Generic placeholder image

Current Stem Cell Research & Therapy

Editor-in-Chief

ISSN (Print): 1574-888X
ISSN (Online): 2212-3946

Review Article

Importance of Stem Cell Migration and Angiogenesis Study for Regenerative Cell-based Therapy: A Review

Author(s): Nur S. Aziz, Norhayati Yusop* and Azlina Ahmad

Volume 15, Issue 3, 2020

Page: [284 - 299] Pages: 16

DOI: 10.2174/1574888X15666200127145923

Price: $65

Abstract

Stem cells play an essential role in maintaining homeostasis, as well as participating in new tissue regeneration. Over the past 20 years, a great deal of effort has been made to investigate the behaviour of stem cells to enable their potential use in regenerative medicine. However, a variety of biological characteristics are known to exist among the different types of stem cells due to variations in the methodological approach, formulation of cell culture medium, isolation protocol and cellular niches, as well as species variation. In recent years, cell-based therapy has emerged as one of the advanced techniques applied in both medical and clinical settings. Cell therapies aim to treat and repair the injury sites and replace the loss of tissues by stimulating the repair and regeneration process. In order to enable the use of stem cells in regenerative therapies, further characterisation of cell behaviour, in terms of their proliferation and differentiation capacity, mainly during the quiescent and inductive state is regarded as highly necessary. The central focus of regenerative medicine revolves around the use of human cells, including adult stem cells and induced pluripotent stem cells for cell-based therapy. The purpose of this review was to examine the existing body of literature on stem cell research conducted on cellular angiogenesis and migration, to investigate the validity of different strategies and variations of the cell type used. The information gathered within this review may then be shared with fellow researchers to assist in future research work, engaging in stem cell homing for cell-based therapy to enhance wound healing and tissue regeneration process.

Keywords: Stem cells, angiogenesis, migration, regeneration, repair, regenerative medicine.

« Previous
[1]
Basak O, Beumer J, Wiebrands K, Seno H, van Oudenaarden A, Clevers H. Induced quiescence of Lgr5+ stem cells in intestinal organoids enables differentiation of hormone-producing enteroendocrine cells. Cell Stem Cell 2017; 20(2):: 177-90. e4.
[2]
Eke G, Mangir N, Hasirci N, MacNeil S, Hasirci V. Development of a UV crosslinked biodegradable hydrogel containing adipose derived stem cells to promote vascularization for skin wounds and tissue engineering. Biomaterials 2017; 129: 188-98.
[http://dx.doi.org/10.1016/j.biomaterials.2017.03.021] [PMID: 28343005]
[3]
Jang J, Park H-J, Kim S-W, et al. 3D printed complex tissue construct using stem cell-laden decellularized extracellular matrix bioinks for cardiac repair. Biomaterials 2017; 112: 264-74.
[http://dx.doi.org/10.1016/j.biomaterials.2016.10.026] [PMID: 27770630]
[4]
Tan CY, Lai RC, Wong W, Dan YY, Lim S-K, Ho HK. Mesenchymal stem cell-derived exosomes promote hepatic regeneration in drug-induced liver injury models. Stem Cell Res Ther 2014; 5(3): 76.
[http://dx.doi.org/10.1186/scrt465] [PMID: 24915963]
[5]
Vonk LA, van Dooremalen SFJ, Liv N, et al. Mesenchymal stromal/stem cell-derived extracellular vesicles promote human cartilage regeneration in vitro. Theranostics 2018; 8(4): 906-20.
[http://dx.doi.org/10.7150/thno.20746] [PMID: 29463990]
[6]
Clarke MF. Self-renewal and solid-tumor stem cells. Biol Blood Marrow Transplant 2005; 11(2)(Suppl. 2): 14-6.
[http://dx.doi.org/10.1016/j.bbmt.2004.11.011] [PMID: 15682169]
[7]
Amaya CN, Bryan BA. Enrichment of the embryonic stem cell reprogramming factors Oct4, Nanog, Myc, and Sox2 in benign and malignant vascular tumors. BMC Clin Pathol 2015; 15(1): 18.
[http://dx.doi.org/10.1186/s12907-015-0018-0] [PMID: 26412983]
[8]
Ge Y, Fuchs E. Stretching the limits: from homeostasis to stem cell plasticity in wound healing and cancer. Nat Rev Genet 2018; 19(5): 311-25.
[http://dx.doi.org/10.1038/nrg.2018.9] [PMID: 29479084]
[9]
de Mendonça RJ. Angiogenesis in wound healing Tissue Regeneration- From Basic Biology to Clinical Application: InTech 2012.
[http://dx.doi.org/10.5772/26279]
[10]
Gonzalez AC, Costa TF, Andrade ZA, Medrado AR. Wound healing - A literature review. An Bras Dermatol 2016; 91(5): 614-20.
[http://dx.doi.org/10.1590/abd1806-4841.20164741] [PMID: 27828635]
[11]
Kirsner RS, Eaglstein WH. The wound healing process. Dermatol Clin 1993; 11(4): 629-40.
[http://dx.doi.org/10.1016/S0733-8635(18)30216-X] [PMID: 8222347]
[12]
Breier G, Risau W. The role of vascular endothelial growth factor in blood vessel formation. Trends Cell Biol 1996; 6(12): 454-6.
[http://dx.doi.org/10.1016/0962-8924(96)84935-X] [PMID: 15157501]
[13]
Fatimah SS, Tan GC, Chua K, Fariha MMN, Tan AE, Hayati AR. Stemness and angiogenic gene expression changes of serial-passage human amnion mesenchymal cells. Microvasc Res 2013; 86: 21-9.
[http://dx.doi.org/10.1016/j.mvr.2012.12.004] [PMID: 23261754]
[14]
Adair TH, Montani J-P, Eds. Angiogenesis Colloquium Series on Integrated Systems Physiology: From Molecule to Function. Morgan & Claypool Life Sciences 2010.
[15]
Michaelis UR. Mechanisms of endothelial cell migration. Cell Mol Life Sci 2014; 71(21): 4131-48.
[http://dx.doi.org/10.1007/s00018-014-1678-0] [PMID: 25038776]
[16]
Mishima Y, Lotz M. Chemotaxis of human articular chondrocytes and mesenchymal stem cells. J Orthop Res 2008; 26(10): 1407-12.
[http://dx.doi.org/10.1002/jor.20668] [PMID: 18464249]
[17]
Yoon D, Kim H, Lee E, et al. Study on chemotaxis and chemokinesis of bone marrow-derived mesenchymal stem cells in hydrogel-based 3D microfluidic devices. Biomater Res 2016; 20(1): 25.
[http://dx.doi.org/10.1186/s40824-016-0070-6] [PMID: 27489724]
[18]
Lamalice L, Le Boeuf F, Huot J. Endothelial cell migration during angiogenesis. Circ Res 2007; 100(6): 782-94.
[http://dx.doi.org/10.1161/01.RES.0000259593.07661.1e] [PMID: 17395884]
[19]
Ausprunk DH, Folkman J. Migration and proliferation of endothelial cells in preformed and newly formed blood vessels during tumor angiogenesis. Microvasc Res 1977; 14(1): 53-65.
[http://dx.doi.org/10.1016/0026-2862(77)90141-8] [PMID: 895546]
[20]
Bronckaers A, Hilkens P, Fanton Y, et al. Angiogenic properties of human dental pulp stem cells. PLoS One 2013; 8(8)e71104
[http://dx.doi.org/10.1371/journal.pone.0071104] [PMID: 23951091]
[21]
Daub JT, Merks RM. A cell-based model of extracellular-matrix-guided endothelial cell migration during angiogenesis. Bull Math Biol 2013; 75(8): 1377-99.
[http://dx.doi.org/10.1007/s11538-013-9826-5] [PMID: 23494144]
[22]
Dissanayaka WL, Hargreaves KM, Jin L, Samaranayake LP, Zhang C. The interplay of dental pulp stem cells and endothelial cells in an injectable peptide hydrogel on angiogenesis and pulp regeneration in vivo. Tissue Eng Part A 2015; 21(3-4): 550-63.
[http://dx.doi.org/10.1089/ten.tea.2014.0154] [PMID: 25203774]
[23]
Kang T, Jones TM, Naddell C, et al. Adipose‐derived stem cells induce angiogenesis via microvesicle transport of miRNA‐31. Stem Cells Transl Med 2016; 5(4): 440-50.
[http://dx.doi.org/10.5966/sctm.2015-0177] [PMID: 26933040]
[24]
Seidl K, Solis NV, Bayer AS, et al. Divergent responses of different endothelial cell types to infection with Candida albicans and Staphylococcus aureus. PLoS One 2012; 7(6) e39633
[http://dx.doi.org/10.1371/journal.pone.0039633] [PMID: 22745797]
[25]
Khaldoyanidi S. Directing stem cell homing. Cell Stem Cell 2008; 2(3): 198-200.
[http://dx.doi.org/10.1016/j.stem.2008.02.012] [PMID: 18371444]
[26]
Sohni A, Verfaillie CM. Mesenchymal stem cells migration homing and tracking. Stem Cells Int 2013; 2013 130763
[http://dx.doi.org/10.1155/2013/130763] [PMID: 24194766]
[27]
Yusop N, Battersby P, Alraies A, Sloan AJ, Moseley R, Waddington RJ. Isolation and characterisation of mesenchymal stem cells from rat bone marrow and the endosteal niche: a comparative study. Stem Cells Int 2018; 2018
[http://dx.doi.org/10.1155/2018/6869128]
[28]
Otsu K, Kumakami-Sakano M, Fujiwara N, et al. Stem cell sources for tooth regeneration: current status and future prospects. Front Physiol 2014; 5: 36.
[http://dx.doi.org/10.3389/fphys.2014.00036] [PMID: 24550845]
[29]
Krafts KP. Tissue repair: The hidden drama. Organogenesis 2010; 6(4): 225-33.
[http://dx.doi.org/10.4161/org.6.4.12555] [PMID: 21220961]
[30]
Kumar V, Abbas AK, Fausto N, Aster JC. Robbins and Cotran pathologic basis of disease, professional edition e-book Elsevier health sciences 2014.
[31]
Carter LE, Cook DP, Vanderhyden BC. Phenotypic Plasticity and the Origins and Progression of Ovarian Cancer The Ovary. Elsevier 2019; pp. 529-45.
[32]
Gunsilius E, Gastl G, Petzer AL. Hematopoietic stem cells. Biomed Pharmacother 2001; 55(4): 186-94.
[http://dx.doi.org/10.1016/S0753-3322(01)00051-8] [PMID: 11393804]
[33]
Trigg ME. Hematopoietic stem cells. Pediatrics 2004; 113(4)(Suppl.): 1051-7.
[PMID: 15060199]
[34]
Hoban MD, Cost GJ, Mendel MC, et al. Correction of the sickle cell disease mutation in human hematopoietic stem/progenitor cells. Blood 2015; 125(17): 2597-604.
[http://dx.doi.org/10.1182/blood-2014-12-615948] [PMID: 25733580]
[35]
De Ravin SS, Wu X, Moir S, Kardava L, Anaya-O’Brien S, Kwatemaa N, et al. Lentiviral hematopoietic stem cell gene therapy for X-linked severe combined immunodeficiency. Science translational medicine 2016; 8(335): 335ra57-ra57.
[36]
Klein OR, Chen AR, Gamper C, et al. Alternative-donor hematopoietic stem cell transplantation with post-transplantation cyclophosphamide for nonmalignant disorders. Biol Blood Marrow Transplant 2016; 22(5): 895-901.
[http://dx.doi.org/10.1016/j.bbmt.2016.02.001] [PMID: 26860634]
[37]
Palchaudhuri R, Saez B, Hoggatt J, et al. Non-genotoxic conditioning for hematopoietic stem cell transplantation using a hematopoietic-cell-specific internalizing immunotoxin. Nat Biotechnol 2016; 34(7): 738-45.
[http://dx.doi.org/10.1038/nbt.3584] [PMID: 27272386]
[38]
Majumdar MK, Thiede MA, Mosca JD, Moorman M, Gerson SL. Phenotypic and functional comparison of cultures of marrow-derived mesenchymal stem cells (MSCs) and stromal cells. J Cell Physiol 1998; 176(1): 57-66.
[http://dx.doi.org/10.1002/(SICI)1097-4652(199807)176:1<57:AID-JCP7>3.0.CO;2-7] [PMID: 9618145]
[39]
Oswald J, Boxberger S, Jørgensen B, et al. Mesenchymal stem cells can be differentiated into endothelial cells in vitro. Stem Cells 2004; 22(3): 377-84.
[http://dx.doi.org/10.1634/stemcells.22-3-377] [PMID: 15153614]
[40]
Le Blanc K, Ringdén O. Immunomodulation by mesenchymal stem cells and clinical experience. J Intern Med 2007; 262(5): 509-25.
[http://dx.doi.org/10.1111/j.1365-2796.2007.01844.x] [PMID: 17949362]
[41]
Aggarwal S, Pittenger MF. Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 2005; 105(4): 1815-22.
[http://dx.doi.org/10.1182/blood-2004-04-1559] [PMID: 15494428]
[42]
da Silva Meirelles L, Chagastelles PC, Nardi NB. Mesenchymal stem cells reside in virtually all post-natal organs and tissues. J Cell Sci 2006; 119(Pt 11): 2204-13.
[http://dx.doi.org/10.1242/jcs.02932] [PMID: 16684817]
[43]
Scadden DT. The stem-cell niche as an entity of action. Nature 2006; 441(7097): 1075-9.
[http://dx.doi.org/10.1038/nature04957] [PMID: 16810242]
[44]
Kizil C, Kyritsis N, Brand M. Effects of inflammation on stem cells: together they strive? EMBO Rep 2015; 16(4): 416-26.
[http://dx.doi.org/10.15252/embr.201439702] [PMID: 25739812]
[45]
Böhrnsen F, Schliephake H. Supportive angiogenic and osteogenic differentiation of mesenchymal stromal cells and endothelial cells in monolayer and co-cultures. Int J Oral Sci 2016; 8(4): 223-30.
[http://dx.doi.org/10.1038/ijos.2016.39] [PMID: 27910940]
[46]
Annese V, Navarro-Guerrero E, Rodríguez-Prieto I, Pardal R. Physiological plasticity of neural-crest-derived stem cells in the adult mammalian carotid body. Cell Rep 2017; 19(3): 471-8.
[http://dx.doi.org/10.1016/j.celrep.2017.03.065] [PMID: 28423311]
[47]
Shen C, Lie P, Miao T, et al. Conditioned medium from umbilical cord mesenchymal stem cells induces migration and angiogenesis. Mol Med Rep 2015; 12(1): 20-30.
[http://dx.doi.org/10.3892/mmr.2015.3409] [PMID: 25739039]
[48]
Lee JH, Han Y-S, Lee SH. Long-duration three-dimensional spheroid culture promotes angiogenic activities of adipose-derived mesenchymal stem cells. Biomol Ther (Seoul) 2016; 24(3): 260-7.
[http://dx.doi.org/10.4062/biomolther.2015.146] [PMID: 26869524]
[49]
Desai A, Victor-Vega C, Gadangi S, Montesinos MC, Chu CC, Cronstein BN. Adenosine A2A receptor stimulation increases angiogenesis by down-regulating production of the antiangiogenic matrix protein thrombospondin 1. Mol Pharmacol 2005; 67(5): 1406-13.
[http://dx.doi.org/10.1124/mol.104.007807] [PMID: 15673602]
[50]
Linden J. Adenosine in tissue protection and tissue regeneration. Mol Pharmacol 2005; 67(5): 1385-7.
[http://dx.doi.org/10.1124/mol.105.011783] [PMID: 15703375]
[51]
Lee JH, Han Y-S, Lee SH. Long-duration three-dimensional spheroid culture promotes angiogenic activities of adipose-derived mesenchymal stem cells. Biomol Ther (Seoul) 2016; 24(3): 260-7.
[52]
Rettinger CL, Fourcaudot AB, Hong SJ, Mustoe TA, Hale RG, Leung KP. In vitro characterization of scaffold-free three-dimensional mesenchymal stem cell aggregates. Cell Tissue Res 2014; 358(2): 395-405.
[http://dx.doi.org/10.1007/s00441-014-1939-0] [PMID: 25012521]
[53]
Kodali A, Lim TC, Leong DT, Tong YW. Cell-microsphere constructs formed with human adipose-derived stem cells and gelatin microspheres promotes stemness, differentiation, and controlled pro-angiogenic potential. Macromol Biosci 2014; 14(10): 1458-68.
[http://dx.doi.org/10.1002/mabi.201400094] [PMID: 24986523]
[54]
Hosseinkhani H, Hosseinkhani M, Khademhosseini A, Kobayashi H, Tabata Y. Enhanced angiogenesis through controlled release of basic fibroblast growth factor from peptide amphiphile for tissue regeneration. Biomaterials 2006; 27(34): 5836-44.
[http://dx.doi.org/10.1016/j.biomaterials.2006.08.003] [PMID: 16930687]
[55]
Liang Z, Brooks J, Willard M, et al. CXCR4/CXCL12 axis promotes VEGF-mediated tumor angiogenesis through Akt signaling pathway. Biochem Biophys Res Commun 2007; 359(3): 716-22.
[http://dx.doi.org/10.1016/j.bbrc.2007.05.182] [PMID: 17559806]
[56]
Tapon-Bretaudière J, Chabut D, Zierer M, et al. A fucosylated chondroitin sulfate from echinoderm modulates in vitro fibroblast growth factor 2-dependent angiogenesis. Mol Cancer Res 2002; 1(2): 96-102.
[PMID: 12496356]
[57]
Cai L, Dewi RE, Heilshorn SC. Injectable hydrogels with in situ double network formation enhance retention of transplanted stem cells. Adv Funct Mater 2015; 25(9): 1344-51.
[http://dx.doi.org/10.1002/adfm.201403631] [PMID: 26273242]
[58]
Mohammadi E, Nassiri SM, Rahbarghazi R, Siavashi V, Araghi A. Endothelial juxtaposition of distinct adult stem cells activates angiogenesis signaling molecules in endothelial cells. Cell Tissue Res 2015; 362(3): 597-609.
[http://dx.doi.org/10.1007/s00441-015-2228-2] [PMID: 26068799]
[59]
Lee SH, Setyawan EMN, Choi YB, et al. Clinical assessment after human adipose stem cell transplantation into dogs. J Vet Sci 2018; 19(3): 452-61.
[http://dx.doi.org/10.4142/jvs.2018.19.3.452] [PMID: 29284215]
[60]
Shafiee A, Patel J, Lee JS, Hutmacher DW, Fisk NM, Khosrotehrani K. Mesenchymal stem/stromal cells enhance engraftment, vasculogenic and pro-angiogenic activities of endothelial colony forming cells in immunocompetent hosts. Sci Rep 2017; 7(1): 13558.
[http://dx.doi.org/10.1038/s41598-017-13971-3] [PMID: 29051567]
[61]
Xie N, Li Z, Adesanya TM, et al. Transplantation of placenta-derived mesenchymal stem cells enhances angiogenesis after ischemic limb injury in mice. J Cell Mol Med 2016; 20(1): 29-37.
[http://dx.doi.org/10.1111/jcmm.12489] [PMID: 26282458]
[62]
Jin Y, Barnett A, Zhang Y, Yu X, Luo Y. Poststroke sonic hedge- hog agonist treatment improves functional recovery by enhancing neurogenesis and angiogenesis. Stroke 2017; 48(6): 1636-45.
[http://dx.doi.org/10.1161/STROKEAHA.117.016650] [PMID: 28487338]
[63]
Licht T, Rothe G, Kreisel T, et al. VEGF preconditioning leads to stem cell remodeling and attenuates age-related decay of adult hippocampal neurogenesis. Proc Natl Acad Sci USA 2016; 113(48): E7828-36.
[http://dx.doi.org/10.1073/pnas.1609592113] [PMID: 27849577]
[64]
Quan R, Du W, Zheng X, et al. VEGF165 induces differentiation of hair follicle stem cells into endothelial cells and plays a role in in vivo angiogenesis. J Cell Mol Med 2017; 21(8): 1593-604.
[http://dx.doi.org/10.1111/jcmm.13089] [PMID: 28244687]
[65]
Li M, Luan F, Zhao Y, et al. Mesenchymal stem cell-conditioned medium accelerates wound healing with fewer scars. Int Wound J 2017; 14(1): 64-73.
[http://dx.doi.org/10.1111/iwj.12551] [PMID: 26635066]
[66]
Sordi V, Malosio ML, Marchesi F, et al. Bone marrow mesenchymal stem cells express a restricted set of functionally active chemokine receptors capable of promoting migration to pancreatic islets. Blood 2005; 106(2): 419-27.
[http://dx.doi.org/10.1182/blood-2004-09-3507] [PMID: 15784733]
[67]
Son BR, Marquez-Curtis LA, Kucia M, et al. Migration of bone marrow and cord blood mesenchymal stem cells in vitro is regulated by stromal-derived factor-1-CXCR4 and hepatocyte growth factor-c-met axes and involves matrix metalloproteinases. Stem Cells 2006; 24(5): 1254-64.
[http://dx.doi.org/10.1634/stemcells.2005-0271] [PMID: 16410389]
[68]
Kalimuthu S, Oh JM, Gangadaran P, Zhu L, Lee HW, Rajendran RL, et al. In vivo tracking of chemokine receptor CXCR4-engineered mesenchymal stem cell migration by optical molecular imaging. SStem cells international 2017; 2017
[http://dx.doi.org/10.1155/2017/8085637]
[69]
Zhou H, Li D, Shi C, et al. Effects of Exendin-4 on bone marrow mesenchymal stem cell proliferation, migration and apoptosis in vitro. Sci Rep 2015; 5: 12898.
[http://dx.doi.org/10.1038/srep12898] [PMID: 26250571]
[70]
Mishra PJ, Mishra PJ, Humeniuk R, et al. Carcinoma-associated fibroblast-like differentiation of human mesenchymal stem cells. Cancer Res 2008; 68(11): 4331-9.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-0943] [PMID: 18519693]
[71]
Shiota Y, Nagai A, Sheikh AM, et al. Transplantation of a bone marrow mesenchymal stem cell line increases neuronal progenitor cell migration in a cerebral ischemia animal model. Sci Rep 2018; 8(1): 14951.
[http://dx.doi.org/10.1038/s41598-018-33030-9] [PMID: 30297706]
[72]
Massee M, Chinn K, Lei J, Lim JJ, Young CS, Koob TJ. Dehydrated human amnion/chorion membrane regulates stem cell activity in vitro. J Biomed Mater Res B Appl Biomater 2016; 104(7): 1495-503.
[http://dx.doi.org/10.1002/jbm.b.33478] [PMID: 26175122]
[73]
Chen L-J, Ito S, Kai H, et al. Microfluidic co-cultures of retinal pigment epithelial cells and vascular endothelial cells to investigate choroidal angiogenesis. Sci Rep 2017; 7(1): 3538.
[http://dx.doi.org/10.1038/s41598-017-03788-5] [PMID: 28615726]
[74]
Ling L, Gu S, Cheng Y, Ding L. bFGF promotes Sca‑1+ cardiac stem cell migration through activation of the PI3K/Akt pathway. Mol Med Rep 2018; 17(2): 2349-56.
[PMID: 29207135]
[75]
Vay SU, Flitsch LJ, Rabenstein M, et al. The plasticity of primary microglia and their multifaceted effects on endogenous neural stem cells in vitro and in vivo. J Neuroinflammation 2018; 15(1): 226.
[http://dx.doi.org/10.1186/s12974-018-1261-y] [PMID: 30103769]
[76]
La Porta S, Roth L, Singhal M, et al. Endothelial Tie1-mediated angiogenesis and vascular abnormalization promote tumor progression and metastasis. J Clin Invest 2018; 128(2): 834-45.
[http://dx.doi.org/10.1172/JCI94674] [PMID: 29355844]
[77]
Galindo LT, Mundim MTVV, Pinto AS, et al. Chondroitin sulfate impairs neural stem cell migration through ROCK activation. Mol Neurobiol 2018; 55(4): 3185-95.
[http://dx.doi.org/10.1007/s12035-017-0565-8] [PMID: 28477140]
[78]
Wu Y, Chen L, Scott PG, Tredget EE. Mesenchymal stem cells enhance wound healing through differentiation and angiogenesis. Stem Cells 2007; 25(10): 2648-59.
[http://dx.doi.org/10.1634/stemcells.2007-0226] [PMID: 17615264]
[79]
Nishino Y, Yamada Y, Ebisawa K, et al. Stem cells from human exfoliated deciduous teeth (SHED) enhance wound healing and the possibility of novel cell therapy. Cytotherapy 2011; 13(5): 598-605.
[http://dx.doi.org/10.3109/14653249.2010.542462] [PMID: 21341975]
[80]
Cerri S, Greco R, Levandis G, et al. Intracarotid infusion of mesenchymal stem cells in an animal model of Parkinson’s disease, focusing on cell distribution and neuroprotective and behavioral effects. Stem Cells Transl Med 2015; 4(9): 1073-85.
[http://dx.doi.org/10.5966/sctm.2015-0023] [PMID: 26198165]
[81]
Acosta SA, Tajiri N, Hoover J, Kaneko Y, Borlongan CV. Intravenous bone marrow stem cell grafts preferentially migrate to spleen and abrogate chronic inflammation in stroke. Stroke 2015; 46(9): 2616-27.
[http://dx.doi.org/10.1161/STROKEAHA.115.009854] [PMID: 26219646]
[82]
Modo M, Mellodew K, Cash D, et al. Mapping transplanted stem cell migration after a stroke: a serial, in vivo magnetic resonance imaging study. Neuroimage 2004; 21(1): 311-7.
[http://dx.doi.org/10.1016/j.neuroimage.2003.08.030] [PMID: 14741669]
[83]
Cheng Y, Zhang J, Deng L, et al. Intravenously delivered neural stem cells migrate into ischemic brain, differentiate and improve functional recovery after transient ischemic stroke in adult rats. Int J Clin Exp Pathol 2015; 8(3): 2928-36.
[PMID: 26045801]
[84]
Abnave P, Aboukhatwa E, Kosaka N, Thompson J, Hill MA, Aboobaker AA. Epithelial-mesenchymal transition transcription factors control pluripotent adult stem cell migration in vivo in planarians. Development 2017; 144(19): 3440-53.
[http://dx.doi.org/10.1242/dev.154971] [PMID: 28893948]
[85]
Lee O-H, Kim Y-M, Lee YM, et al. Sphingosine 1-phosphate induces angiogenesis: its angiogenic action and signaling mechanism in human umbilical vein endothelial cells. Biochem Biophys Res Commun 1999; 264(3): 743-50.
[http://dx.doi.org/10.1006/bbrc.1999.1586] [PMID: 10544002]
[86]
Li A, Dubey S, Varney ML, Dave BJ, Singh RK. IL-8 directly enhanced endothelial cell survival, proliferation, and matrix metalloproteinases production and regulated angiogenesis. J Immunol 2003; 170(6): 3369-76.
[http://dx.doi.org/10.4049/jimmunol.170.6.3369] [PMID: 12626597]
[87]
Beckermann BM, Kallifatidis G, Groth A, et al. VEGF expression by mesenchymal stem cells contributes to angiogenesis in pancreatic carcinoma. Br J Cancer 2008; 99(4): 622-31.
[http://dx.doi.org/10.1038/sj.bjc.6604508] [PMID: 18665180]
[88]
Hilkens P, Fanton Y, Martens W, et al. Pro-angiogenic impact of dental stem cells in vitro and in vivo. Stem Cell Res (Amst) 2014; 12(3): 778-90.
[http://dx.doi.org/10.1016/j.scr.2014.03.008] [PMID: 24747218]
[89]
Hu GW, Li Q, Niu X, et al. Exosomes secreted by human-induced pluripotent stem cell-derived mesenchymal stem cells attenuate limb ischemia by promoting angiogenesis in mice. Stem Cell Res Ther 2015; 6(1): 10.
[http://dx.doi.org/10.1186/scrt546] [PMID: 26268554]
[90]
Gerli MFM, Moyle LA, Benedetti S, et al. Combined notch and PDGF signaling enhances migration and expression of stem cell markers while inducing perivascular cell features in muscle satellite cells. Stem Cell Reports 2019; 12(3): 461-73.
[http://dx.doi.org/10.1016/j.stemcr.2019.01.007] [PMID: 30745033]
[91]
Selvaduray KR, Radhakrishnan AK, Kutty MK, Nesaretnam K. Palm tocotrienols decrease levels of pro-angiogenic markers in human umbilical vein endothelial cells (HUVEC) and murine mammary cancer cells. Genes Nutr 2012; 7(1): 53-61.
[http://dx.doi.org/10.1007/s12263-011-0223-0] [PMID: 21526401]
[92]
Sakai VT, Zhang Z, Dong Z, et al. SHED differentiate into functional odontoblasts and endothelium. J Dent Res 2010; 89(8): 791-6.
[http://dx.doi.org/10.1177/0022034510368647] [PMID: 20395410]
[93]
Waugh DJ, Wilson C. The interleukin-8 pathway in cancer. Clin Cancer Res 2008; 14(21): 6735-41.
[http://dx.doi.org/10.1158/1078-0432.CCR-07-4843] [PMID: 18980965]
[94]
Shi J, Wei PK. Interleukin-8: A potent promoter of angiogenesis in gastric cancer. Oncol Lett 2016; 11(2): 1043-50.
[http://dx.doi.org/10.3892/ol.2015.4035] [PMID: 26893688]
[95]
Simonini A, Moscucci M, Muller DW, et al. IL-8 is an angiogenic factor in human coronary atherectomy tissue. Circulation 2000; 101(13): 1519-26.
[http://dx.doi.org/10.1161/01.CIR.101.13.1519] [PMID: 10747344]
[96]
Maisonpierre PC, Suri C, Jones PF, et al. Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. Science 1997; 277(5322): 55-60.
[http://dx.doi.org/10.1126/science.277.5322.55] [PMID: 9204896]
[97]
Koblizek TI, Weiss C, Yancopoulos GD, Deutsch U, Risau W. Angiopoietin-1 induces sprouting angiogenesis in vitro. Curr Biol 1998; 8(9): 529-32.
[http://dx.doi.org/10.1016/S0960-9822(98)70205-2] [PMID: 9560344]
[98]
Suri C, Jones PF, Patan S, et al. Requisite role of angiopoietin-1, a ligand for the TIE2 receptor, during embryonic angiogenesis. Cell 1996; 87(7): 1171-80.
[http://dx.doi.org/10.1016/S0092-8674(00)81813-9] [PMID: 8980224]
[99]
Gale NW, Thurston G, Hackett SF, et al. Angiopoietin-2 is required for postnatal angiogenesis and lymphatic patterning, and only the latter role is rescued by Angiopoietin-1. Dev Cell 2002; 3(3): 411-23.
[http://dx.doi.org/10.1016/S1534-5807(02)00217-4] [PMID: 12361603]
[100]
Stratmann A, Risau W, Plate KH. Cell type-specific expression of angiopoietin-1 and angiopoietin-2 suggests a role in glioblastoma angiogenesis. Am J Pathol 1998; 153(5): 1459-66.
[http://dx.doi.org/10.1016/S0002-9440(10)65733-1] [PMID: 9811337]
[101]
Lampugnani MG, Dejana E. Interendothelial junctions: structure, signalling and functional roles. Curr Opin Cell Biol 1997; 9(5): 674-82.
[http://dx.doi.org/10.1016/S0955-0674(97)80121-4] [PMID: 9330871]
[102]
Dejana E, Bazzoni G, Lampugnani MG. Vascular endothelial (VE)-cadherin: only an intercellular glue? Exp Cell Res 1999; 252(1): 13-9.
[http://dx.doi.org/10.1006/excr.1999.4601] [PMID: 10502395]
[103]
Gu W, Zhan H, Zhou XY, et al. MicroRNA-22 regulates inflammation and angiogenesis via targeting VE-cadherin. FEBS Lett 2017; 591(3): 513-26.
[http://dx.doi.org/10.1002/1873-3468.12565] [PMID: 28112401]
[104]
Chrifi I, Louzao-Martinez L, Brandt MM, et al. CMTM4 regulates angiogenesis by promoting cell surface recycling of VE-cadherin to endothelial adherens junctions. Angiogenesis 2019; 22(1): 75-93.
[http://dx.doi.org/10.1007/s10456-018-9638-1] [PMID: 30097810]
[105]
Cao J, Ehling M, März S, et al. Polarized actin and VE-cadherin dynamics regulate junctional remodelling and cell migration during sprouting angiogenesis. Nat Commun 2017; 8(1): 2210.
[http://dx.doi.org/10.1038/s41467-017-02373-8] [PMID: 29263363]
[106]
Nakayama T, Hieshima K, Izawa D, Tatsumi Y, Kanamaru A, Yoshie O. Cutting edge: profile of chemokine receptor expression on human plasma cells accounts for their efficient recruitment to target tissues. J Immunol 2003; 170(3): 1136-40.
[http://dx.doi.org/10.4049/jimmunol.170.3.1136] [PMID: 12538668]
[107]
Schall TJ, Proudfoot AE. Overcoming hurdles in developing successful drugs targeting chemokine receptors. Nat Rev Immunol 2011; 11(5): 355-63.
[http://dx.doi.org/10.1038/nri2972] [PMID: 21494268]
[108]
Hwang J, Son K-N, Kim CW, et al. Human CC chemokine CCL23, a ligand for CCR1, induces endothelial cell migration and promotes angiogenesis. Cytokine 2005; 30(5): 254-63.
[http://dx.doi.org/10.1016/j.cyto.2005.01.018] [PMID: 15927850]
[109]
Kauts M-L, Pihelgas S, Orro K, Neuman T, Piirsoo A. CCL5/CCR1 axis regulates multipotency of human adipose tissue derived stromal cells. Stem Cell Res (Amst) 2013; 10(2): 166-78.
[http://dx.doi.org/10.1016/j.scr.2012.11.004] [PMID: 23276697]
[110]
Amin K, Janson C, Harvima I, Venge P, Nilsson G. CC chemokine receptors CCR1 and CCR4 are expressed on airway mast cells in allergic asthma. J Allergy Clin Immunol 2005; 116(6): 1383-6.
[http://dx.doi.org/10.1016/j.jaci.2005.08.053] [PMID: 16337476]
[111]
Juremalm M, Olsson N, Nilsson G. Selective CCL5/RANTES-induced mast cell migration through interactions with chemokine receptors CCR1 and CCR4. Biochem Biophys Res Commun 2002; 297(3): 480-5.
[http://dx.doi.org/10.1016/S0006-291X(02)02244-1] [PMID: 12270118]
[112]
Wu X, Fan J, Wang X, et al. Downregulation of CCR1 inhibits human hepatocellular carcinoma cell invasion. Biochem Biophys Res Commun 2007; 355(4): 866-71.
[http://dx.doi.org/10.1016/j.bbrc.2007.01.199] [PMID: 17336272]
[113]
Bhakta S, Hong P, Koc O. The surface adhesion molecule CXCR4 stimulates mesenchymal stem cell migration to stromal cell-derived factor-1 in vitro but does not decrease apoptosis under serum deprivation. Cardiovasc Revasc Med 2006; 7(1): 19-24.
[http://dx.doi.org/10.1016/j.carrev.2005.10.008] [PMID: 16513519]
[114]
Dar A, Kollet O, Lapidot T. Mutual, reciprocal SDF-1/CXCR4 interactions between hematopoietic and bone marrow stromal cells regulate human stem cell migration and development in NOD/SCID chimeric mice. Exp Hematol 2006; 34(8): 967-75.
[http://dx.doi.org/10.1016/j.exphem.2006.04.002] [PMID: 16863903]
[115]
Singh S, Singh UP, Grizzle WE, Lillard JW Jr. CXCL12-CXCR4 interactions modulate prostate cancer cell migration, metalloproteinase expression and invasion. Lab Invest 2004; 84(12): 1666-76.
[http://dx.doi.org/10.1038/labinvest.3700181] [PMID: 15467730]
[116]
Lee B-C, Lee T-H, Avraham S, Avraham HK. Involvement of the chemokine receptor CXCR4 and its ligand stromal cell-derived factor 1α in breast cancer cell migration through human brain microvascular endothelial cells. Mol Cancer Res 2004; 2(6): 327-38.
[PMID: 15235108]
[117]
David NB, Sapède D, Saint-Etienne L, et al. Molecular basis of cell migration in the fish lateral line: role of the chemokine receptor CXCR4 and of its ligand, SDF1. Proc Natl Acad Sci USA 2002; 99(25): 16297-302.
[http://dx.doi.org/10.1073/pnas.252339399] [PMID: 12444253]
[118]
Wang W, Soto H, Oldham ER, et al. Identification of a novel chemokine (CCL28), which binds CCR10 (GPR2). J Biol Chem 2000; 275(29): 22313-23.
[http://dx.doi.org/10.1074/jbc.M001461200] [PMID: 10781587]
[119]
Ogawa H, Iimura M, Eckmann L, Kagnoff MF. Regulated production of the chemokine CCL28 in human colon epithelium. Am J Physiol Gastrointest Liver Physiol 2004; 287(5): G1062-9.
[http://dx.doi.org/10.1152/ajpgi.00162.2004] [PMID: 15246961]
[120]
Facciabene A, Peng X, Hagemann IS, Balint K, Barchetti A, Wang L-P, et al. Tumour hypoxia promotes tolerance and angiogenesis via CCL28 and T(reg) cells. Nature 2011; 475(7355): 226.
[http://dx.doi.org/10.1038/nature10169]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy