Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Liposomes: Novel Drug Delivery Approach for Targeting Parkinson’s Disease

Author(s): Bhumika Kumar, Mukesh Pandey, Faheem H. Pottoo, Faizana Fayaz, Anjali Sharma and P.K. Sahoo*

Volume 26, Issue 37, 2020

Page: [4721 - 4737] Pages: 17

DOI: 10.2174/1381612826666200128145124

Price: $65

Abstract

Parkinson’s disease is one of the most severe progressive neurodegenerative disorders, having a mortifying effect on the health of millions of people around the globe. The neural cells producing dopamine in the substantia nigra of the brain die out. This leads to symptoms like hypokinesia, rigidity, bradykinesia, and rest tremor. Parkinsonism cannot be cured, but the symptoms can be reduced with the intervention of medicinal drugs, surgical treatments, and physical therapies. Delivering drugs to the brain for treating Parkinson’s disease is very challenging. The blood-brain barrier acts as a highly selective semi-permeable barrier, which refrains the drug from reaching the brain. Conventional drug delivery systems used for Parkinson’s disease do not readily cross the blood barrier and further lead to several side-effects. Recent advancements in drug delivery technologies have facilitated drug delivery to the brain without flooding the bloodstream and by directly targeting the neurons. In the era of Nanotherapeutics, liposomes are an efficient drug delivery option for brain targeting. Liposomes facilitate the passage of drugs across the blood-brain barrier, enhances the efficacy of the drugs, and minimize the side effects related to it. The review aims at providing a broad updated view of the liposomes, which can be used for targeting Parkinson’s disease.

Keywords: Blood-brain barrier, liposomes, neurodegenerative diseases, Parkinson’s disease, Substantia nigra, targeted drug delivery.

[1]
Parkinson J. An essay on the shaking palsy. 1817. J Neuropsychiatry Clin Neurosci 2002; 14(2): 223-36.
[http://dx.doi.org/10.1176/jnp.14.2.223 ] [PMID: 11983801]
[2]
Moore SF, Barker RA. Predictors of Parkinson’s disease dementia: towards targeted therapies for a heterogeneous disease. Parkinsonism Relat Disord 2014; 20(Suppl. 1): S104-7.
[http://dx.doi.org/10.1016/S1353-8020(13)70026-9 ] [PMID: 24262158]
[3]
Alavijeh MS, Chishty M, Qaiser MZ, Palmer AM. Drug metabolism and pharmacokinetics, the blood-brain barrier, and central nervous system drug discovery. NeuroRx 2005; 2(4): 554-71.
[http://dx.doi.org/10.1602/neurorx.2.4.554 ] [PMID: 16489365]
[4]
Weintraub D, Comella CL, Horn S. Parkinson’s disease-Part 1: Pathophysiology, symptoms, burden, diagnosis, and assessment. Am J Manag Care 2008; 14(2)(Suppl.): S40-8.
[PMID: 18402507]
[5]
Weintraub D, Comella CL, Horn S. Parkinson’s disease-Part 2: Treatment of motor symptoms. Am J Manag Care 2008; 14(2)(Suppl.): S49-58.
[PMID: 18402508]
[6]
Barchet TM, Amiji MM. Challenges and opportunities in CNS delivery of therapeutics for neurodegenerative diseases. Expert Opin Drug Deliv 2009; 6(3): 211-25.
[http://dx.doi.org/10.1517/17425240902758188 ] [PMID: 19290842]
[7]
Azzouz M, Ralph S, Wong LF, et al. Neuroprotection in a rat Parkinson model by GDNF gene therapy using EIAV vector. Neuroreport 2004; 15(6): 985-90.
[http://dx.doi.org/10.1097/00001756-200404290-00011 ] [PMID: 15076720]
[8]
Bickel U, Yoshikawa T, Pardridge WM. Delivery of peptides and proteins through the blood-brain barrier. Adv Drug Deliv Rev 2001; 46(1-3): 247-79.
[http://dx.doi.org/10.1016/S0169-409X(00)00139-3 ] [PMID: 11259843]
[9]
Kordower JH, Emborg ME, Bloch J, et al. Neurodegeneration prevented by lentiviral vector delivery of GDNF in primate models of Parkinson’s disease. Science 2000; 290(5492): 767-73.
[http://dx.doi.org/10.1126/science.290.5492.767 ] [PMID: 11052933]
[10]
Manfredsson FP, Lewin AS, Mandel RJ. RNA knockdown as a potential therapeutic strategy in Parkinson’s disease. Gene Ther 2006; 13(6): 517-24.
[http://dx.doi.org/10.1038/sj.gt.3302669 ] [PMID: 16267570]
[11]
Berry M, Barrett L, Seymour L, Baird A, Logan A. Gene therapy for central nervous system repair. Curr Opin Mol Ther 2001; 3(4): 338-49.
[PMID: 11525557]
[12]
Brasnjevic I, Steinbusch HW, Schmitz C, Martinez-Martinez P. European NanoBioPharmaceutics Research Initiative. Delivery of peptide and protein drugs over the blood-brain barrier. Prog Neurobiol 2009; 87(4): 212-51.
[http://dx.doi.org/10.1016/j.pneurobio.2008.12.002 ] [PMID: 19395337]
[13]
Marsden CD. Movement disordersWeatherall DJ, Ledingham JGG, Warrell DA, editors Oxford textbook of medicine. New York: Oxford University Press Inc 1996; 3: 3998-4022.
[14]
Lang AE. When and how should treatment be started in Parkinson disease? Neurology 2009; 72(7)(Suppl.): S39-43.
[http://dx.doi.org/10.1212/WNL.0b013e318198e177 ] [PMID: 19221313]
[15]
Wooten GF, Currie LJ, Bovbjerg VE, Lee JK, Patrie J. Are men at greater risk for Parkinson’s disease than women? J Neurol Neurosurg Psychiatry 2004; 75(4): 637-9.
[http://dx.doi.org/10.1136/jnnp.2003.020982 ] [PMID: 15026515]
[16]
Miyasaki JM, Shannon K. Practice Parameter: evaluation and treatment of depression, psychosis, and dementia in Parkinson disease (an evidence - based review): report of the Quality Standards Subcommittee of the American Academy of Neurology http://dx.doi.org/https://doi.org/10.1212/01.wnl.0000215428.46057.3d
[PMID: 16606910]
[17]
Marras C, Beck JC, Bower JH, et al. Parkinson’s Foundation P4 Group. Prevalence of Parkinson’s disease across North America. NPJ Parkinsons Dis 2018; 4(1): 21.
[http://dx.doi.org/10.1038/s41531-018-0058-0 ] [PMID: 30003140]
[18]
de Lau LML, Breteler MMB. Epidemiology of Parkinson’s disease. Lancet Neurol 2006; 5(6): 525-35.
[http://dx.doi.org/10.1016/S1474-4422(06)70471-9 ] [PMID: 16713924]
[19]
Saunders-Pullman R. Estrogens and Parkinson disease: neuroprotective, symptomatic, neither, or both? Endocrine 2003; 21(1): 81-7.
[http://dx.doi.org/10.1385/ENDO:21:1:81 ] [PMID: 12777707]
[20]
Tatton WG, Lee RG. Evidence for abnormal long-loop reflexes in rigid Parkinsonian patients. Brain Res 1975; 100(3): 671-6.
[http://dx.doi.org/10.1016/0006-8993(75)90167-5 ] [PMID: 172196]
[21]
Heafield MT, Fearn S, Steventon GB, Waring RH, Williams AC, Sturman SG. Plasma cysteine and sulphate levels in patients with motor neurone, Parkinson’s and Alzheimer’s disease. Neurosci Lett 1990; 110(1-2): 216-20.
[http://dx.doi.org/10.1016/0304-3940(90)90814-P ] [PMID: 2325885]
[22]
Ansari KA, Johnson A. Olfactory function in patients with Parkinson’s disease. J Chronic Dis 1975; 28(9): 493-7.
[http://dx.doi.org/10.1016/0021-9681(75)90058-2 ] [PMID: 1176578]
[23]
Doty RL, Deems DA, Stellar S. Olfactory dysfunction in parkinsonism: a general deficit unrelated to neurologic signs, disease stage, or disease duration. Neurology 1988; 38(8): 1237-44.
[http://dx.doi.org/10.1212/WNL.38.8.1237 ] [PMID: 3399075]
[24]
Calne DB, Snow BJ, Lee C. Criteria for diagnosing Parkinson’s disease. Ann Neurol 1992; 32(S1)(Suppl.): S125-7.
[http://dx.doi.org/10.1002/ana.410320721 ] [PMID: 1510370]
[25]
Noyce AJ, Bestwick JP, Silveira-Moriyama L, et al. Meta-analysis of early nonmotor features and risk factors for Parkinson disease. Ann Neurol 2012; 72(6): 893-901.
[http://dx.doi.org/10.1002/ana.23687 ] [PMID: 23071076]
[26]
Foubert-Samier A, Helmer C, Perez F, et al. Past exposure to neuroleptic drugs and risk of Parkinson disease in an elderly cohort. Neurology 2012; 79(15): 1615-21.
[http://dx.doi.org/10.1212/WNL.0b013e31826e25ce ] [PMID: 23019267]
[27]
Goldman SM, Quinlan PJ, Ross GW, et al. Solvent exposures and Parkinson disease risk in twins. Ann Neurol 2012; 71(6): 776-84.
[http://dx.doi.org/10.1002/ana.22629 ] [PMID: 22083847]
[28]
Polymeropoulos MH, Lavedan C, Leroy E, et al. Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease. Science 1997; 276(5321): 2045-7.
[http://dx.doi.org/10.1126/science.276.5321.2045 ] [PMID: 9197268]
[29]
Corti O, Lesage S, Brice A. What genetics tells us about the causes and mechanisms of Parkinson’s disease. Physiol Rev 2011; 91(4): 1161-218.
[http://dx.doi.org/10.1152/physrev.00022.2010 ] [PMID: 22013209]
[30]
Wakabayashi K, Tanji K, Mori F, Takahashi H. The Lewy body in Parkinson’s disease: molecules implicated in the formation and degradation of α-synuclein aggregates. Neuropathology 2007; 27(5): 494-506.
[http://dx.doi.org/10.1111/j.1440-1789.2007.00803.x ] [PMID: 18018486]
[31]
Schapira AH. Etiology and pathogenesis of Parkinson disease. Neurol Clin 2009; 27(3): 583-603. v
[http://dx.doi.org/10.1016/j.ncl.2009.04.004] [PMID: 19555823]
[32]
Terry RD. Do neuronal inclusions kill the cell? J Neural Transm Suppl 2000; 59: 91-3.
[PMID: 10961422]
[33]
Lewy FH. Pathologischeanatomie. Handbuch der neurologie 1912.
[34]
Duffy PE, Tennyson VM. Phase and electron microscopic observations of Lewy bodies and melanin granules in the substantia nigra and locus caeruleus in Parkinson’s disease. J Neuropathol Exp Neurol 1965; 24(3): 398-414.
[http://dx.doi.org/10.1097/00005072-196507000-00003]
[35]
Polymeropoulos MH, Lavedan C, Leroy E, et al. Mutation in the α-synuclein gene identified in families with Parkinson’s disease. Science 1997; 276(5321): 2045-7.
[http://dx.doi.org/10.1126/science.276.5321.2045 ] [PMID: 9197268]
[36]
Krüger R, Kuhn W, Müller T, et al. Ala30Pro mutation in the gene encoding α-synuclein in Parkinson’s disease. Nat Genet 1998; 18(2): 106-8.
[http://dx.doi.org/10.1038/ng0298-106 ] [PMID: 9462735]
[37]
Ghavami S, Shojaei S, Yeganeh B, et al. Autophagy and apoptosis dysfunction in neurodegenerative disorders. Prog Neurobiol 2014; 112: 24-49.
[http://dx.doi.org/10.1016/j.pneurobio.2013.10.004 ] [PMID: 24211851]
[38]
Zlokovic BV. The blood-brain barrier in health and chronic neurodegenerative disorders. Neuron 2008; 57(2): 178-201.
[http://dx.doi.org/10.1016/j.neuron.2008.01.003 ] [PMID: 18215617]
[39]
Glass CK, Saijo K, Winner B, Marchetto MC, Gage FH. Mechanisms underlying inflammation in neurodegeneration. Cell 2010; 140(6): 918-34.
[http://dx.doi.org/10.1016/j.cell.2010.02.016 ] [PMID: 20303880]
[40]
Narendra D, Tanaka A, Suen DF, Youle RJ. Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J Cell Biol 2008; 183(5): 795-803.
[http://dx.doi.org/10.1083/jcb.200809125 ] [PMID: 19029340]
[41]
Chen H, Chan DC. Mitochondrial dynamics-fusion, fission, movement, and mitophagy-in neurodegenerative diseases. Hum Mol Genet 2009; 18(R2): R169-76.
[http://dx.doi.org/10.1093/hmg/ddp326 ] [PMID: 19808793]
[42]
Jomova K, Vondrakova D, Lawson M, Valko M. Metals, oxidative stress and neurodegenerative disorders. Mol Cell Biochem 2010; 345(1-2): 91-104.
[http://dx.doi.org/10.1007/s11010-010-0563-x ] [PMID: 20730621]
[43]
Zlokovic BV. Neurovascular pathways to neurodegeneration in Alzheimer’s disease and other disorders. Nat Rev Neurosci 2011; 12(12): 723-38.
[http://dx.doi.org/10.1038/nrn3114 ] [PMID: 22048062]
[44]
Ruiz de Almodovar C, Lambrechts D, Mazzone M, Carmeliet P. Role and therapeutic potential of VEGF in the nervous system. Physiol Rev 2009; 89(2): 607-48.
[http://dx.doi.org/10.1152/physrev.00031.2008 ] [PMID: 19342615]
[45]
Nagasawa K, Chiba H, Fujita H, et al. Possible involvement of gap junctions in the barrier function of tight junctions of brain and lung endothelial cells. J Cell Physiol 2006; 208(1): 123-32.
[http://dx.doi.org/10.1002/jcp.20647 ] [PMID: 16547974]
[46]
Ward AJ, Cooper TA. The pathobiology of splicing. J Pathol 2010; 220(2): 152-63.
[PMID: 19918805]
[47]
Behzadnia N, Golas MM, Hartmuth K, et al. Composition and three-dimensional EM structure of double affinity-purified, human prespliceosomal A complexes. EMBO J 2007; 26(6): 1737-48.
[http://dx.doi.org/10.1038/sj.emboj.7601631 ] [PMID: 17332742]
[48]
Shefer K, Sperling J, Sperling R. The supraspliceosome-a multi task machine for regulated pre-mRNA processing in the cell nucleus. Comput Struct Biotechnol J 2014; 11(19): 113-22.
[http://dx.doi.org/10.1016/j.csbj.2014.09.008 ] [PMID: 25408845]
[49]
La Cognata V, D’Agata V, Cavalcanti F, Cavallaro S. Splicing: is there an alternative contribution to Parkinson’s disease? Neurogenetics 2015; 16(4): 245-63.
[http://dx.doi.org/10.1007/s10048-015-0449-x ] [PMID: 25980689]
[50]
Yap K, Makeyev EV. Regulation of gene expression in mammalian nervous system through alternative pre-mRNA splicing coupled with RNA quality control mechanisms. Mol Cell Neurosci 2013; 56: 420-8.
[http://dx.doi.org/10.1016/j.mcn.2013.01.003 ] [PMID: 23357783]
[51]
Calarco JA, Zhen M, Blencowe BJ. Networking in a global world: establishing functional connections between neural splicing regulators and their target transcripts. RNA 2011; 17(5): 775-91.
[http://dx.doi.org/10.1261/rna.2603911 ] [PMID: 21415141]
[52]
Li Q, Lee JA, Black DL. Neuronal regulation of alternative premRNA splicing. Nat Rev Neurosci 2007; 8(11): 819-31.
[http://dx.doi.org/10.1038/nrn2237 ] [PMID: 17895907]
[53]
Pan Q, Shai O, Lee LJ, Frey BJ, Blencowe BJ. Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing. Nat Genet 2008; 40(12): 1413-5.
[http://dx.doi.org/10.1038/ng.259 ] [PMID: 18978789]
[54]
Beyer K, Domingo-Sábat M, Lao JI, Carrato C, Ferrer I, Ariza A. Identification and characterization of a new alpha-synuclein isoform and its role in Lewy body diseases. Neurogenetics 2008; 9(1): 15-23.
[http://dx.doi.org/10.1007/s10048-007-0106-0 ] [PMID: 17955272]
[55]
Beyer K, Domingo-Sàbat M, Humbert J, Carrato C, Ferrer I, Ariza A. Differential expression of alpha-synuclein, parkin, and synphilin-1 isoforms in Lewy body disease. Neurogenetics 2008; 9(3): 163-72.
[http://dx.doi.org/10.1007/s10048-008-0124-6 ] [PMID: 18335262]
[56]
McLean JR, Hallett PJ, Cooper O, Stanley M, Isacson O. Transcript expression levels of full-length alpha-synuclein and its three alternatively spliced variants in Parkinson’s disease brain regions and in a transgenic mouse model of alpha-synuclein overexpression. Mol Cell Neurosci 2012; 49(2): 230-9.
[http://dx.doi.org/10.1016/j.mcn.2011.11.006 ] [PMID: 22155155]
[57]
Cardo LF, Coto E, de Mena L, et al. Alpha-synuclein transcript isoforms in three different brain regions from Parkinson’s disease and healthy subjects in relation to the SNCA rs356165/rs11931074 polymorphisms. Neurosci Lett 2014; 562: 45-9.
[http://dx.doi.org/10.1016/j.neulet.2014.01.009 ] [PMID: 24418406]
[58]
Giesert F, Hofmann A, Bürger A, et al. Expression analysis of Lrrk1, Lrrk2 and Lrrk2 splice variants in mice. PLoS One 2013; 8(5): e63778.
[http://dx.doi.org/10.1371/journal.pone.0063778 ] [PMID: 23675505]
[59]
Sheng D, Qu D, Kwok KH, et al. Deletion of the WD40 domain of LRRK2 in Zebrafish causes Parkinsonism-like loss of neurons and locomotive defect. PLoS Genet 2010; 6(4): e1000914.
[http://dx.doi.org/10.1371/journal.pgen.1000914 ] [PMID: 20421934]
[60]
Illarioshkin SN, Periquet M, Rawal N, et al. Mutation analysis of the parkin gene in Russian families with autosomal recessive juvenile parkinsonism. Mov Disord 2003; 18(8): 914-9.
[http://dx.doi.org/10.1002/mds.10467 ] [PMID: 12889082]
[61]
Pigullo S, De Luca A, Barone P, et al. Mutational analysis of parkin gene by denaturing high-performance liquid chromatography (DHPLC) in essential tremor. Parkinsonism Relat Disord 2004; 10(6): 357-62.
[http://dx.doi.org/10.1016/j.parkreldis.2004.04.012 ] [PMID: 15261877]
[62]
Scherfler C, Khan NL, Pavese N, et al. Striatal and cortical pre- and postsynaptic dopaminergic dysfunction in sporadic parkin-linked parkinsonism. Brain 2004; 127(Pt 6): 1332-42.
[http://dx.doi.org/10.1093/brain/awh150 ] [PMID: 15090472]
[63]
Bertoli-Avella AM, Giroud-Benitez JL, Akyol A, et al. Italian Parkinson Genetics Network. Novel parkin mutations detected in patients with early-onset Parkinson’s disease. Mov Disord 2005; 20(4): 424-31.
[http://dx.doi.org/10.1002/mds.20343 ] [PMID: 15584030]
[64]
Bardien S, Keyser R, Yako Y, Lombard D, Carr J. Molecular analysis of the parkin gene in South African patients diagnosed with Parkinson’s disease. Parkinsonism Relat Disord 2009; 15(2): 116-21.
[http://dx.doi.org/10.1016/j.parkreldis.2008.04.005 ] [PMID: 18514563]
[65]
Marongiu R, Brancati F, Antonini A, et al. Whole gene deletion and splicing mutations expand the PINK1 genotypic spectrum. Hum Mutat 2007; 28(1): 98.
[http://dx.doi.org/10.1002/humu.9472 ] [PMID: 17154281]
[66]
Samaranch L, Lorenzo-Betancor O, Arbelo JM, et al. PINK1-linked parkinsonism is associated with Lewy body pathology. Brain 2010; 133(Pt 4): 1128-42.
[http://dx.doi.org/10.1093/brain/awq051 ] [PMID: 20356854]
[67]
Akhtar RS, Stern MB. New concepts in the early and preclinical detection of Parkinson’s disease: therapeutic implications. Expert Rev Neurother 2012; 12(12): 1429-38.
[http://dx.doi.org/10.1586/ern.12.144 ] [PMID: 23237350]
[68]
Graul AI, Kamerkar S. Parkinson’s disease in the limelight. Drugs Today (Barc) 2014; 50(9): 641-5.
[http://dx.doi.org/10.1358/dot.2014.50.9.2229405 ] [PMID: 25313370]
[69]
Romero-Ramos M, von Euler Chelpin M, Sanchez-Guajardo V. Vaccination strategies for Parkinson disease: induction of a swift attack or raising tolerance? Hum Vaccin Immunother 2014; 10(4): 852-67.
[http://dx.doi.org/10.4161/hv.28578 ] [PMID: 24670306]
[70]
Lithgow BJ, Shoushtarian M. Parkinson’s disease: disturbed vestibular function and levodopa. J Neurol Sci 2015; 353(1-2): 49-58.
[http://dx.doi.org/10.1016/j.jns.2015.03.050 ] [PMID: 25899315]
[71]
Müller T, Benz S, Przuntek H. Choice reaction time after levodopa challenge in parkinsonian patients. J Neurol Sci 2000; 181(1-2): 98-103.
[http://dx.doi.org/10.1016/S0022-510X(00)00436-6 ] [PMID: 11099718]
[72]
Tsui JK. Future treatment of Parkinson’s disease. Can J Neurol Sci 1992; 19(1)(Suppl.): 160-2.
[http://dx.doi.org/10.1017/S0317167100041561 ] [PMID: 1571862]
[73]
Cerasa A, Koch G, Fasano A, Morgante F. Future scenarios for levodopa-induced dyskinesias in Parkinson’s disease. Front Neurol 2015; 6: 76.
[http://dx.doi.org/10.3389/fneur.2015.00076 ] [PMID: 25883587]
[74]
Verhagen Metman L, Stover N, Chen C, Cowles VE, Sweeney M. VerhagenMetman L. Gastroretentive carbidopa/levodopa, DM-1992, for the treatment of advanced Parkinson’s disease. Mov Disord 2015; 30(9): 1222-8.
[http://dx.doi.org/10.1002/mds.26219 ] [PMID: 25847690]
[75]
Johnston TH, Millar Z, Huot P, et al. A novel MDMA analogue, UWA-101, that lacks psychoactivity and cytotoxicity, enhances LDOPA benefit in parkinsonian primates. FASEB J 2012; 26(5): 2154-63.
[http://dx.doi.org/10.1096/fj.11-195016 ] [PMID: 22345403]
[76]
Quik M, Bordia T, Huang L, Perez X. Targeting nicotinic receptors for Parkinson’s disease therapy. CNS Neurol Disord Drug Targets 2011; 10(6): 651-8.
[http://dx.doi.org/10.2174/187152711797247849 ] [PMID: 21838678]
[77]
Jiménez-Urbieta H, Gago B, de la Riva P, Delgado-Alvarado M, Marin C, Rodriguez-Oroz MC. Dyskinesias and impulse control disorders in Parkinson’s disease: From pathogenesis to potential therapeutic approaches. Neurosci Biobehav Rev 2015; 56: 294-314.
[http://dx.doi.org/10.1016/j.neubiorev.2015.07.010 ] [PMID: 26216865]
[78]
Ahlskog JE. Parkinson disease treatment in hospitals and nursing facilities: avoiding pitfalls. Mayo Clin Proc 2014; 89(7): 997-1003.
[http://dx.doi.org/10.1016/j.mayocp.2014.02.018 ] [PMID: 24996235]
[79]
Stathis P, Tzias V, Argyris P, Barla G, Maltezou M. Gastric bezoar complication of Duodopa(®) therapy in Parkinson’s disease, treated with Coca-Cola.(®) Mov Disord 2014; 29(8): 1087-8.
[http://dx.doi.org/10.1002/mds.25930 ] [PMID: 24909683]
[80]
Merola A, Zibetti M, Rizzone MG, et al. Prospective assessment of peripheral neuropathy in Duodopa-treated parkinsonian patients. Acta Neurol Scand 2014; 129(1): e1-5.
[http://dx.doi.org/10.1111/ane.12164 ] [PMID: 23834498]
[81]
Olanow CW. Levodopa: effect on cell death and the natural history of Parkinson’s disease. Mov Disord 2015; 30(1): 37-44.
[http://dx.doi.org/10.1002/mds.26119 ] [PMID: 25502620]
[82]
Das B, Modi G, Dutta A. Dopamine D3 agonists in the treatment of Parkinson’s disease. Curr Top Med Chem 2015; 15(10): 908-26.
[http://dx.doi.org/10.2174/156802661510150328223428 ] [PMID: 25832718]
[83]
Faulkner MA. Safety overview of FDA-approved medications for the treatment of the motor symptoms of Parkinson’s disease. Expert Opin Drug Saf 2014; 13(8): 1055-69.
[http://dx.doi.org/10.1517/14740338.2014.931369 ] [PMID: 24962891]
[84]
Pagano G, Tan EE, Haider JM, Bautista A, Tagliati M. Constipation is reduced by beta-blockers and increased by dopaminergic medications in Parkinson’s disease. Parkinsonism Relat Disord 2015; 21(2): 120-5.
[http://dx.doi.org/10.1016/j.parkreldis.2014.11.015 ] [PMID: 25483722]
[85]
Tholfsen LK, Larsen JP, Schulz J, Tysnes OB, Gjerstad MD. Development of excessive daytime sleepiness in early Parkinson disease. Neurology 2015; 85(2): 162-8.
[http://dx.doi.org/10.1212/WNL.0000000000001737 ] [PMID: 26085603]
[86]
Poryazova R, Benninger D, Waldvogel D, Bassetti CL. Excessive daytime sleepiness in Parkinson’s disease: characteristics and determinants. Eur Neurol 2010; 63(3): 129-35.
[http://dx.doi.org/10.1159/000276402 ] [PMID: 20090346]
[87]
Valko PO, Hauser S, Sommerauer M, Werth E, Baumann CR. Observations on sleep-disordered breathing in idiopathic Parkinson’s disease. PLoS One 2014; 9(6): e100828.
[http://dx.doi.org/10.1371/journal.pone.0100828 ] [PMID: 24968233]
[88]
Chondrogiorgi M, Tatsioni A, Reichmann H, Konitsiotis S. Dopamine agonist monotherapy in Parkinson’s disease and potential risk factors for dyskinesia: a meta-analysis of levodopa-controlled trials. Eur J Neurol 2014; 21(3): 433-40.
[http://dx.doi.org/10.1111/ene.12318 ] [PMID: 24313869]
[89]
Borovac JA. Josip AnđeloBorovac. Side effects of a dopamine agonist therapy for Parkinson’s disease: a mini-review of clinical pharmacology. Yale J Biol Med 2016; 89(1): 37-47.
[PMID: 27505015]
[90]
Przuntek H, Welzel D, Gerlach M, et al. Early institution of bromocriptine in Parkinson’s disease inhibits the emergence of levodopa-associated motor side effects. Long-term results of the PRADO study. J Neural Transm (Vienna) 1996; 103(6): 699-715.
[http://dx.doi.org/10.1007/BF01271230 ] [PMID: 8836932]
[91]
Weil C. The safety of bromocriptine in long-term use: a review of the literature. Curr Med Res Opin 1986; 10(1): 25-51.
[http://dx.doi.org/10.1185/03007998609111089 ] [PMID: 3516579]
[92]
Boyd A. Bromocriptine and psychosis: a literature review. Psychiatr Q 1995; 66(1): 87-95.
[http://dx.doi.org/10.1007/BF02238717 ] [PMID: 7701022]
[93]
Barone P, Bravi D, Bermejo-Pareja F, et al. Pergolide Monotherapy Study Group. Pergolide monotherapy in the treatment of early PD: a randomized, controlled study. Neurology 1999; 53(3): 573-9.
[http://dx.doi.org/10.1212/WNL.53.3.573 ] [PMID: 10449123]
[94]
Schapira AH. Sleep attacks (sleep episodes) with pergolide. Lancet 2000; 355(9212): 1332-3.
[http://dx.doi.org/10.1016/S0140-6736(00)02118-8 ] [PMID: 10776749]
[95]
Rasmussen VG, Østergaard K, Dupont E, Poulsen SH. The risk of valvular regurgitation in patients with Parkinson’s disease treated with dopamine receptor agonists. Mov Disord 2011; 26(5): 801-6.
[http://dx.doi.org/10.1002/mds.23470 ] [PMID: 21671508]
[96]
Rinne UK, Bracco F, Chouza C, et al. Early treatment of Parkinson’s disease with cabergoline delays the onset of motor complications. Results of a double-blind levodopa controlled trial. The PKDS009 Study Group. Drugs 1998; 55(1)(Suppl. 1): 23-30.
[http://dx.doi.org/10.2165/00003495-199855001-00004 ] [PMID: 9483167]
[97]
Bracco F, Battaglia A, Chouza C, et al. PKDS009 Study Group. The long-acting dopamine receptor agonist cabergoline in early Parkinson’s disease: final results of a 5-year, double-blind, levodopa-controlled study. CNS Drugs 2004; 18(11): 733-46.
[http://dx.doi.org/10.2165/00023210-200418110-00003 ] [PMID: 15330687]
[98]
Marona-Lewicka D, Kurrasch-Orbaugh DM, Selken JR, Cumbay MG, Lisnicchia JG, Nichols DE. Re-evaluation of lisuride pharmacology: 5-hydroxytryptamine1A receptor-mediated behavioral effects overlap its other properties in rats. Psychopharmacology (Berl) 2002; 164(1): 93-107.
[http://dx.doi.org/10.1007/s00213-002-1141-z ] [PMID: 12373423]
[99]
Stocchi F, Ruggieri S, Vacca L, Olanow CW. Prospective randomized trial of lisuride infusion versus oral levodopa in patients with Parkinson’s disease. Brain 2002; 125(Pt 9): 2058-66.
[http://dx.doi.org/10.1093/brain/awf214 ] [PMID: 12183351]
[100]
Bayülkem K, Erişir K, Tuncel A, Bayülkem B. A study on the effect and tolerance of lisuride on Parkinson’s disease. Adv Neurol 1996; 69: 519-30.
[PMID: 8615174]
[101]
Nyholm D. Pharmacokinetic optimisation in the treatment of Parkinson’s disease: an update. Clin Pharmacokinet 2006; 45(2): 109-36.
[http://dx.doi.org/10.2165/00003088-200645020-00001 ] [PMID: 16485914]
[102]
Parkinson Study Group. Pramipexole vs levodopa as initial treatment for Parkinson disease: A randomized controlled trial. JAMA 2000; 284(15): 1931-8.
[http://dx.doi.org/10.1001/jama.284.15.1931 ] [PMID: 11035889]
[103]
Barone P, Poewe W, Albrecht S, et al. Pramipexole for the treatment of depressive symptoms in patients with Parkinson’s disease: a randomised, double-blind, placebo-controlled trial. Lancet Neurol 2010; 9(6): 573-80.
[http://dx.doi.org/10.1016/S1474-4422(10)70106-X ] [PMID: 20452823]
[104]
Frucht S, Rogers JD, Greene PE, Gordon MF, Fahn S. Falling asleep at the wheel: motor vehicle mishaps in persons taking pramipexole and ropinirole. Neurology 1999; 52(9): 1908-10.
[http://dx.doi.org/10.1212/WNL.52.9.1908 ] [PMID: 10371546]
[105]
Schapira AH, McDermott MP, Barone P, et al. Pramipexole in patients with early Parkinson’s disease (PROUD): a randomised delayed-start trial. Lancet Neurol 2013; 12(8): 747-55.
[http://dx.doi.org/10.1016/S1474-4422(13)70117-0 ] [PMID: 23726851]
[106]
Nirenberg MJ, Waters C. Compulsive eating and weight gain related to dopamine agonist use. Mov Disord 2006; 21(4): 524-9.
[http://dx.doi.org/10.1002/mds.20757 ] [PMID: 16261618]
[107]
Kaye CM, Nicholls B. Clinical pharmacokinetics of ropinirole. Clin Pharmacokinet 2000; 39(4): 243-54.
[http://dx.doi.org/10.2165/00003088-200039040-00001 ] [PMID: 11069211]
[108]
Bostwick JM, Hecksel KA, Stevens SR, Bower JH, Ahlskog JE. Frequency of new-onset pathologic compulsive gambling or hypersexuality after drug treatment of idiopathic Parkinson disease. Mayo Clin Proc 2009; 84(4): 310-6.
[http://dx.doi.org/10.1016/S0025-6196(11)60538-7 ] [PMID: 19339647]
[109]
Etminan M, Gill S, Samii A. Comparison of the risk of adverse events with pramipexole and ropinirole in patients with Parkinson’s disease: a meta-analysis. Drug Saf 2003; 26(6): 439-44.
[http://dx.doi.org/10.2165/00002018-200326060-00005 ] [PMID: 12688834]
[110]
Elshoff JP, Cawello W, Andreas JO, Mathy FX, Braun M. An update on pharmacological, pharmacokinetic properties and drug-drug interactions of rotigotine transdermal system in Parkinson’s disease and restless legs syndrome. Drugs 2015; 75(5): 487-501.
[http://dx.doi.org/10.1007/s40265-015-0377-y ] [PMID: 25795100]
[111]
Bertaina-Anglade V, La Rochelle CD, Scheller DK. Antidepressant properties of rotigotine in experimental models of depression. Eur J Pharmacol 2006; 548(1-3): 106-14.
[http://dx.doi.org/10.1016/j.ejphar.2006.07.022 ] [PMID: 16959244]
[112]
Watts RL, Jankovic J, Waters C, Rajput A, Boroojerdi B, Rao J. Randomized, blind, controlled trial of transdermal rotigotine in early Parkinson disease. Neurology 2007; 68(4): 272-6.
[http://dx.doi.org/10.1212/01.wnl.0000252355.79284.22 ] [PMID: 17202432]
[113]
LeWitt PA, Lyons KE, Pahwa R. SP 650 Study Group. Advanced Parkinson disease treated with rotigotine transdermal system: PREFER Study. Neurology 2007; 68(16): 1262-7.
[http://dx.doi.org/10.1212/01.wnl.0000259516.61938.bb ] [PMID: 17438216]
[114]
Trenkwalder C, Kies B, Rudzinska M, et al. Recover Study Group. Rotigotine effects on early morning motor function and sleep in Parkinson’s disease: a double-blind, randomized, placebo-controlled study (RECOVER). Mov Disord 2011; 26(1): 90-9.
[http://dx.doi.org/10.1002/mds.23441 ] [PMID: 21322021]
[115]
Stibe CM, Lees AJ, Kempster PA, Stern GM. Subcutaneous apomorphine in parkinsonian on-off oscillations. Lancet 1988; 1(8582): 403-6.
[http://dx.doi.org/10.1016/S0140-6736(88)91193-2 ] [PMID: 2893200]
[116]
Henriksen T. Clinical insights into use of apomorphine in Parkinson’s disease: tools for clinicians. Neurodegener Dis Manag 2014; 4(3): 271-82.
[http://dx.doi.org/10.2217/nmt.14.17 ] [PMID: 25095821]
[117]
Schapira AH. Monoamine oxidase B inhibitors for the treatment of Parkinson’s disease: a review of symptomatic and potential disease-modifying effects. CNS Drugs 2011; 25(12): 1061-71.
[http://dx.doi.org/10.2165/11596310-000000000-00000 ] [PMID: 22133327]
[118]
Leegwater-Kim J, Bortan E. The role of rasagiline in the treatment of Parkinson’s disease. Clin Interv Aging 2010; 5: 149-56.
[http://dx.doi.org/10.2147/CIA.S4145 ] [PMID: 20517484]
[119]
Carrera I, Cacabelos R. Current Drugs and Potential Future Neuroprotective Compounds for Parkinson’s Disease. Curr Neuropharmacol 2019; 17(3): 295-306.
[http://dx.doi.org/10.2174/1570159X17666181127125704 ] [PMID: 30479218]
[120]
Schapira AH. Present and future drug treatment for Parkinson’s disease. J Neurol Neurosurg Psychiatry 2005; 76(11): 1472-8.
[http://dx.doi.org/10.1136/jnnp.2004.035980 ] [PMID: 16227533]
[121]
Parkinson Study Group. Effects of tocopherol and deprenyl on the progression of disability in early Parkinson’s disease. N Engl J Med 1993; 328(3): 176-83.
[http://dx.doi.org/10.1056/NEJM199301213280305 ] [PMID: 8417384]
[122]
Akao Y, Maruyama W, Yi H, Shamoto-Nagai M, Youdim MB, Naoi M. An anti-Parkinson’s disease drug, N-propargyl-1(R)-aminoindan (rasagiline), enhances expression of anti-apoptotic bcl-2 in human dopaminergic SH-SY5Y cells. Neurosci Lett 2002; 326(2): 105-8.
[http://dx.doi.org/10.1016/S0304-3940(02)00332-4 ] [PMID: 12057839]
[123]
Jenner P. Preclinical evidence for neuroprotection with monoamine oxidase-B inhibitors in Parkinson’s disease. Neurology 2004; 63(7)(Suppl. 2): S13-22.
[http://dx.doi.org/10.1212/WNL.63.7_suppl_2.S13 ] [PMID: 15477581]
[124]
Shults CW, Oakes D, Kieburtz K, et al. Parkinson Study Group. Effects of coenzyme Q10 in early Parkinson disease: evidence of slowing of the functional decline. Arch Neurol 2002; 59(10): 1541-50.
[http://dx.doi.org/10.1001/archneur.59.10.1541 ] [PMID: 12374491]
[125]
Hatziagapiou K, Kakouri E, Lambrou GI, Bethanis K, Tarantilis PA. Antioxidant properties of Crocus sativus L. and its constituents and relevance to neurodegenerative diseases; focus on Alzheimer’s and Parkinson’s disease. Curr Neuropharmacol 2019; 17(4): 377-402.
[http://dx.doi.org/10.2174/1570159X16666180321095705 ] [PMID: 29564976]
[126]
Mythri RB, Bharath MM. Curcumin: a potential neuroprotective agent in Parkinson’s disease. Curr Pharm Des 2012; 18(1): 91-9.
[http://dx.doi.org/10.2174/138161212798918995 ] [PMID: 22211691]
[127]
Stampanoni Bassi M, Sancesario A, Morace R, Centonze D, Iezzi E. StampanoniBassi M. Cannabinoids in Parkinson’s Disease. Cannabis Cannabinoid Res 2017; 2(1): 21-9.
[http://dx.doi.org/10.1089/can.2017.0002 ] [PMID: 28861502]
[128]
Chung ES, Bok E, Chung YC, Baik HH, Jin BK. Cannabinoids prevent lipopolysaccharide-induced neurodegeneration in the rat substantia nigra in vivo through inhibition of microglial activation and NADPH oxidase. Brain Res 2012; 1451: 110-6.
[http://dx.doi.org/10.1016/j.brainres.2012.02.058 ] [PMID: 22436849]
[129]
Huang C, Lin F, Wang G, et al. Tetrahydroxystilbene glucoside produces neuroprotection against 6-OHDA-induced dopamine neurotoxicity. Oxid Med Cell Long 2018; p. 7927568.
[http://dx.doi.org/10.1155/2018/7927568] [PMID: 29576855]
[130]
Yoshikawa T, Naito Y, Kondo M. Ginkgo biloba leaf extract: review of biological actions and clinical applications. Antioxid Redox Signal 1999; 1(4): 469-80.
[http://dx.doi.org/10.1089/ars.1999.1.4-469 ] [PMID: 11233145]
[131]
Singh NA, Mandal AK, Khan ZA. Potential neuroprotective properties of epigallocatechin-3-gallate (EGCG). Nutr J 2016; 15(1): 60.
[http://dx.doi.org/10.1186/s12937-016-0179-4 ] [PMID: 27268025]
[132]
Romero A, Parada E, González-Lafuente L, et al. Neuroprotective effects of E-PodoFavalin-15999 (Atremorine®). CNS Neurosci Ther 2017; 23(5): 450-2.
[http://dx.doi.org/10.1111/cns.12693 ] [PMID: 28371323]
[133]
Lozano AM, Lipsman N, Bergman H, et al. Deep brain stimulation: current challenges and future directions. Nat Rev Neurol 2019; 15(3): 148-60.
[http://dx.doi.org/10.1038/s41582-018-0128-2 ] [PMID: 30683913]
[134]
Schuepbach WM, Rau J, Knudsen K, et al. EARLYSTIM Study Group. Neurostimulation for Parkinson’s disease with early motor complications. N Engl J Med 2013; 368(7): 610-22.
[http://dx.doi.org/10.1056/NEJMoa1205158 ] [PMID: 23406026]
[135]
Follett KA, Weaver FM, Stern M, et al. CSP 468 Study Group. Pallidal versus subthalamic deep-brain stimulation for Parkinson’s disease. N Engl J Med 2010; 362(22): 2077-91.
[http://dx.doi.org/10.1056/NEJMoa0907083 ] [PMID: 20519680]
[136]
Müller T. Catechol-O-methyltransferase inhibitors in Parkinson’s disease. Drugs 2015; 75(2): 157-74.
[http://dx.doi.org/10.1007/s40265-014-0343-0 ] [PMID: 25559423]
[137]
Glaab E. Computational systems biology approaches for Parkinson’s disease. Cell Tissue Res 2018; 373(1): 91-109.
[http://dx.doi.org/10.1007/s00441-017-2734-5 ] [PMID: 29185073]
[138]
Huang W, Sherman BT, Lempicki RA. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res 2009; 37(1): 1-13.
[http://dx.doi.org/10.1093/nar/gkn923 ] [PMID: 19033363]
[139]
Wroge TJ, Özkanca Y, Demiroglu C, Si D, Atkins DC, Ghomi RH. Parkinson’s Disease Diagnosis Using Machine Learning and Voice. IEEE Signal Processing in Medicine and Biology Symposium (SPMB). 1-7.
[http://dx.doi.org/10.1109/SPMB.2018.8615607]
[140]
Pardridge WM. The blood-brain barrier: bottleneck in brain drug development. NeuroRx 2005; 2(1): 3-14.
[http://dx.doi.org/10.1602/neurorx.2.1.3 ] [PMID: 15717053]
[141]
Abbott NJ, Chugani DC, Zaharchuk G, Rosen BR, Lo EH. Delivery of imaging agents into brain. Adv Drug Deliv Rev 1999; 37(1-3): 253-77.
[http://dx.doi.org/10.1016/S0169-409X(98)00097-0 ] [PMID: 10837739]
[142]
Ehrlich P. DasSauerstoff-Bedurfniss des Organismus, einefarbanalytischeStudie. Berlin: August Hirschwald 1885.
[143]
Hawkins BT, Davis TP. The blood-brain barrier/neurovascular unit in health and disease. Pharmacol Rev 2005; 57(2): 173-85.
[http://dx.doi.org/10.1124/pr.57.2.4 ] [PMID: 15914466]
[144]
Abbott NJ, Rönnbäck L, Hansson E. Astrocyte-endothelial interactions at the blood-brain barrier. Nat Rev Neurosci 2006; 7(1): 41-53.
[http://dx.doi.org/10.1038/nrn1824 ] [PMID: 16371949]
[145]
Ghersi-Egea JF, Minn A, Siest G. A new aspect of the protective functions of the blood-brain barrier: activities of four drug-metabolizing enzymes in isolated rat brain microvessels. Life Sci 1988; 42(24): 2515-23.
[http://dx.doi.org/10.1016/0024-3205(88)90351-7 ] [PMID: 3131610]
[146]
Minn A, Ghersi-Egea JF, Perrin R, Leininger B, Siest G. Drug metabolizing enzymes in the brain and cerebral microvessels. Brain Res Brain Res Rev 1991; 16(1): 65-82.
[http://dx.doi.org/10.1016/0165-0173(91)90020-9 ] [PMID: 1907518]
[147]
Andrew D. in Pathologic Basis of Veterinary Disease. 6th Ed. Nervous System. 2017.
[148]
Pardridge WM. Recent developments in peptide drug delivery to the brain. Pharmacol Toxicol 1992; 71(1): 3-10.
[http://dx.doi.org/10.1111/j.1600-0773.1992.tb00512.x ] [PMID: 1523192]
[149]
Tang S, Wang A, Yan X, et al. Brain-targeted intranasal delivery of dopamine with borneol and lactoferrin co-modified nanoparticles for treating Parkinson’s disease. Drug Deliv 2019; 26(1): 700-7.
[http://dx.doi.org/10.1080/10717544.2019.1636420 ] [PMID: 31290705]
[150]
J SJ, Jimena CF, Dalet FE, Guadalupe TJ, Antonio SM. Scope of lipid nanoparticles in neuroscience: Impact on the treatment of neurodegenerative diseases. Curr Pharm Des 2017; 23(21): 3120-33.
[http://dx.doi.org/10.2174/1381612823666170301123504 ] [PMID: 28260513]
[151]
Su X, Zhan X, Tang F, Yao J, Wu J. Magnetic nanoparticles in brain disease diagnosis and targeting drug delivery. Curr Nanosci 2011; 7(1): 37-46.
[http://dx.doi.org/10.2174/157341311794480363]
[152]
Sharma S, Javed MN, Pottoo FH, et al. Bioresponse Inspired Nanomaterials for Targeted Drug and Gene Delivery. Pharm Nanotechnol 2019; 7(3): 220-33.
[http://dx.doi.org/10.2174/2211738507666190429103814 ] [PMID: 31486751]
[153]
Mishra S, Sharma S, Javed MN, et al. Bioinspired Nanocomposites: Applications in Disease Diagnosis and Treatment. Pharm Nanotechnol 2019; 7(3): 206-19.
[http://dx.doi.org/10.2174/2211738507666190425121509 ] [PMID: 31030662]
[154]
McAfee DA, Hadgraft J, Lane ME. Rotigotine: the first new chemical entity for transdermal drug delivery. Eur J Pharm Biopharm 2014; 88(3): 586-93.
[http://dx.doi.org/10.1016/j.ejpb.2014.08.007 ] [PMID: 25173087]
[155]
Akbarzadeh A, Rezaei-Sadabady R, Davaran S, et al. Liposome: classification, preparation, and applications. Nanoscale Res Lett 2013; 8(1): 102.
[http://dx.doi.org/10.1186/1556-276X-8-102 ] [PMID: 23432972]
[156]
Spuch C, Navarro C. Liposomes for targeted delivery of active agents against neurodegenerative diseases (Alzheimer’s disease and Parkinson’s disease). J Drug Deliv 2011; •••2011469679
[http://dx.doi.org/10.1155/2011/469679 ] [PMID: 22203906]
[157]
Wagner A, Vorauer-Uhl K. Liposome technology for industrial purposes. J Drug Deliv 2011.2011591325
[http://dx.doi.org/10.1155/2011/591325 ] [PMID: 21490754]
[158]
Mozafari MR. Nanoliposomes: preparation and analysis. Methods Mol Biol 2010; 605: 29-50.
[http://dx.doi.org/10.1007/978-1-60327-360-2_2 ] [PMID: 20072871]
[159]
Yadav D, Sandeep K, Pandey D, Dutta RK. Liposomes for Drug Delivery. J Biotechnol Biomater 2017; 7(4): 276.
[http://dx.doi.org/10.4172/2155-952X.1000276]
[160]
Sanarova E, Lantsova A, Oborotova N, et al. Liposome drug delivery. J Pharm Sci Res 2019; 11(3): 1148-55.
[161]
Samad A, Sultana Y, Aqil M. Liposomal drug delivery systems: an update review. Curr Drug Deliv 2007; 4(4): 297-305.
[http://dx.doi.org/10.2174/156720107782151269 ] [PMID: 17979650]
[162]
Laouini A, Jaafar-Maalej C, Limayem-Blouza I, Sfar S, Charcosset C, Fessi H. Preparation, characterization and applications of liposomes: state of the art. J Coll Sci Biotechnol 2012; 1(2): 147-68.
[http://dx.doi.org/10.1166/jcsb.2012.1020]
[163]
Shi NQ, Qi XR. Preparation of drug liposomes by reverse-phase evaporation. Liposome-Based Drug Delivery Systems 2017; pp. 1-10.
[http://dx.doi.org/10.1007/978-3-662-49231-4_3-1]
[164]
Jaafar-Maalej C, Diab R, Andrieu V, Elaissari A, Fessi H. Ethanol injection method for hydrophilic and lipophilic drug-loaded liposome preparation. J Liposome Res 2010; 20(3): 228-43.
[http://dx.doi.org/10.3109/08982100903347923 ] [PMID: 19899957]
[165]
Schwendener RA, Asanger M, Weder HG. n-Alkyl-glucosides as detergents for the preparation of highly homogeneous bilayer liposomes of variable sizes (60-240 nm φ) applying defined rates of detergent removal by dialysis. Biochem Biophys Res Commun 1981; 100(3): 1055-62.
[http://dx.doi.org/10.1016/0006-291X(81)91930-6 ] [PMID: 7271790]
[166]
Lapinski MM, Castro-Forero A, Greiner AJ, Ofoli RY, Blanchard GJ. Comparison of liposomes formed by sonication and extrusion: rotational and translational diffusion of an embedded chromophore. Langmuir 2007; 23(23): 11677-83.
[http://dx.doi.org/10.1021/la7020963 ] [PMID: 17939695]
[167]
Hamilton RL Jr, Goerke J, Guo LS, Williams MC, Havel RJ. Unilamellar liposomes made with the French pressure cell: a simple preparative and semiquantitative technique. J Lipid Res 1980; 21(8): 981-92.
[PMID: 7193233]
[168]
Liu L, Yonetani T. Preparation and characterization of liposome-encapsulated haemoglobin by a freeze-thaw method. J Microencapsul 1994; 11(4): 409-21.
[http://dx.doi.org/10.3109/02652049409034258 ] [PMID: 7931940]
[169]
Chen C, Han D, Cai C, Tang X. An overview of liposome lyophilization and its future potential. J Control Release 2010; 142(3): 299-311.
[http://dx.doi.org/10.1016/j.jconrel.2009.10.024 ] [PMID: 19874861]
[170]
Himanshu A, Sitasharan P, Singhai AK. Liposomes as drug carriers. IJPLS 2011; 2(7): 945-51.
[171]
Upadhyay RK. Drug delivery systems, CNS protection, and the blood brain barrier. BioMed Res Int 2014.2014869269
[http://dx.doi.org/10.1155/2014/869269 ] [PMID: 25136634]
[172]
Johnston TH, Fox SH, Brotchie JM. Advances in the delivery of treatments for Parkinson’s disease. Expert Opin Drug Deliv 2005; 2(6): 1059-73.
[http://dx.doi.org/10.1517/17425247.2.6.1059 ] [PMID: 16296809]
[173]
Alexander A, Agrawal M, Uddin A, et al. Recent expansions of novel strategies towards the drug targeting into the brain. Int J Nanomedicine 2019; 14: 5895-909.
[http://dx.doi.org/10.2147/IJN.S210876 ] [PMID: 31440051]
[174]
Immordino ML, Dosio F, Cattel L. Stealth liposomes: review of the basic science, rationale, and clinical applications, existing and potential. Int J Nanomedicine 2006; 1(3): 297-315.
[PMID: 17717971]
[175]
Gunay MS, Ozer AY, Erdogan S, et al. Development of nanosized, pramipexole-encapsulated liposomes and niosomes for the treatment of Parkinson’s disease. J Nanosci Nanotechnol 2017; 17(8): 5155-67.
[http://dx.doi.org/10.1166/jnn.2017.13799]
[176]
Hsu SH, Al-Suwayeh A S, Chen CC, Chi CH, Fang JY. PEGylated liposomes incorporated with nonionic surfactants as an apomorphine delivery system targeting the brain: in vitro release and in vivo real-time imaging. Curr Nanosci 2011; 7(2): 191-9.
[http://dx.doi.org/10.2174/157341311794653686]
[177]
Andrade S, Ramalho MJ, Pereira MDC, Loureiro JA. Resveratrol brain delivery for neurological disorders prevention and treatment. Front Pharmacol 2018; 9: 1261.
[http://dx.doi.org/10.3389/fphar.2018.01261 ] [PMID: 30524273]
[178]
Qu M, Lin Q, He S, et al. A brain targeting functionalized liposomes of the dopamine derivative N-3,4-bis(pivaloyloxy)-dopamine for treatment of Parkinson’s disease. J Control Release 2018; 277: 173-82.
[http://dx.doi.org/10.1016/j.jconrel.2018.03.019 ] [PMID: 29588159]
[179]
Lopalco A, Cutrignelli A, Denora N, Lopedota A, Franco M, Laquintana V. Transferrin functionalized liposomes loading dopamine HCl: development and permeability studies across an in vitro model of human blood-brain barrier. Nanomaterials (Basel) 2018; 8(3): 178.
[http://dx.doi.org/10.3390/nano8030178 ] [PMID: 29558440]
[180]
Xiang Y, Wu Q, Liang L, et al. Chlorotoxin-modified stealth liposomes encapsulating levodopa for the targeting delivery against Parkinson’s disease in the MPTP-induced mice model. J Drug Target 2012; 20(1): 67-75.
[http://dx.doi.org/10.3109/1061186X.2011.595490 ] [PMID: 22149216]
[181]
Bulte JW, de Cuyper M, Despres D, Frank JA. Short- vs. long-circulating magnetoliposomes as bone marrow-seeking MR contrast agents. J Magn Reson Imaging 1999; 9(2): 329-35.
[http://dx.doi.org/10.1002/(SICI)1522-2586(199902)9:2<329::AIDJMRI27>3.0.CO;2-Z ] [PMID: 10077033]
[182]
Shubayev VI, Pisanic TR II, Jin S. Magnetic nanoparticles for theragnostics. Adv Drug Deliv Rev 2009; 61(6): 467-77.
[http://dx.doi.org/10.1016/j.addr.2009.03.007 ] [PMID: 19389434]
[183]
Ji B, Wang M, Gao D, et al. Combining nanoscale magnetic nimodipine liposomes with magnetic resonance image for Parkinson’s disease targeting therapy. Nanomedicine (Lond) 2017; 12(3): 237-53.
[http://dx.doi.org/10.2217/nnm-2016-0267 ] [PMID: 28093036]
[184]
Wang M, Li L, Zhang X, et al. Magnetic resveratrol liposomes as a new theranostic platform for magnetic resonance imaging guided Parkinson’s disease targeting therapy. ACS Sustain Chem& Eng 2018; 6(12): 17124-33.
[http://dx.doi.org/10.1021/acssuschemeng.8b04507]
[185]
McDannold N, Vykhodtseva N, Raymond S, Jolesz FA, Hynynen K. MRI-guided targeted blood-brain barrier disruption with focused ultrasound: histological findings in rabbits. Ultrasound Med Biol 2005; 31(11): 1527-37.
[http://dx.doi.org/10.1016/j.ultrasmedbio.2005.07.010 ] [PMID: 16286030]
[186]
Lin CY, Hsieh HY, Chen CM, et al. Non-invasive, neuron-specific gene therapy by focused ultrasound-induced blood-brain barrier opening in Parkinson’s disease mouse model. J Control Release 2016; 235: 72-81.
[http://dx.doi.org/10.1016/j.jconrel.2016.05.052 ] [PMID: 27235980]
[187]
Yue P, Gao L, Wang X, Ding X, Teng J. Ultrasound-triggered effects of the microbubbles coupled to GDNF- and Nurr1-loaded PEGylated liposomes in a rat model of Parkinson’s disease. J Cell Biochem 2018; 119(6): 4581-91.
[http://dx.doi.org/10.1002/jcb.26608 ] [PMID: 29240240]
[188]
Yue P, Miao W, Gao L, Zhao X, Teng J. Ultrasound-triggered effects of the microbubbles coupled to gdnf plasmid-loaded pegylated liposomes in a rat model of Parkinson’s disease. Front Neurosci 2018; 12: 222.
[http://dx.doi.org/10.3389/fnins.2018.00222 ] [PMID: 29686604]
[189]
Mainardes RM, Urban MC, Cinto PO, Chaud MV, Evangelista RC, Gremião MP. Liposomes and micro/nanoparticles as colloidal carriers for nasal drug delivery. Curr Drug Deliv 2006; 3(3): 275-85.
[http://dx.doi.org/10.2174/156720106777731019 ] [PMID: 16848729]
[190]
Migliore MM, Ortiz R, Dye S, Campbell RB, Amiji MM, Waszczak BL. Neurotrophic and neuroprotective efficacy of intranasal GDNF in a rat model of Parkinson’s disease. Neuroscience 2014; 274: 11-23.
[http://dx.doi.org/10.1016/j.neuroscience.2014.05.019 ] [PMID: 24845869]
[191]
Alexander A, Dwivedi S. Ajazuddin, et al. Approaches for breaking the barriers of drug permeation through transdermal drug delivery. J Control Release 2012; 164(1): 26-40.
[http://dx.doi.org/10.1016/j.jconrel.2012.09.017 ] [PMID: 23064010]
[192]
Ashtikar M, Nagarsekar K, Fahr A. Transdermal delivery from liposomal formulations - Evolution of the technology over the last three decades. J Control Release 2016; 242: 126-40.
[http://dx.doi.org/10.1016/j.jconrel.2016.09.008 ] [PMID: 27620074]
[193]
Ghule MM, Bhoyar GS. Formulation and Evaluation of Modified Liposome for Transdermal Drug. J Dev Drugs 2018; 7(1): 1000186.
[194]
Mikitsh JL, Chacko AM. Pathways for small molecule delivery to the central nervous system across the blood-brain barrier. Perspect Medicin Chem 2014; 6: 11-24.
[http://dx.doi.org/10.4137/PMC.S13384 ] [PMID: 24963272]
[195]
Wang Y, Xu H, Fu Q, Ma R, Xiang J. Protective effect of resveratrol derived from Polygonum cuspidatum and its liposomal form on nigral cells in parkinsonian rats. J Neurol Sci 2011; 304(1-2): 29-34.
[http://dx.doi.org/10.1016/j.jns.2011.02.025 ] [PMID: 21376343]
[196]
Pardridge WM. Molecular Trojan horses for blood-brain barrier drug delivery. Discov Med 2006; 6(34): 139-43.
[http://dx.doi.org/10.1016/j.coph.2006.06.001 ] [PMID: 17234133]
[197]
Pardridge WM. Molecular Trojan horses for blood-brain barrier drug delivery. Curr Opin Pharmacol 2006; 6(5): 494-500.
[http://dx.doi.org/10.1016/j.coph.2006.06.001 ] [PMID: 16839816]
[198]
Xia CF, Boado RJ, Zhang Y, Chu C, Pardridge WM. Intravenous glial-derived neurotrophic factor gene therapy of experimental Parkinson’s disease with Trojan horse liposomes and a tyrosine hydroxylase promoter. J Gene Med 2008; 10(3): 306-15.
[http://dx.doi.org/10.1002/jgm.1152 ] [PMID: 18085726]
[199]
Zhang Y, Pardridge WM. Near complete rescue of experimental Parkinson’s disease with intravenous, non-viral GDNF gene therapy. Pharm Res 2009; 26(5): 1059-63.
[http://dx.doi.org/10.1007/s11095-008-9815-9 ] [PMID: 19104914]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy