Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

4-Oxoquinoline Derivatives as Antivirals: A Ten Years Overview

Author(s): Pedro N. Batalha, Luana da S.M. Forezi, Nathalia M. de C. Tolentino, Fernanda S. Sagrillo, Vanessa G. de Oliveira, Maria Cecília B.V. de Souza and Fernanda da C.S. Boechat*

Volume 20, Issue 3, 2020

Page: [244 - 255] Pages: 12

DOI: 10.2174/1568026620666200129100219

Price: $65

Abstract

4-Oxoquinoline derivatives constitute an important family of biologically important substances, associated with different bioactivities, which can be synthesized by different synthetic methods, allowing the design and preparation of libraries of substances with specific structural variations capable of modulating their pharmacological action. Over the last years, these substances have been extensively explored by the scientific community in efforts to develop new biologically active agents, with greater efficiency for the treatment of a variety of diseases. Viral infections have been one of the targets of these studies, although to a lesser extent than other diseases such as cancer and bacterial infections. Nevertheless, the literature provides examples that corroborate with the fact that these substances may act on different pharmacological targets in different viral pathogens. This review provides a compilation of some of the major studies published in recent years showing the discovery and/or development of new antiviral oxoquinoline agents, highlighting, whenever possible, their mechanisms of action.

Keywords: Quinolone, Antiviral agents, Biological activity, Virus, Drugs, Anilines.

« Previous
Graphical Abstract

[1]
Ahmed, A.; Daneshtalab, M. Nonclassical biological activities of quinolone derivatives. J. Pharm. Pharm. Sci., 2012, 15(1), 52-72.
[PMID: 22365088]
[2]
Mugnaini, C.; Pasquini, S.; Corelli, F. The 4-quinolone-3-carboxylic acid motif as a multivalent scaffold in medicinal chemistry. Curr. Med. Chem., 2009, 16(14), 1746-1767.
[http://dx.doi.org/10.2174/092986709788186156] [PMID: 19442143]
[3]
Dhiman, P.; Arora, N.; Thanikachalam, P.V.; Monga, V. Recent advances in the synthetic and medicinal perspective of quinolones: A review. Bioorg. Chem., 2019, 92, 103291-103336.
[http://dx.doi.org/10.1016/j.bioorg.2019.103291] [PMID: 31561107]
[4]
Ghosh, P.; Das, S. Synthesis and functionalization of 4-quinolones – a progressing story. Eur. J. Org. Chem., 2019, 4466-4516.
[http://dx.doi.org/10.1002/ejoc.201900452]
[5]
Bandatmakuru, S.; Arava, V. Novel synthesis of 1,2-substituted 4-quinolones. SynOpen, 2018, 2, 285-292.
[http://dx.doi.org/10.1055/s-0037-1610388]
[6]
Zhang, G.F.; Liu, X.; Zhang, S.; Pan, B.; Liu, M.L. Ciprofloxacin derivatives and their antibacterial activities. Eur. J. Med. Chem., 2018, 146, 599-612.
[http://dx.doi.org/10.1016/j.ejmech.2018.01.078] [PMID: 29407984]
[7]
Shimura, K.; Kodama, E.N. Elvitegravir: a new HIV integrase inhibitor. Antivir. Chem. Chemother., 2009, 20(2), 79-85.
[http://dx.doi.org/10.3851/IMP1397] [PMID: 19843978]
[8]
Sato, M.; Motomura, T.; Aramaki, H.; Matsuda, T.; Yamashita, M.; Ito, Y.; Kawakami, H.; Matsuzaki, Y.; Watanabe, W.; Yamataka, K.; Ikeda, S.; Kodama, E.; Matsuoka, M.; Shinkai, H. Novel HIV-1 integrase inhibitors derived from quinolone antibiotics. J. Med. Chem., 2006, 49(5), 1506-1508.
[http://dx.doi.org/10.1021/jm0600139] [PMID: 16509568]
[9]
WHO. HIV/AIDS. Available from:. https://www.who.int/en/news-room/fact-sheets/detail/hiv-aids (Accessed on: 20th Nov, 2019).
[10]
Chang, C.C.; Crane, M.; Zhou, J.; Mina, M.; Post, J.J.; Cameron, B.A.; Lloyd, A.R.; Jaworowski, A.; French, M.A.; Lewin, S.R. HIV and co-infections. Immunol. Rev., 2013, 254(1), 114-142.
[http://dx.doi.org/10.1111/imr.12063] [PMID: 23772618]
[11]
He, Q.; Gu, S.; Liu, J.; Wu, H.; Zhang, X.; Yang, L.; Zheng, Y.; Chen, F. Structural modifications of oxoquinoline-3-carboxylic acids with anti-HIV activity. Bioorg. Med. Chem., 2011, 19, 5039-5045.
[12]
He, Q.Q.; Gu, S.X.; Liu, J.; Wu, H.Q.; Zhang, X.; Yang, L.M.; Zheng, Y.T.; Chen, F.E. Structural modifications of quinolone-3-carboxylic acids with anti-HIV activity. Bioorg. Med. Chem., 2011, 19(16), 5039-5045.
[http://dx.doi.org/10.1016/j.bmc.2011.06.020] [PMID: 21763149]
[13]
He, Q.Q.; Zhang, X.; Yang, L.M.; Zheng, Y.T.; Chen, F. Synthesis and biological evaluation of 5-fluoroquinolone-3-carboxylic acids as potential HIV-1 integrase inhibitors. J. Enzyme Inhib. Med. Chem., 2013, 28(4), 671-676.
[http://dx.doi.org/10.3109/14756366.2012.668540] [PMID: 22468749]
[14]
Di Santo, R.; Costi, R.; Roux, A.; Artico, M.; Lavecchia, A.; Marinelli, L.; Novellino, E.; Palmisano, L.; Andreotti, M.; Amici, R.; Galluzzo, C.M.; Nencioni, L.; Palamara, A.T.; Pommier, Y.; Marchand, C. Novel bifunctional quinolonyl diketo acid derivatives as HIV-1 integrase inhibitors: design, synthesis, biological activities, and mechanism of action. J. Med. Chem., 2006, 49(6), 1939-1945.
[http://dx.doi.org/10.1021/jm0511583] [PMID: 16539381]
[15]
He, Q.Q.; Zhang, X.; Wu, H.Q.; Gu, S.X.; Ma, X.D.; Yang, L.M.; Zheng, Y.T.; Chen, F.E. Synthesis and biological evaluation of HQCAs with aryl or benzyl substituents on N-1 position as potential HIV-1 integrase inhibitors. Bioorg. Med. Chem., 2011, 19(18), 5553-5558.
[http://dx.doi.org/10.1016/j.bmc.2011.07.037] [PMID: 21862337]
[16]
Vandurm, P.; Guiguen, A.; Cauvin, C.; Georges, B.; Le Van, K.; Michaux, C.; Cardona, C.; Mbemba, G.; Mouscadet, J-F.; Hevesi, L.; Van Lint, C.; Wouters, J. Synthesis, biological evaluation and molecular modeling studies of quinolonyl diketo acid derivatives: new structural insight into the HIV-1 integrase inhibition. Eur. J. Med. Chem., 2011, 46(5), 1749-1756.
[http://dx.doi.org/10.1016/j.ejmech.2011.02.028] [PMID: 21385662]
[17]
Pescatori, L.; Métifiot, M.; Chung, S.; Masoaka, T.; Cuzzucoli Crucitti, G.; Messore, A.; Pupo, G.; Madia, V.N.; Saccoliti, F.; Scipione, L.; Tortorella, S.; Di Leva, F.S.; Cosconati, S.; Marinelli, L.; Novellino, E.; Le Grice, S.F.J.; Pommier, Y.; Marchand, C.; Costi, R.; Di Santo, R. N-substituted quinolinonyl diketo acid derivatives as hiv integrase strand transfer inhibitors and their activity against rnase h function of reverse transcriptase. J. Med. Chem., 2015, 58(11), 4610-4623.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00159] [PMID: 25961960]
[18]
Costi, R.; Métifiot, M.; Chung, S.; Cuzzucoli Crucitti, G.; Maddali, K.; Pescatori, L.; Messore, A.; Madia, V.N.; Pupo, G.; Scipione, L.; Tortorella, S.; Di Leva, F.S.; Cosconati, S.; Marinelli, L.; Novellino, E.; Le Grice, S.F.; Corona, A.; Pommier, Y.; Marchand, C.; Di Santo, R. Basic quinolinonyl diketo acid derivatives as inhibitors of HIV integrase and their activity against RNase H function of reverse transcriptase. J. Med. Chem., 2014, 57(8), 3223-3234.
[http://dx.doi.org/10.1021/jm5001503] [PMID: 24684270]
[19]
Hajimahdi, Z.; Zabihollahi, R.; Aghasadeghi, M.R.; Ashtiani, S.H. Zarghi1, A. Novel quinolone-3-carboxylic acid derivatives as anti-hiv-1 agents: design, synthesis, and biological activities. Med. Chem. Res., 2016, 25, 1861-1876.
[http://dx.doi.org/10.1007/s00044-016-1631-x]
[20]
Mao, T.Q.; He, Q.Q.; Wan, Z.Y.; Chen, W.X.; Chen, F.E.; Tang, G.F.; De Clercq, E.; Daelemans, D.; Pannecouque, C. Anti-HIV diarylpyrimidine-quinolone hybrids and their mode of action. Bioorg. Med. Chem., 2015, 23(13), 3860-3868.
[http://dx.doi.org/10.1016/j.bmc.2015.03.037] [PMID: 25907370]
[21]
Carcelli, M.; Bacchi, A.; Pelagatti, P.; Rispoli, G.; Rogolino, D.; Sanchez, T.W.; Sechi, M.; Neamati, N. Ruthenium arene complexes as HIV-1 integrase strand transfer inhibitors. J. Inorg. Biochem., 2013, 118, 74-82.
[http://dx.doi.org/10.1016/j.jinorgbio.2012.09.021] [PMID: 23123342]
[22]
Faro, L.V.; de Almeida, J.M.; Cirne-Santos, C.C.; Giongo, V.A.; Castello-Branco, L.R. Oliveira, Ide.B.; Barbosa, J.E.F.; Cunha, A.C.; Ferreira, V.F.; de Souza, M.C.; Paixão, I.C.N.P.; de Souza, M.C. Oxoquinoline acyclonucleoside phosphonate analogues as a new class of specific inhibitors of human immunodeficiency virus type 1. Bioorg. Med. Chem. Lett., 2012, 22(15), 5055-5058.
[http://dx.doi.org/10.1016/j.bmcl.2012.06.020] [PMID: 22763201]
[23]
Jadulco, R.C.; Pond, C.D.; Van Wagoner, R.M.; Koch, M.; Gideon, O.G.; Matainaho, T.K.; Piskaut, P.; Barrows, L.R. 4-Quinolone alkaloids from Melochia odorata. J. Nat. Prod., 2014, 77(1), 183-187.
[http://dx.doi.org/10.1021/np400847t] [PMID: 24392742]
[24]
Muller, W.J.; Zheng, X. Laboratory diagnosis of neonatal herpes simplex virus infections. J. Clin. Microbiol., 2019, 57(5), e01460-e18.
[http://dx.doi.org/10.1128/JCM.01460-18] [PMID: 30602444]
[25]
Hayashi, K.; Lee, J.B.; Atsumi, K.; Kanazashi, M.; Shibayama, T.; Okamoto, K.; Kawahara, T.; Hayashi, T. In vitro and in vivo anti-herpes simplex virus activity of monogalactosyl diacylglyceride from Coccomyxa sp. KJ (IPOD FERM BP-22254), a green microalga. PLoS One, 2019, 14(7) e0219305
[http://dx.doi.org/10.1371/journal.pone.0219305] [PMID: 31310628]
[26]
Lucero, Bd.; Gomes, C.R.; Frugulhetti, I.C.; Faro, L.V.; Alvarenga, L.; de Souza, M.C.; de Souza, T.M.; Ferreira, V.F. Synthesis and anti-HSV-1 activity of quinolonic acyclovir analogues. Bioorg. Med. Chem. Lett., 2006, 16(4), 1010-1013.
[http://dx.doi.org/10.1016/j.bmcl.2005.10.111] [PMID: 16321530]
[27]
Abreu, P.A.; da Silva, V.A.G.G.; Santos, F.C.; Castro, H.C.; Riscado, C.S.; de Souza, M.T.; Ribeiro, C.P.; Barbosa, J.E.; dos Santos, C.C.C.; Rodrigues, C.R.; Lione, V.; Correa, B.A.M.; Cunha, A.C.; Ferreira, V.F.; de Souza, M.C.B.V.S.; Paixão, I.C.N.P. Oxoquinoline derivatives: identification and structure-activity relationship (SAR) analysis of new anti-HSV-1 agents. Curr. Microbiol., 2011, 62(5), 1349-1354.
[http://dx.doi.org/10.1007/s00284-010-9860-6] [PMID: 21225264]
[28]
Canuto, C.V.B.S.; Gomes, C.R.B.; Marques, I.P.; Faro, L.V.; Santos, F.C.; Frugulhetti, I.C.P.P.; Souza, T.M.L.; Cunha, A.C.; Romeiro, G.A.; Ferreira, V.F.; Souza, M.C.B.V. Synthesis and Anti-HSV-1 Activity of 1,4-dihydro-4-oxoquinoline Ribonucleosides. Lett. Drug Des. Discov., 2007, 4, 404-409.
[http://dx.doi.org/10.2174/157018007781387818]
[29]
Souza, T.M.L.; De Souza, M.C.; Ferreira, V.F.; Canuto, C.V.B.S.; Marques, I.P.; Fontes, C.F.L.; Frugulhetti, I.C.P.P. The chloroxoquinolinic derivative 6-chloro-1,4-dihydro-4-oxo-1-(β-D-ribofuranosyl) quinoline-3-carboxylic acid inhibits HSV-1 adsorption by impairing its adsorption on HVEM. Arch. Virol., 2007, 152(7), 1417-1424.
[http://dx.doi.org/10.1007/s00705-007-0960-y] [PMID: 17458622]
[30]
Yoneda, J.D.; Velloso, M.H.R.; Leal, K.Z.; Azeredo, R. de B. V.; Sugiura, M.; Albuquerque, M. G.; Santos, F. C.; de Souza, M. C. B. V.; Cunha, A. C.; Seidl, P. R.; de Alencastro, R. B.; Ferreira V. F. Conformation analysis of a quinolonic ribonucleoside with anti-HSV-1 activity. J. Mol. Struct., 2011, 985, 1-4.
[http://dx.doi.org/10.1016/j.molstruc.2010.01.044]
[31]
Torres, T.S.; Macedo, W.P.; Pedrosa, L.F.; Souza, M.C.B.V.; Ferreira, V.F.; Cunha, A.C.; Fogel, T.; Santos, F.C.; Marques, I.P.; Paixão, I.C.P.; Souza, M.C. Synthesis and anti-hsv-1 in vitro activity of new phosphoramidates with 4-oxoquinoline and phtalimidic nuclei. Lett. Org. Chem., 2008, 5, 644-650.
[http://dx.doi.org/10.2174/157017808786857615]
[33]
Massari, S.; Mercorelli, B.; Sancineto, L.; Sabatini, S.; Cecchetti, V.; Gribaudo, G.; Palù, G.; Pannecouque, C.; Loregian, A.; Tabarrini, O. Design, synthesis, and evaluation of WC5 analogues as inhibitors of human cytomegalovirus Immediate-Early 2 protein, a promising target for anti-HCMV treatment. ChemMedChem, 2013, 8(8), 1403-1414.
[http://dx.doi.org/10.1002/cmdc.201300106] [PMID: 23757191]
[34]
Abd Ellah, N.H.; Tawfeek, H.M.; John, J.; Hetta, H.F. Nanomedicine as a future therapeutic approach for Hepatitis C virus. Nanomedicine (Lond.), 2019, 14(11), 1471-1491.
[http://dx.doi.org/10.2217/nnm-2018-0348] [PMID: 31166139]
[35]
Kumar, D.V.; Rai, R.; Brameld, K.A.; Somoza, J.R.; Rajagopalan, R.; Janc, J.W.; Xia, Y.M.; Ton, T.L.; Shaghafi, M.B.; Hu, H.; Lehoux, I.; To, N.; Young, W.B.; Green, M.J. Quinolones as HCV NS5B polymerase inhibitors. Bioorg. Med. Chem. Lett., 2011, 21(1), 82-87.
[http://dx.doi.org/10.1016/j.bmcl.2010.11.068] [PMID: 21145235]
[36]
Kumar, D.V.; Rai, R.; Brameld, K.A.; Riggs, J.; Somoza, J.R.; Rajagopalan, R.; Janc, J.W.; Xia, Y.M.; Ton, T.L.; Hu, H.; Lehoux, I.; Ho, J.D.; Young, W.B.; Hart, B.; Green, M.J. 3-heterocyclyl quinolone inhibitors of the HCV NS5B polymerase. Bioorg. Med. Chem. Lett., 2012, 22(1), 300-304.
[http://dx.doi.org/10.1016/j.bmcl.2011.11.013] [PMID: 22119470]
[37]
Chen, Y.L.; Zacharias, J.; Vince, R.; Geraghty, R.J.; Wang, Z. C-6 aryl substituted 4-quinolone-3-carboxylic acids as inhibitors of hepatitis C virus. Bioorg. Med. Chem., 2012, 20(15), 4790-4800.
[http://dx.doi.org/10.1016/j.bmc.2012.05.066] [PMID: 22748708]
[38]
Wahyuni, T.S.; Widyawaruyanti, A.; Lusida, M.I.; Fuad, A. Soetjipto; Fuchino, H.; Kawahara, N.; Hayashi, Y.; Aoki, C.; Hotta, H. Inhibition of hepatitis C virus replication by chalepin and pseudane IX isolated from Ruta angustifolia leaves. Fitoterapia, 2014, 99, 276-283.
[http://dx.doi.org/10.1016/j.fitote.2014.10.011] [PMID: 25454460]
[39]
Boechat, Fda. C Sacramento, C.Q.; Cunha, A.C.; Sagrillo, F.S.; Nogueira, C.M.; Fintelman-Rodrigues, N.; Santos-Filho, O.; Riscado, C.S.; Forezi, Lda.S.; Faro, L.V.; Brozeguini, L.; Marques, I.P.; Ferreira, V.F.; Souza, T.M.; de Souza, M.C. 1,2,3-Triazolyl-4-oxoquinolines: A feasible beginning for promising chemical structures to inhibit oseltamivir-resistant influenza A and B viruses. Bioorg. Med. Chem., 2015, 23(24), 7777-7784.
[http://dx.doi.org/10.1016/j.bmc.2015.11.028] [PMID: 26643220]
[40]
Herold, S.; Becker, C.; Ridge, K.M.; Budinger, G.R.S. Influenza virus-induced lung injury: pathogenesis and implications for treatment. Eur. Respir. J., 2015, 45(5), 1463-1478.
[http://dx.doi.org/10.1183/09031936.00186214] [PMID: 25792631]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy