 17(5): 272-83.
[http://dx.doi.org/10.1038/nrg.2016.20] [PMID: 27040487]
[32]
Militello G, Weirick T, John D, Döring C, Dimmeler S, Uchida S. Screening and validation of lncRNAs and circRNAs as miRNA sponges. Brief Bioinform 2017; 18(5): 780-8.
[PMID: 27373735]
[33]
Hansen TB, Wiklund ED, Bramsen JB, et al. miRNA-dependent gene silencing involving Ago2-mediated cleavage of a circular antisense RNA. EMBO J 2011; 30(21): 4414-22.
[http://dx.doi.org/10.1038/emboj.2011.359] [PMID: 21964070]
[34]
Ashwal-Fluss R, Meyer M, Pamudurti NR, et al. circRNA biogenesis competes with pre-mRNA splicing. Mol Cell 2014; 56(1): 55-66.
[http://dx.doi.org/10.1016/j.molcel.2014.08.019] [PMID: 25242144]
[35]
Abdelmohsen K, Panda AC, Munk R, et al. Identification of HuR target circular RNAs uncovers suppression of PABPN1 translation by CircPABPN1. RNA Biol 2017; 14(3): 361-9.
[http://dx.doi.org/10.1080/15476286.2017.1279788] [PMID: 28080204]
[36]
Du WW, Yang W, Liu E, Yang Z, Dhaliwal P, Yang BB. Foxo3 circular RNA retards cell cycle progression via forming ternary complexes with p21 and CDK2. Nucleic Acids Res 2016; 44(6): 2846-58.
[http://dx.doi.org/10.1093/nar/gkw027] [PMID: 26861625]
[37]
Czubak K, Taylor K, Piasecka A, Sobczak K, Kozlowska K, Philips A, et al. Global increase in circRNA levels in myotonic dystrophy. Front Genet 2019; 10: 649.
[38]
Dykstra-Aiello C, Jickling GC, Ander BP, et al. Altered expression of long noncoding RNAs in blood after ischemic stroke and proximity to putative stroke risk loci. Stroke 2016; 47(12): 2896-903.
[http://dx.doi.org/10.1161/STROKEAHA.116.013869] [PMID: 27834745]
[39]
Bahn JH, Zhang Q, Li F, et al. The landscape of microRNA, Piwi-interacting RNA, and circular RNA in human saliva. Clin Chem 2015; 61(1): 221-30.
[http://dx.doi.org/10.1373/clinchem.2014.230433] [PMID: 25376581]
[40]
Kos A, Dijkema R, Arnberg AC, van der Meide PH, Schellekens H. The hepatitis delta (delta) virus possesses a circular RNA. Nature 1986; 323(6088): 558-60.
[http://dx.doi.org/10.1038/323558a0] [PMID: 2429192]
[41]
Legnini I, Di Timoteo G, Rossi F, et al. Circ-ZNF609 Is a circular rna that can be translated and functions in myogenesis. Mol Cell 2017; 66(1): 22-37.
[http://dx.doi.org/10.1016/j.molcel.2017.02.017] [PMID: 28344082]
[42]
Pamudurti NR, Bartok O, Jens M, et al. Translation of CircRNAs. Mol Cell 2017; 66(1): 9-21.
[http://dx.doi.org/10.1016/j.molcel.2017.02.021] [PMID: 28344080]
[43]
Yang Y, Fan X, Mao M, et al. Extensive translation of circular RNAs driven by N6-methyladenosine. Cell Res 2017; 27(5): 626-41.
[http://dx.doi.org/10.1038/cr.2017.31] [PMID: 28281539]
[44]
Yang Y, Gao X, Zhang M, et al. Novel role of FBXW7 circular RNA in repressing glioma tumorigenesis. JNCI. J Natl Cancer Inst 2017; 110(3): 304-15.
[http://dx.doi.org/10.1093/jnci/djx166]
[45]
Begum S, Yiu A, Stebbing J, Castellano L. Novel tumour suppressive protein encoded by circular RNA, circ-SHPRH, in glioblastomas. Oncogene 2018; 37(30): 4055-7.
[http://dx.doi.org/10.1038/s41388-018-0230-3] [PMID: 29706655]
[46]
Abe N, Matsumoto K, Nishihara M, et al. Rolling circle translation of circular RNA in living human cells. Sci Rep 2015; 5: 16435.
[http://dx.doi.org/10.1038/srep16435] [PMID: 26553571]
[47]
Xu L, Zhang M, Zheng X, Yi P, Lan C, Xu M. The circular RNA ciRS-7 (Cdr1as) acts as a risk factor of hepatic microvascular invasion in hepatocellular carcinoma. J Cancer Res Clin Oncol 2017; 143(1): 17-27.
[http://dx.doi.org/10.1007/s00432-016-2256-7] [PMID: 27614453]
[48]
Shang X, Li G, Liu H, et al. Comprehensive circular RNA profiling reveals that hsa_circ_0005075, a new circular RNA biomarker, is involved in Hepatocellular crcinoma development. Medicine (Baltimore) 2016; 95(22)e3811
[http://dx.doi.org/10.1097/MD.0000000000003811] [PMID: 27258521]
[49]
Yao Z, Luo J, Hu K, et al. ZKSCAN1 gene and its related circular RNA (circZKSCAN1) both inhibit hepatocellular carcinoma cell growth, migration, and invasion but through different signaling pathways. Mol Oncol 2017; 11(4): 422-37.
[http://dx.doi.org/10.1002/1878-0261.12045] [PMID: 28211215]
[50]
Piwecka M, Glažar P, Hernandez-Miranda LR, et al. Loss of a mammalian circular RNA locus causes miRNA deregulation and affects brain function. Science 2017; 357(6357): 8526.
[http://dx.doi.org/10.1126/science.aam8526] [PMID: 28798046]
[51]
Khoutorsky A, Yanagiya A, Gkogkas CG, et al. Control of synaptic plasticity and memory via suppression of poly(A)-binding protein. Neuron 2013; 78(2): 298-311.
[http://dx.doi.org/10.1016/j.neuron.2013.02.025] [PMID: 23622065]
[52]
Cui X, Niu W, Kong L, et al. hsa_circRNA_103636: potential novel diagnostic and therapeutic biomarker in major depressive disorder. Biomarkers Med 2016; 10(9): 943-52.
[http://dx.doi.org/10.2217/bmm-2016-0130] [PMID: 27404501]
[53]
Holdt LM, Stahringer A, Sass K, et al. Circular non-coding RNA ANRIL modulates ribosomal RNA maturation and atherosclerosis in humans. Nat Commun 2016; 7: 12429.
[http://dx.doi.org/10.1038/ncomms12429] [PMID: 27539542]
[54]
Shan K, Liu C, Liu B-H, et al. Circular noncoding RNA HIPK3 mediates retinal vascular dysfunction in diabetes mellitus. Circulation 2017; 136(17): 1629-42.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.117.029004] [PMID: 28860123]
[55]
Li C-Y, Ma L, Yu B. Circular RNA hsa_circ_0003575 regulates oxLDL induced vascular endothelial cells proliferation and angiogenesis. Biomed Pharmacother 2017; 95: 1514-9.
[http://dx.doi.org/10.1016/j.biopha.2017.09.064] [PMID: 28946214]
[56]
Chen J, Cui L, Yuan J, Zhang Y, Sang H. Circular RNA WDR77 target FGF-2 to regulate vascular smooth muscle cells proliferation and migration by sponging miR-124. Biochem Biophys Res Commun 2017; 494(1-2): 126-32.
[http://dx.doi.org/10.1016/j.bbrc.2017.10.068] [PMID: 29042195]
[57]
Wang K, Gan T-Y, Li N, et al. Circular RNA mediates cardiomyocyte death via miRNA-dependent upregulation of MTP18 expression. Cell Death Differ 2017; 24(6): 1111-20.
[http://dx.doi.org/10.1038/cdd.2017.61] [PMID: 28498369]
[58]
Salgado-Somoza A, Zhang L, Vausort M, Devaux Y. The circular RNA MICRA for risk stratification after myocardial infarction. Int J Cardiol Heart Vasc 2017; 17: 33-6.
[http://dx.doi.org/10.1016/j.ijcha.2017.11.001] [PMID: 29159270]
[59]
Wu N, Jin L, Cai J. Profiling and bioinformatics analyses reveal differential circular RNA expression in hypertensive patients. Clin Exp Hypertens 2017; 39(5): 454-9.
[http://dx.doi.org/10.1080/10641963.2016.1273944] [PMID: 28534714]
[60]
Zhou B, Yu JW. A novel identified circular RNA, circRNA_010567, promotes myocardial fibrosis via suppressing miR-141 by targeting TGF-β1. Biochem Biophys Res Commun 2017; 487(4): 769-75.
[http://dx.doi.org/10.1016/j.bbrc.2017.04.044] [PMID: 28412345]
[61]
Wang K, Long B, Liu F, et al. A circular RNA protects the heart from pathological hypertrophy and heart failure by targeting miR-223. Eur Heart J 2016; 37(33): 2602-11.
[http://dx.doi.org/10.1093/eurheartj/ehv713] [PMID: 26802132]
[62]
Ouyang Q, Wu J, Jiang Z, et al. Microarray expression profile of circular RNAs in peripheral blood mononuclear cells from rheumatoid arthritis patients. Cell Physiol Biochem 2017; 42(2): 651-9.
[http://dx.doi.org/10.1159/000477883] [PMID: 28618429]
[63]
Luan J, Jiao C, Kong W, et al. circHLA-C plays an important role in lupus nephritis by sponging miR-150. Mol Ther Nucleic Acids 2018; 10: 245-53.
[http://dx.doi.org/10.1016/j.omtn.2017.12.006] [PMID: 29499937]
[64]
Xiong Y, Zhang J, Song C. CircRNA ZNF609 functions as a competitive endogenous RNA to regulate FOXP4 expression by sponging miR-138-5p in renal carcinoma. J Cell Physiol 2019; 234(7): 10646-54.
[65]
Su W, Wang Y, Wang F, Zhang B, Zhang H, Shen Y. Circular RNA hsa_circ_0007059 indicates prognosis and influences malignant behavior via AKT/mTOR in oral squamous cell carcinoma. J Cell Physiol 2019; 234(9): 15156-66.
[66]
Xue M, Li G, Fang X, Wang L, Jin Y, Zhou Q. hsa_circ_0081143 promotes cisplatin resistance in gastric cancer by targeting miR-646/CDK6 pathway. Cancer Cell Int 2019; 19: 25.
[http://dx.doi.org/10.1186/s12935-019-0737-x] [PMID: 30733646]
[67]
Han W, Wang L, Zhang L, Wang Y, Li Y. Circular RNA circ-RAD23B promotes cell growth and invasion by miR-593-3p/CCND2 and miR-653-5p/TIAM1 pathways in non-small cell lung cancer. Biochem Biophys Res Commun 2019; 510(3): 462-6.
[http://dx.doi.org/10.1016/j.bbrc.2019.01.131] [PMID: 30722989]
[68]
Qi H, Sun Y, Jiang Y. Upregulation of circular RNA circ_0000502 predicts unfavorable prognosis in osteosarcoma and facilitates cell progression via sponging miR-1238. J Cell Biochem 2019; 120(5): 8475-82.
[69]
Yong W, Zhuoqi X, Baocheng W, Dongsheng Z, Chuan Z, Yueming S. Hsa_circ_0071589 promotes carcinogenesis via the miR-600/EZH2 axis in colorectal cancer. Biomed Pharmacother 2018; 102: 1188-94.
[70]
Liu F, Zhang J, Qin L, et al. Circular RNA EIF6 (Hsa_circ_0060060) sponges miR-144-3p to promote the cisplatin-resistance of human thyroid carcinoma cells by autophagy regulation. Aging (Albany NY) 2018; 10(12): 3806-20.
[http://dx.doi.org/10.18632/aging.101674] [PMID: 30540564]
[71]
Shi F, Shi Z, Zhao Y, Tian J. CircRNA hsa-circ-0014359 promotes glioma progression by regulating miR-153/PI3K signaling. Biochem Biophys Res Commun 2019; 510(4): 614-20.
[http://dx.doi.org/10.1016/j.bbrc.2019.02.019] [PMID: 30745107]
[72]
Heit JJ, Karnik SK, Kim SK. Intrinsic regulators of pancreatic beta-cell proliferation. Annu Rev Cell Dev Biol 2006; 22: 311-38.
[http://dx.doi.org/10.1146/annurev.cellbio.22.010305.104425] [PMID: 16824015]
[73]
van Belle TL, Coppieters KT, von Herrath MG. Type 1 diabetes: etiology, immunology, and therapeutic strategies. Physiol Rev 2011; 91(1): 79-118.
[http://dx.doi.org/10.1152/physrev.00003.2010] [PMID: 21248163]
[74]
Rahelić D. Of IDF diabetes atlas--call for immediate action 2016.
[75]
Wucherpfennig KW, Eisenbarth GS. Type 1 diabetes. Nat Immunol 2001; 2(9): 767-8.
[http://dx.doi.org/10.1038/ni0901-767] [PMID: 11526380]
[76]
Gerstein HC, Miller ME, Byington RP, et al. Action to control cardiovascular risk in diabetes study group. Effects of intensive glucose lowering in type 2 diabetes. N Engl J Med 2008; 358(24): 2545-59.
[http://dx.doi.org/10.1056/NEJMoa0802743] [PMID: 18539917]
[77]
Stumvoll M, Goldstein BJ, van Haeften TW. Type 2 diabetes: principles of pathogenesis and therapy. Lancet 2005; 365(9467): 1333-46.
[http://dx.doi.org/10.1016/S0140-6736(05)61032-X] [PMID: 15823385]
[78]
Yang Q, Graham TE, Mody N, et al. Serum retinol binding protein 4 contributes to insulin resistance in obesity and type 2 diabetes. Nature 2005; 436(7049): 356-62.
[http://dx.doi.org/10.1038/nature03711] [PMID: 16034410]
[79]
Bates SH, Kulkarni RN, Seifert M, Myers MG Jr. Roles for leptin receptor/STAT3-dependent and -independent signals in the regulation of glucose homeostasis. Cell Metab 2005; 1(3): 169-78.
[http://dx.doi.org/10.1016/j.cmet.2005.02.001] [PMID: 16054060]
[80]
Hull RL, Westermark GT, Westermark P, Kahn SE. Islet amyloid: a critical entity in the pathogenesis of type 2 diabetes. J Clin Endocrinol Metab 2004; 89(8): 3629-43.
[http://dx.doi.org/10.1210/jc.2004-0405] [PMID: 15292279]
[81]
Robertson RP, Harmon J, Tran PO, Tanaka Y, Takahashi H. Glucose toxicity in β-cells: type 2 diabetes, good radicals gone bad, and the glutathione connection. Diabetes 2003; 52(3): 581-7.
[http://dx.doi.org/10.2337/diabetes.52.3.581] [PMID: 12606496]
[82]
Ehses JA, Ellingsgaard H, Böni-Schnetzler M, Donath MY. Pancreatic islet inflammation in type 2 diabetes: from α and β cell compensation to dysfunction. Arch Physiol Biochem 2009; 115(4): 240-7.
[http://dx.doi.org/10.1080/13813450903025879] [PMID: 19645635]
[83]
Burd CE, Jeck WR, Liu Y, Sanoff HK, Wang Z, Sharpless NE. Expression of linear and novel circular forms of an INK4/ARF-associated non-coding RNA correlates with atherosclerosis risk. PLoS Genet 2010; 6(12)e1001233
[http://dx.doi.org/10.1371/journal.pgen.1001233] [PMID: 21151960]
[84]
Wang Y, Liu J, Liu C, Naji A, Stoffers DA. MicroRNA-7 regulates the mTOR pathway and proliferation in adult pancreatic β-cells. Diabetes 2013; 62(3): 887-95.
[http://dx.doi.org/10.2337/db12-0451] [PMID: 23223022]
[85]
Li X, Zhao Z, Jian D, Li W, Tang H, Li M. Hsa-circRNA11783-2 in peripheral blood is correlated with coronary artery disease and type 2 diabetes mellitus. Diabetes. Vasc Dis Res 2017; 14(6): 510.
[http://dx.doi.org/10.1177/1479164117722714]
[86]
Sena CM, Pereira AM, Seiça R. Endothelial dysfunction - a major mediator of diabetic vascular disease. Biochim Biophys Acta 2013; 1832(12): 2216-31.
[http://dx.doi.org/10.1016/j.bbadis.2013.08.006] [PMID: 23994612]
[87]
Stoll L, Sobel J, Rodriguez-Trejo A, et al. Circular RNAs as novel regulators of β-cell functions in normal and disease conditions. Mol Metab 2018; 9: 69-83.
[http://dx.doi.org/10.1016/j.molmet.2018.01.010] [PMID: 29396373]
[88]
Xu H, Guo S, Li W, Yu P. The circular RNA Cdr1as, via miR-7 and its targets, regulates insulin transcription and secretion in islet cells. Sci Rep 2015; 5: 12453.
[http://dx.doi.org/10.1038/srep12453] [PMID: 26211738]
[89]
Fang Y, Wang X, Li W, et al. Screening of circular RNAs and validation of circANKRD36 associated with inflammation in patients with type 2 diabetes mellitus. Int J Mol Med 2018; 42(4): 1865-74.
[http://dx.doi.org/10.3892/ijmm.2018.3783] [PMID: 30066828]
[90]
Tang C-M, Zhang M, Huang L, et al. CircRNA_000203 enhances the expression of fibrosis-associated genes by derepressing targets of miR-26b-5p, Col1a2 and CTGF, in cardiac fibroblasts. Sci Rep 2017; 7: 40342.
[http://dx.doi.org/10.1038/srep40342] [PMID: 28079129]
[91]
Lasda E, Parker R. Circular RNAs Co-Precipitate with Extracellular Vesicles: A Possible Mechanism for circRNA Clearance. PLoS One 2016; 11(2)e0148407
[http://dx.doi.org/10.1371/journal.pone.0148407] [PMID: 26848835]
[92]
Suzuki H, Zuo Y, Wang J, Zhang MQ, Malhotra A, Mayeda A. Characterization of RNase R-digested cellular RNA source that consists of lariat and circular RNAs from pre-mRNA splicing. Nucleic Acids Res 2006; 34(8)e63
[http://dx.doi.org/10.1093/nar/gkl151] [PMID: 16682442]
[93]
Enuka Y, Lauriola M, Feldman ME, Sas-Chen A, Ulitsky I, Yarden Y. Circular RNAs are long-lived and display only minimal early alterations in response to a growth factor. Nucleic Acids Res 2016; 44(3): 1370-83.
[http://dx.doi.org/10.1093/nar/gkv1367] [PMID: 26657629]
[94]
Li Y, Zheng Q, Bao C, et al. Circular RNA is enriched and stable in exosomes: a promising biomarker for cancer diagnosis. Cell Res 2015; 25(8): 981-4.
[http://dx.doi.org/10.1038/cr.2015.82] [PMID: 26138677]
[95]
Li P, Chen S, Chen H, Mo X, Li T, Shao Y, et al. Using circular RNA as a novel type of biomarker in the screening of gastric cancer. Clin Chim Acta Int J. Clin Chem 2015; 444: 132-6.
[http://dx.doi.org/10.1016/j.cca.2015.02.018]
[96]
Dorcely B, Katz K, Jagannathan R, et al. Novel biomarkers for prediabetes, diabetes, and associated complications. Diabetes Metab Syndr Obes 2017; 10: 345-61.
[http://dx.doi.org/10.2147/DMSO.S100074] [PMID: 28860833]
[97]
Zhang SJ, Chen X, Li CP, et al. Identification and characterization of circular rnas as a new class of putative biomarkers in diabetes retinopathy. Invest Ophthalmol Vis Sci 2017; 58(14): 6500-9.
[http://dx.doi.org/10.1167/iovs.17-22698] [PMID: 29288268]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy