Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Nonalcoholic Fatty Liver Disease versus Alcohol-related Liver Disease: Is it Really so Different?

Author(s): Ana Craciun, Caroline Lackner and Helena Cortez-Pinto*

Volume 26, Issue 10, 2020

Page: [1093 - 1109] Pages: 17

DOI: 10.2174/1381612826666200122152417

Price: $65

Abstract

Nonalcoholic fatty liver disease and alcohol-related liver disease together, compose the majority of cases of liver disease and cirrhosis worldwide. Although in the last years, there has been much interest in the differentiation between the two entities, it is increasingly recognized that a large overlap exists between them. The main pathophysiological aspects are very similar, with the exceptions of mechanisms directly related to alcohol, acting as an added factor in the presence of metabolic risk factors. Genetic factors so far identified are also very similar. In both cases, the disease is more prevalent in males, the difference being more significant in the ALD group, having to do with harmful alcohol consumption, which is more frequent in males. NAFLD advanced stages usually present in older age than ALD.

Regarding laboratory features, the ratio AST/ALT < 1 is more frequent in NAFLD than ALD, in the absence of cirrhosis. Histological aspects of both situations are very similar, but some are specific for ALD, such as alcoholic foamy degeneration or cholestasis, or fibroobliterative venous lesions. Regarding treatment, several drugs now included in clinical trials in NAFLD, could also be assayed in ALD, since similar mechanisms of action, are potentially acting in ALD. In summary, similarities seem to outnumber differences, and since so large overlap between risk factors exist, the use of a common designation such as Fatty Liver Disease (FLD) or Metabolic Fatty Liver disease (MEFLD), could better serve the field.

Keywords: Alcohol-related liver disease (ALD), alcoholic hepatitis (AH), alcohol, fatty liver, liver steatosis, non-alcoholic steatohepatitis (NAFLD), non-alcoholic fatty liver disease (NAFLD), fatty liver disease (FLD), metabolic fatty liver disease (MEFLD).

[1]
European Association for the Study of the L. European Association for the Study of D, European Association for the Study of O. EASL-EASD-EASO Clinical Practice Guidelines for the management of non-alcoholic fatty liver disease. J Hepatol 2016; 64: 1388-402.
[http://dx.doi.org/10.1016/j.jhep.2015.11.004]
[2]
Seitz HK, Bataller R, Cortez-Pinto H, et al. Publisher Correction: Alcoholic liver disease. Nat Rev Dis Primers 2018; 4(1): 18.
[http://dx.doi.org/10.1038/s41572-018-0021-8] [PMID: 30154473]
[3]
Chalasani N, Younossi Z, Lavine JE, et al. The diagnosis and management of nonalcoholic fatty liver disease: Practice guidance from the American Association for the Study of Liver Diseases. Hepatology 2018; 67(1): 328-57.
[http://dx.doi.org/10.1002/hep.29367] [PMID: 28714183]
[4]
European Association for the Study of the Liver. European Association for the Study of the L. EASL Clinical Practice Guidelines: Management of alcohol-related liver disease. J Hepatol 2018; 69: 154-81.
[http://dx.doi.org/10.1016/j.jhep.2018.03.018]
[5]
Bertol E, Vaiano F, Boscolo-Berto R, et al. Alcohol, caffeine, and nicotine consumption in adolescents: hair analysis versus self-report. Am J Drug Alcohol Abuse 2017; 43(3): 341-9.
[http://dx.doi.org/10.1080/00952990.2016.1216556] [PMID: 27588338]
[6]
Bellentani S, Tiribelli C. The spectrum of liver disease in the general population: lesson from the Dionysos study. J Hepatol 2001; 35(4): 531-7.
[http://dx.doi.org/10.1016/S0168-8278(01)00151-9] [PMID: 11682041]
[7]
Sowa JP, Atmaca Ö, Kahraman A, et al. Non-invasive separation of alcoholic and non-alcoholic liver disease with predictive modeling. PLoS One 2014; 9(7): e101444
[http://dx.doi.org/10.1371/journal.pone.0101444] [PMID: 24988316]
[8]
Völzke H. Multicausality in fatty liver disease: is there a rationale to distinguish between alcoholic and non-alcoholic origin? World J Gastroenterol 2012; 18(27): 3492-501.
[http://dx.doi.org/10.3748/wjg.v18.i27.3492] [PMID: 22826613]
[9]
Kitade H, Chen G, Ni Y, Ota T. Nonalcoholic fatty liver disease and insulin resistance: new insights and potential new treatments. Nutrients 2017; 9(4): 9.
[http://dx.doi.org/10.3390/nu9040387] [PMID: 28420094]
[10]
Purohit V, Gao B, Song BJ. Molecular mechanisms of alcoholic fatty liver. Alcohol Clin Exp Res 2009; 33(2): 191-205.
[http://dx.doi.org/10.1111/j.1530-0277.2008.00827.x] [PMID: 19032584]
[11]
You M, Fischer M, Deeg MA, Crabb DW. Ethanol induces fatty acid synthesis pathways by activation of sterol regulatory element-binding protein (SREBP). J Biol Chem 2002; 277(32): 29342-7.
[http://dx.doi.org/10.1074/jbc.M202411200] [PMID: 12036955]
[12]
Galli A, Pinaire J, Fischer M, Dorris R, Crabb DW. The transcriptional and DNA binding activity of peroxisome proliferator-activated receptor alpha is inhibited by ethanol metabolism. A novel mechanism for the development of ethanol-induced fatty liver. J Biol Chem 2001; 276(1): 68-75.
[http://dx.doi.org/10.1074/jbc.M008791200] [PMID: 11022051]
[13]
Zhou G, Myers R, Li Y, et al. Role of AMP-activated protein kinase in mechanism of metformin action. J Clin Invest 2001; 108(8): 1167-74.
[http://dx.doi.org/10.1172/JCI13505] [PMID: 11602624]
[14]
Kang L, Sebastian BM, Pritchard MT, Pratt BT, Previs SF, Nagy LE. Chronic ethanol-induced insulin resistance is associated with macrophage infiltration into adipose tissue and altered expression of adipocytokines. Alcohol Clin Exp Res 2007; 31(9): 1581-8.
[http://dx.doi.org/10.1111/j.1530-0277.2007.00452.x] [PMID: 17624994]
[15]
Raynard B, Balian A, Fallik D, et al. Risk factors of fibrosis in alcohol-induced liver disease. Hepatology 2002; 35(3): 635-8.
[http://dx.doi.org/10.1053/jhep.2002.31782] [PMID: 11870378]
[16]
Syn WK, Teaberry V, Choi SS, Diehl AM. Similarities and differences in the pathogenesis of alcoholic and nonalcoholic steatohepatitis. Semin Liver Dis 2009; 29(2): 200-10.
[http://dx.doi.org/10.1055/s-0029-1214375] [PMID: 19387919]
[17]
Luedde T, Kaplowitz N, Schwabe RF. Cell death and cell death responses in liver disease: mechanisms and clinical relevance. Gastroenterology 2014; 147: 765-83.e764.
[http://dx.doi.org/10.1053/j.gastro.2014.07.018]
[18]
Ribeiro PS, Cortez-Pinto H, Solá S, et al. Hepatocyte apoptosis, expression of death receptors, and activation of NF-kappaB in the liver of nonalcoholic and alcoholic steatohepatitis patients. Am J Gastroenterol 2004; 99(9): 1708-17.
[http://dx.doi.org/10.1111/j.1572-0241.2004.40009.x] [PMID: 15330907]
[19]
Tilg H, Moschen AR. Evolution of inflammation in nonalcoholic fatty liver disease: the multiple parallel hits hypothesis. Hepatology 2010; 52(5): 1836-46.
[http://dx.doi.org/10.1002/hep.24001] [PMID: 21038418]
[20]
Torres J, Palmela C, Brito H, et al. The gut microbiota, bile acids and their correlation in primary sclerosing cholangitis associated with inflammatory bowel disease. United European Gastroenterol J 2018; 6(1): 112-22.
[http://dx.doi.org/10.1177/2050640617708953] [PMID: 29435321]
[21]
Peverill W, Powell LW, Skoien R. Evolving concepts in the pathogenesis of NASH: beyond steatosis and inflammation. Int J Mol Sci 2014; 15(5): 8591-638.
[http://dx.doi.org/10.3390/ijms15058591] [PMID: 24830559]
[22]
Buzzetti E, Pinzani M, Tsochatzis EA. The multiple-hit pathogenesis of non-alcoholic fatty liver disease (NAFLD). Metabolism 2016; 65(8): 1038-48.
[http://dx.doi.org/10.1016/j.metabol.2015.12.012] [PMID: 26823198]
[23]
Nagata K, Suzuki H, Sakaguchi S. Common pathogenic mechanism in development progression of liver injury caused by non-alcoholic or alcoholic steatohepatitis. J Toxicol Sci 2007; 32(5): 453-68.
[http://dx.doi.org/10.2131/jts.32.453] [PMID: 18198478]
[24]
Hritz I, Mandrekar P, Velayudham A, et al. The critical role of toll-like receptor (TLR) 4 in alcoholic liver disease is independent of the common TLR adapter MyD88. Hepatology 2008; 48(4): 1224-31.
[http://dx.doi.org/10.1002/hep.22470] [PMID: 18792393]
[25]
Paik YH, Schwabe RF, Bataller R, Russo MP, Jobin C, Brenner DA. Toll-like receptor 4 mediates inflammatory signaling by bacterial lipopolysaccharide in human hepatic stellate cells. Hepatology 2003; 37(5): 1043-55.
[http://dx.doi.org/10.1053/jhep.2003.50182] [PMID: 12717385]
[26]
Sundaram V, Morgan TR. Will studies in nonalcoholic steatohepatitis help manage alcoholic steatohepatitis? Clin Liver Dis 2019; 23(1): 157-65.
[http://dx.doi.org/10.1016/j.cld.2018.09.008] [PMID: 30454829]
[27]
Potter JJ, Rennie-Tankersley L, Mezey E. Leptin deficiency prevents the activation of the murine alpaha 2(I) collagen promoter by acetaldehyde. Arch Biochem Biophys 2004; 426(1): 73-7.
[http://dx.doi.org/10.1016/j.abb.2004.03.031] [PMID: 15130784]
[28]
Svegliati-Baroni G, Inagaki Y, Rincon-Sanchez AR, et al. Early response of alpha2(I) collagen to acetaldehyde in human hepatic stellate cells is TGF-beta independent. Hepatology 2005; 42(2): 343-52.
[http://dx.doi.org/10.1002/hep.20798] [PMID: 16025520]
[29]
Szczepiorkowski ZM, Dickersin GR, Laposata M. Fatty acid ethyl esters decrease human hepatoblastoma cell proliferation and protein synthesis. Gastroenterology 1995; 108(2): 515-22.
[http://dx.doi.org/10.1016/0016-5085(95)90081-0] [PMID: 7835594]
[30]
Mahli A, Hellerbrand C. Alcohol and obesity: a dangerous association for fatty liver disease. Dig Dis 2016; 34(Suppl. 1): 32-9.
[http://dx.doi.org/10.1159/000447279] [PMID: 27548267]
[31]
Rogers CQ, Ajmo JM, You M. Adiponectin and alcoholic fatty liver disease. IUBMB Life 2008; 60(12): 790-7.
[http://dx.doi.org/10.1002/iub.124] [PMID: 18709650]
[32]
Wang Y, Zhou M, Lam KS, Xu A. Protective roles of adiponectin in obesity-related fatty liver diseases: mechanisms and therapeutic implications. Arq Bras Endocrinol Metabol 2009; 53(2): 201-12.
[http://dx.doi.org/10.1590/S0004-27302009000200012] [PMID: 19466213]
[33]
Finelli C, Tarantino G. What is the role of adiponectin in obesity related non-alcoholic fatty liver disease? World J Gastroenterol 2013; 19(6): 802-12.
[http://dx.doi.org/10.3748/wjg.v19.i6.802] [PMID: 23430039]
[34]
Saxena NK, Titus MA, Ding X, et al. Leptin as a novel profibrogenic cytokine in hepatic stellate cells: mitogenesis and inhibition of apoptosis mediated by extracellular regulated kinase (Erk) and Akt phosphorylation. FASEB J 2004; 18(13): 1612-4.
[http://dx.doi.org/10.1096/fj.04-1847fje] [PMID: 15319373]
[35]
Pinto HC, Baptista A, Camilo ME, Valente A, Saragoça A, de Moura MC. Nonalcoholic steatohepatitis. Clinicopathological comparison with alcoholic hepatitis in ambulatory and hospitalized patients. Dig Dis Sci 1996; 41(1): 172-9.
[http://dx.doi.org/10.1007/BF02208601] [PMID: 8565753]
[36]
Owumi SE, Corthals SM, Uwaifo AO, Kamendulis LM, Klaunig JE. Depletion of Kupffer cells modulates ethanol-induced hepatocyte DNA synthesis in C57Bl/6 mice. Environ Toxicol 2014; 29(8): 867-75.
[http://dx.doi.org/10.1002/tox.21814] [PMID: 22996800]
[37]
Sutti S, Jindal A, Locatelli I, et al. Adaptive immune responses triggered by oxidative stress contribute to hepatic inflammation in NASH. Hepatology 2014; 59(3): 886-97.
[http://dx.doi.org/10.1002/hep.26749] [PMID: 24115128]
[38]
Schnabl B, Brenner DA. Interactions between the intestinal microbiome and liver diseases. Gastroenterology 2014; 146(6): 1513-24.
[http://dx.doi.org/10.1053/j.gastro.2014.01.020] [PMID: 24440671]
[39]
Ley RE, Bäckhed F, Turnbaugh P, Lozupone CA, Knight RD, Gordon JI. Obesity alters gut microbial ecology. Proc Natl Acad Sci USA 2005; 102(31): 11070-5.
[http://dx.doi.org/10.1073/pnas.0504978102] [PMID: 16033867]
[40]
Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 2006; 444(7122): 1027-31.
[http://dx.doi.org/10.1038/nature05414] [PMID: 17183312]
[41]
Bäckhed F, Ding H, Wang T, et al. The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci USA 2004; 101(44): 15718-23.
[http://dx.doi.org/10.1073/pnas.0407076101] [PMID: 15505215]
[42]
Raman M, Ahmed I, Gillevet PM, et al. Fecal microbiome and volatile organic compound metabolome in obese humans with nonalcoholic fatty liver disease. Clin Gastroenterol Hepatol 2013; 11: 868-75. e861-863
[http://dx.doi.org/10.1016/j.cgh.2013.02.015]
[43]
Zhu L, Baker SS, Gill C, et al. Characterization of gut microbiomes in nonalcoholic steatohepatitis (NASH) patients: a connection between endogenous alcohol and NASH. Hepatology 2013; 57(2): 601-9.
[http://dx.doi.org/10.1002/hep.26093] [PMID: 23055155]
[44]
Mouzaki M, Comelli EM, Arendt BM, et al. Intestinal microbiota in patients with nonalcoholic fatty liver disease. Hepatology 2013; 58(1): 120-7.
[http://dx.doi.org/10.1002/hep.26319] [PMID: 23401313]
[45]
Yuan J, Chen C, Cui J, et al. Fatty liver disease caused by highalcohol- producing Klebsiella pneumoniae. Cell Metab 2019; 30: 675-88. e677
[46]
Henao-Mejia J, Elinav E, Jin C, et al. Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity. Nature 2012; 482(7384): 179-85.
[http://dx.doi.org/10.1038/nature10809] [PMID: 22297845]
[47]
Mutlu EA, Gillevet PM, Rangwala H, et al. Colonic microbiome is altered in alcoholism. Am J Physiol Gastrointest Liver Physiol 2012; 302(9): G966-78.
[http://dx.doi.org/10.1152/ajpgi.00380.2011] [PMID: 22241860]
[48]
Yan AW, Fouts DE, Brandl J, et al. Enteric dysbiosis associated with a mouse model of alcoholic liver disease. Hepatology 2011; 53(1): 96-105.
[http://dx.doi.org/10.1002/hep.24018] [PMID: 21254165]
[49]
Forsyth CB, Farhadi A, Jakate SM, Tang Y, Shaikh M, Keshavarzian A. Lactobacillus GG treatment ameliorates alcohol-induced intestinal oxidative stress, gut leakiness, and liver injury in a rat model of alcoholic steatohepatitis. Alcohol 2009; 43(2): 163-72.
[http://dx.doi.org/10.1016/j.alcohol.2008.12.009] [PMID: 19251117]
[50]
Wang Y, Liu Y, Sidhu A, Ma Z, McClain C, Feng W. Lactobacillus rhamnosus GG culture supernatant ameliorates acute alcohol-induced intestinal permeability and liver injury. Am J Physiol Gastrointest Liver Physiol 2012; 303(1): G32-41.
[http://dx.doi.org/10.1152/ajpgi.00024.2012] [PMID: 22538402]
[51]
Chakraborty C, Sharma AR, Sharma G, Doss CGP, Lee SS. Therapeutic miRNA and siRNA: moving from bench to clinic as next generation Medicine. Mol Ther Nucleic Acids 2017; 8: 132-43.
[http://dx.doi.org/10.1016/j.omtn.2017.06.005] [PMID: 28918016]
[52]
Torres JL, Novo-Veleiro I, Manzanedo L, et al. Role of microRNAs in alcohol-induced liver disorders and non-alcoholic fatty liver disease. World J Gastroenterol 2018; 24(36): 4104-18.
[http://dx.doi.org/10.3748/wjg.v24.i36.4104] [PMID: 30271077]
[53]
Ambros V. The functions of animal microRNAs. Nature 2004; 431(7006): 350-5.
[http://dx.doi.org/10.1038/nature02871] [PMID: 15372042]
[54]
Hammond SM. An overview of microRNAs. Adv Drug Deliv Rev 2015; 87: 3-14.
[http://dx.doi.org/10.1016/j.addr.2015.05.001] [PMID: 25979468]
[55]
Szabo G, Bala S. MicroRNAs in liver disease. Nat Rev Gastroenterol Hepatol 2013; 10(9): 542-52.
[http://dx.doi.org/10.1038/nrgastro.2013.87] [PMID: 23689081]
[56]
Bala S, Marcos M, Szabo G. Emerging role of microRNAs in liver diseases. World J Gastroenterol 2009; 15(45): 5633-40.
[http://dx.doi.org/10.3748/wjg.15.5633] [PMID: 19960558]
[57]
Szabo G, Csak T. Role of MicroRNAs in NAFLD/NASH. Dig Dis Sci 2016; 61(5): 1314-24.
[http://dx.doi.org/10.1007/s10620-015-4002-4] [PMID: 26769057]
[58]
Cheung O, Puri P, Eicken C, et al. Nonalcoholic steatohepatitis is associated with altered hepatic MicroRNA expression. Hepatology 2008; 48(6): 1810-20.
[http://dx.doi.org/10.1002/hep.22569] [PMID: 19030170]
[59]
Leti F, Malenica I, Doshi M, et al. High-throughput sequencing reveals altered expression of hepatic microRNAs in nonalcoholic fatty liver disease-related fibrosis. Transl Res 2015; 166(3): 304-14.
[http://dx.doi.org/10.1016/j.trsl.2015.04.014] [PMID: 26001595]
[60]
Guo Y, Xiong Y, Sheng Q, Zhao S, Wattacheril J, Flynn CR. A micro-RNA expression signature for human NAFLD progression. J Gastroenterol 2016; 51(10): 1022-30.
[http://dx.doi.org/10.1007/s00535-016-1178-0] [PMID: 26874844]
[61]
Dongiovanni P, Meroni M, Longo M, Fargion S, Fracanzani AL. miRNA Signature in NAFLD: a turning point for a non-invasive diagnosis. Int J Mol Sci 2018; 19(12): 19.
[http://dx.doi.org/10.3390/ijms19123966] [PMID: 30544653]
[62]
Castro RE, Ferreira DM, Afonso MB, et al. miR-34a/SIRT1/p53 is suppressed by ursodeoxycholic acid in the rat liver and activated by disease severity in human non-alcoholic fatty liver disease. J Hepatol 2013; 58(1): 119-25.
[http://dx.doi.org/10.1016/j.jhep.2012.08.008] [PMID: 22902550]
[63]
Simão AL, Afonso MB, Rodrigues PM, et al. Skeletal muscle miR-34a/SIRT1:AMPK axis is activated in experimental and human non-alcoholic steatohepatitis. J Mol Med (Berl) 2019; 97(8): 1113-26.
[http://dx.doi.org/10.1007/s00109-019-01796-8] [PMID: 31139863]
[64]
Momen-Heravi F, Saha B, Kodys K, Catalano D, Satishchandran A, Szabo G. Increased number of circulating exosomes and their microRNA cargos are potential novel biomarkers in alcoholic hepatitis. J Transl Med 2015; 13: 261.
[http://dx.doi.org/10.1186/s12967-015-0623-9] [PMID: 26264599]
[65]
Wang Y, Yu D, Tolleson WH, et al. A systematic evaluation of microRNAs in regulating human hepatic CYP2E1. Biochem Pharmacol 2017; 138: 174-84.
[http://dx.doi.org/10.1016/j.bcp.2017.04.020] [PMID: 28438567]
[66]
Kim YD, Hwang SL, Lee EJ, et al. Melatonin ameliorates alcohol-induced bile acid synthesis by enhancing miR-497 expression. J Pineal Res 2017; 62(2): 62.
[http://dx.doi.org/10.1111/jpi.12386] [PMID: 28095641]
[67]
Dolganiuc A, Petrasek J, Kodys K, et al. MicroRNA expression profile in Lieber-DeCarli diet-induced alcoholic and methionine choline deficient diet-induced nonalcoholic steatohepatitis models in mice. Alcohol Clin Exp Res 2009; 33(10): 1704-10.
[http://dx.doi.org/10.1111/j.1530-0277.2009.01007.x] [PMID: 19572984]
[68]
Dippold RP, Vadigepalli R, Gonye GE, Patra B, Hoek JB. Chronic ethanol feeding alters miRNA expression dynamics during liver regeneration. Alcohol Clin Exp Res 2013; 37(Suppl. 1): E59-69.
[http://dx.doi.org/10.1111/j.1530-0277.2012.01852.x] [PMID: 22823254]
[69]
Bataller R, Rombouts K, Altamirano J, Marra F. Fibrosis in alcoholic and nonalcoholic steatohepatitis. Best Pract Res Clin Gastroenterol 2011; 25(2): 231-44.
[http://dx.doi.org/10.1016/j.bpg.2011.02.010] [PMID: 21497741]
[70]
Lanthier N, Horsmans Y, Leclercq IA. The metabolic syndrome: how it may influence hepatic stellate cell activation and hepatic fibrosis. Curr Opin Clin Nutr Metab Care 2009; 12(4): 404-11.
[http://dx.doi.org/10.1097/MCO.0b013e32832c7819] [PMID: 19474722]
[71]
Wang B, Trippler M, Pei R, et al. Toll-like receptor activated human and murine hepatic stellate cells are potent regulators of hepatitis C virus replication. J Hepatol 2009; 51(6): 1037-45.
[http://dx.doi.org/10.1016/j.jhep.2009.06.020] [PMID: 19716616]
[72]
Xu A, Wang Y, Keshaw H, Xu LY, Lam KS, Cooper GJ. The fat-derived hormone adiponectin alleviates alcoholic and nonalcoholic fatty liver diseases in mice. J Clin Invest 2003; 112(1): 91-100.
[http://dx.doi.org/10.1172/JCI200317797] [PMID: 12840063]
[73]
Cubero FJ, Urtasun R, Nieto N. Alcohol and liver fibrosis. Semin Liver Dis 2009; 29(2): 211-21.
[http://dx.doi.org/10.1055/s-0029-1214376] [PMID: 19387920]
[74]
Guicciardi ME, Gores GJ. Apoptosis as a mechanism for liver disease progression. Semin Liver Dis 2010; 30(4): 402-10.
[http://dx.doi.org/10.1055/s-0030-1267540] [PMID: 20960379]
[75]
Nanji AA, French SW. Relationship between pork consumption and cirrhosis. Lancet 1985; 1(8430): 681-3.
[http://dx.doi.org/10.1016/S0140-6736(85)91338-8] [PMID: 2858627]
[76]
Nanji AA, Mendenhall CL, French SW. Beef fat prevents alcoholic liver disease in the rat. Alcohol Clin Exp Res 1989; 13(1): 15-9.
[http://dx.doi.org/10.1111/j.1530-0277.1989.tb00276.x] [PMID: 2646971]
[77]
Buettner R, Parhofer KG, Woenckhaus M, et al. Defining high-fat-diet rat models: metabolic and molecular effects of different fat types. J Mol Endocrinol 2006; 36(3): 485-501.
[http://dx.doi.org/10.1677/jme.1.01909] [PMID: 16720718]
[78]
Tipoe GL, Ho CT, Liong EC, et al. Voluntary oral feeding of rats not requiring a very high fat diet is a clinically relevant animal model of non-alcoholic fatty liver disease (NAFLD). Histol Histopathol 2009; 24(9): 1161-9.
[PMID: 19609863]
[79]
Wang D, Wei Y, Pagliassotti MJ. Saturated fatty acids promote endoplasmic reticulum stress and liver injury in rats with hepatic steatosis. Endocrinology 2006; 147(2): 943-51.
[http://dx.doi.org/10.1210/en.2005-0570] [PMID: 16269465]
[80]
Gentile CL, Pagliassotti MJ. The role of fatty acids in the development and progression of nonalcoholic fatty liver disease. J Nutr Biochem 2008; 19(9): 567-76.
[http://dx.doi.org/10.1016/j.jnutbio.2007.10.001] [PMID: 18430557]
[81]
Bergheim I, Weber S, Vos M, et al. Antibiotics protect against fructose-induced hepatic lipid accumulation in mice: role of endotoxin. J Hepatol 2008; 48(6): 983-92.
[http://dx.doi.org/10.1016/j.jhep.2008.01.035] [PMID: 18395289]
[82]
Nanji AA. Role of different dietary fatty acids in the pathogenesis of experimental alcoholic liver disease. Alcohol 2004; 34(1): 21-5.
[http://dx.doi.org/10.1016/j.alcohol.2004.08.005] [PMID: 15670661]
[83]
Kirpich IA, Miller ME, Cave MC, Joshi-Barve S, McClain CJ. Alcoholic liver disease: update on the role of dietary fat. Biomolecules 2016; 6(1): 1.
[http://dx.doi.org/10.3390/biom6010001] [PMID: 26751488]
[84]
Romeo S, Kozlitina J, Xing C, et al. Genetic variation in PNPLA3 confers susceptibility to nonalcoholic fatty liver disease. Nat Genet 2008; 40(12): 1461-5.
[http://dx.doi.org/10.1038/ng.257] [PMID: 18820647]
[85]
Sookoian S, Pirola CJ. Meta-analysis of the influence of I148M variant of patatin-like phospholipase domain containing 3 gene (PNPLA3) on the susceptibility and histological severity of nonalcoholic fatty liver disease. Hepatology 2011; 53(6): 1883-94.
[http://dx.doi.org/10.1002/hep.24283] [PMID: 21381068]
[86]
Dai G, Liu P, Li X, Zhou X, He S. Association between PNPLA3 rs738409 polymorphism and nonalcoholic fatty liver disease (NAFLD) susceptibility and severity: A meta-analysis. Medicine (Baltimore) 2019; 98(7)e14324
[http://dx.doi.org/10.1097/MD.0000000000014324] [PMID: 30762732]
[87]
Stickel F, Buch S, Lau K, et al. Genetic variation in the PNPLA3 gene is associated with alcoholic liver injury in caucasians. Hepatology 2011; 53(1): 86-95.
[http://dx.doi.org/10.1002/hep.24017] [PMID: 21254164]
[88]
Salameh H, Raff E, Erwin A, et al. PNPLA3 gene polymorphism is associated with predisposition to and severity of alcoholic liver disease. Am J Gastroenterol 2015; 110(6): 846-56.
[http://dx.doi.org/10.1038/ajg.2015.137] [PMID: 25964223]
[89]
Tian C, Stokowski RP, Kershenobich D, Ballinger DG, Hinds DA. Variant in PNPLA3 is associated with alcoholic liver disease. Nat Genet 2010; 42(1): 21-3.
[http://dx.doi.org/10.1038/ng.488] [PMID: 19946271]
[90]
Trépo E, Gustot T, Degré D, et al. Common polymorphism in the PNPLA3/adiponutrin gene confers higher risk of cirrhosis and liver damage in alcoholic liver disease. J Hepatol 2011; 55(4): 906-12.
[http://dx.doi.org/10.1016/j.jhep.2011.01.028] [PMID: 21334404]
[91]
Chamorro AJ, Torres JL, Mirón-Canelo JA, González-Sarmiento R, Laso FJ, Marcos M. Systematic review with meta-analysis: the I148M variant of patatin-like phospholipase domain-containing 3 gene (PNPLA3) is significantly associated with alcoholic liver cirrhosis. Aliment Pharmacol Ther 2014; 40(6): 571-81.
[http://dx.doi.org/10.1111/apt.12890] [PMID: 25060292]
[92]
Stickel F, Moreno C, Hampe J, Morgan MY. The genetics of alcohol dependence and alcohol-related liver disease. J Hepatol 2017; 66(1): 195-211.
[http://dx.doi.org/10.1016/j.jhep.2016.08.011] [PMID: 27575312]
[93]
Liu Z, Chen T, Lu X, Xie H, Zhou L, Zheng S. Overexpression of variant PNPLA3 gene at I148M position causes malignant transformation of hepatocytes via IL-6-JAK2/STAT3 pathway in low dose free fatty acid exposure: a laboratory investigation in vitro and in vivo. Am J Transl Res 2016; 8(3): 1319-38.
[PMID: 27186262]
[94]
Singal AG, Manjunath H, Yopp AC, et al. The effect of PNPLA3 on fibrosis progression and development of hepatocellular carcinoma: a meta-analysis. Am J Gastroenterol 2014; 109(3): 325-34.
[http://dx.doi.org/10.1038/ajg.2013.476] [PMID: 24445574]
[95]
Kozlitina J, Smagris E, Stender S, et al. Exome-wide association study identifies a TM6SF2 variant that confers susceptibility to nonalcoholic fatty liver disease. Nat Genet 2014; 46(4): 352-6.
[http://dx.doi.org/10.1038/ng.2901] [PMID: 24531328]
[96]
Liu YL, Reeves HL, Burt AD, et al. TM6SF2 rs58542926 influences hepatic fibrosis progression in patients with non-alcoholic fatty liver disease. Nat Commun 2014; 5: 4309.
[http://dx.doi.org/10.1038/ncomms5309] [PMID: 24978903]
[97]
Dongiovanni P, Petta S, Maglio C, et al. Transmembrane 6 superfamily member 2 gene variant disentangles nonalcoholic steatohepatitis from cardiovascular disease. Hepatology 2015; 61(2): 506-14.
[http://dx.doi.org/10.1002/hep.27490] [PMID: 25251399]
[98]
Buch S, Stickel F, Trépo E, et al. A genome-wide association study confirms PNPLA3 and identifies TM6SF2 and MBOAT7 as risk loci for alcohol-related cirrhosis. Nat Genet 2015; 47(12): 1443-8.
[http://dx.doi.org/10.1038/ng.3417] [PMID: 26482880]
[99]
Chen X, Zhou P, De L, Li B, Su S. The roles of transmembrane 6 superfamily member 2 rs58542926 polymorphism in chronic liver disease: A meta-analysis of 24,147 subjects. Mol Genet Genomic Med 2019; 7(8)e824
[http://dx.doi.org/10.1002/mgg3.824] [PMID: 31309745]
[100]
Mancina RM, Dongiovanni P, Petta S, et al. The MBOAT7-TMC4 Variant rs641738 increases risk of nonalcoholic fatty liver disease in individuals of european descent. Gastroenterology 2016; 150: 1219-30.e1216
[http://dx.doi.org/10.1053/j.gastro.2016.01.032]
[101]
Xia Y, Huang CX, Li GY, et al. Meta-analysis of the association between MBOAT7 rs641738, TM6SF2 rs58542926 and nonalcoholic fatty liver disease susceptibility. Clin Res Hepatol Gastroenterol 2019; 43(5): 533-41.
[http://dx.doi.org/10.1016/j.clinre.2019.01.008] [PMID: 30824369]
[102]
Lonardo A, Nascimbeni F, Ballestri S, et al. Sex differences in NAFLD: state of the art and identification of research gaps. Hepatology 2019; 70(4): 1457-69.
[http://dx.doi.org/10.1002/hep.30626]
[103]
Nagpal SJ, Kabbany MN, Mohamad B, Lopez R, Zein NN, Alkhouri N. Portal hypertension complications are frequently the first presentation of nafld in patients undergoing liver transplantation evaluation. Dig Dis Sci 2016; 61(7): 2102-7.
[http://dx.doi.org/10.1007/s10620-016-4124-3] [PMID: 26993824]
[104]
Bellentani S, Saccoccio G, Costa G, et al. Drinking habits as cofactors of risk for alcohol induced liver damage. Gut 1997; 41(6): 845-50.
[http://dx.doi.org/10.1136/gut.41.6.845] [PMID: 9462221]
[105]
Yang AL, Vadhavkar S, Singh G, Omary MB. Epidemiology of alcohol-related liver and pancreatic disease in the United States. Arch Intern Med 2008; 168(6): 649-56.
[http://dx.doi.org/10.1001/archinte.168.6.649] [PMID: 18362258]
[106]
Becker U, Deis A, Sørensen TI, et al. Prediction of risk of liver disease by alcohol intake, sex, and age: a prospective population study. Hepatology 1996; 23(5): 1025-9.
[http://dx.doi.org/10.1002/hep.510230513] [PMID: 8621128]
[107]
Järveläinen HA, Lukkari TA, Heinaro S, Sippel H, Lindros KO. The antiestrogen toremifene protects against alcoholic liver injury in female rats. J Hepatol 2001; 35(1): 46-52.
[http://dx.doi.org/10.1016/S0168-8278(01)00050-2] [PMID: 11495041]
[108]
Iimuro Y, Frankenberg MV, Arteel GE, Bradford BU, Wall CA, Thurman RG. Female rats exhibit greater susceptibility to early alcohol-induced liver injury than males. Am J Physiol 1997; 272(5 Pt 1): G1186-94.
[PMID: 9176229]
[109]
Moshage H. Alcoholic liver disease: a matter of hormones? J Hepatol 2001; 35(1): 130-3.
[http://dx.doi.org/10.1016/S0168-8278(01)00115-5] [PMID: 11495031]
[110]
Murata Y, Ogawa Y, Saibara T, et al. Unrecognized hepatic steatosis and non-alcoholic steatohepatitis in adjuvant tamoxifen for breast cancer patients. Oncol Rep 2000; 7(6): 1299-304.
[http://dx.doi.org/10.3892/or.7.6.1299] [PMID: 11032933]
[111]
Pinto HC, Baptista A, Camilo ME, de Costa EB, Valente A, de Moura MC. Tamoxifen-associated steatohepatitis--report of three cases. J Hepatol 1995; 23(1): 95-7.
[http://dx.doi.org/10.1016/0168-8278(95)80316-5] [PMID: 8530816]
[112]
Thuluvath PJ, Kantsevoy S, Thuluvath AJ, Savva Y. Is cryptogenic cirrhosis different from NASH cirrhosis? J Hepatol 2018; 68(3): 519-25.
[http://dx.doi.org/10.1016/j.jhep.2017.11.018] [PMID: 29162389]
[113]
Silva MJ, Rosa MV, Nogueira PJ, Calinas F. Ten years of hospital admissions for liver cirrhosis in Portugal. Eur J Gastroenterol Hepatol 2015; 27(11): 1320-6.
[http://dx.doi.org/10.1097/MEG.0000000000000449] [PMID: 26275086]
[114]
Adams WL, Yuan Z, Barboriak JJ, Rimm AA. Alcohol-related hospitalizations of elderly people. Prevalence and geographic variation in the United States. JAMA 1993; 270(10): 1222-5.
[http://dx.doi.org/10.1001/jama.1993.03510100072035] [PMID: 8355385]
[115]
Eguchi Y, Hyogo H, Ono M, et al. Prevalence and associated metabolic factors of nonalcoholic fatty liver disease in the general population from 2009 to 2010 in Japan: a multicenter large retrospective study. J Gastroenterol 2012; 47(5): 586-95.
[http://dx.doi.org/10.1007/s00535-012-0533-z] [PMID: 22328022]
[116]
Fan JG, Zhu J, Li XJ, et al. Prevalence of and risk factors for fatty liver in a general population of Shanghai, China. J Hepatol 2005; 43(3): 508-14.
[http://dx.doi.org/10.1016/j.jhep.2005.02.042] [PMID: 16006003]
[117]
Schwimmer JB, Deutsch R, Kahen T, Lavine JE, Stanley C, Behling C. Prevalence of fatty liver in children and adolescents. Pediatrics 2006; 118(4): 1388-93.
[http://dx.doi.org/10.1542/peds.2006-1212] [PMID: 17015527]
[118]
Della Corte C, Mosca A, Vania A, Alterio A, Alisi A, Nobili V. Pediatric liver diseases: current challenges and future perspectives. Expert Rev Gastroenterol Hepatol 2016; 10(2): 255-65.
[http://dx.doi.org/10.1586/17474124.2016.1129274] [PMID: 26641319]
[119]
Shah ND, Ventura-Cots M, Abraldes JG, et al. Alcohol-related liver disease is rarely detected at early stages compared with liver diseases of other etiologies worldwide. Clin Gastroenterol Hepatol 2019; 17(11): 2320-2329.e12.
[http://dx.doi.org/10.1016/j.cgh.2019.01.026] [PMID: 30708110]
[120]
Burke A, Lucey MR. Non-alcoholic fatty liver disease, non-alcoholic steatohepatitis and orthotopic liver transplantation. Am J Transplant 2004; 4(5): 686-93.
[http://dx.doi.org/10.1111/j.1600-6143.2004.00432.x] [PMID: 15084161]
[121]
Tsai JH, Ferrell LD, Tan V, Yeh MM, Sarkar M, Gill RM. Aggressive non-alcoholic steatohepatitis following rapid weight loss and/or malnutrition. Mod Pathol 2017; 30(6): 834-42.
[http://dx.doi.org/10.1038/modpathol.2017.13] [PMID: 28256569]
[122]
Toshikuni N, Tsutsumi M, Arisawa T. Clinical differences between alcoholic liver disease and nonalcoholic fatty liver disease. World J Gastroenterol 2014; 20(26): 8393-406.
[http://dx.doi.org/10.3748/wjg.v20.i26.8393] [PMID: 25024597]
[123]
Dam-Larsen S, Becker U, Franzmann MB, Larsen K, Christoffersen P, Bendtsen F. Final results of a long-term, clinical follow-up in fatty liver patients. Scand J Gastroenterol 2009; 44(10): 1236-43.
[http://dx.doi.org/10.1080/00365520903171284] [PMID: 19670076]
[124]
Bhala N, Angulo P, van der Poorten D, et al. The natural history of nonalcoholic fatty liver disease with advanced fibrosis or cirrhosis: an international collaborative study. Hepatology 2011; 54(4): 1208-16.
[http://dx.doi.org/10.1002/hep.24491] [PMID: 21688282]
[125]
Stepanova M, Rafiq N, Makhlouf H, et al. Predictors of all-cause mortality and liver-related mortality in patients with non-alcoholic fatty liver disease (NAFLD). Dig Dis Sci 2013; 58(10): 3017-23.
[http://dx.doi.org/10.1007/s10620-013-2743-5] [PMID: 23775317]
[126]
Toshikuni N, Izumi A, Nishino K, et al. Comparison of outcomes between patients with alcoholic cirrhosis and those with hepatitis C virus-related cirrhosis. J Gastroenterol Hepatol 2009; 24(7): 1276-83.
[http://dx.doi.org/10.1111/j.1440-1746.2009.05851.x] [PMID: 19486451]
[127]
Alvarez MA, Cirera I, Solà R, Bargalló A, Morillas RM, Planas R. Long-term clinical course of decompensated alcoholic cirrhosis: a prospective study of 165 patients. J Clin Gastroenterol 2011; 45(10): 906-11.
[http://dx.doi.org/10.1097/MCG.0b013e3182284e13] [PMID: 21814145]
[128]
Masson S, Emmerson I, Henderson E, et al. Clinical but not histological factors predict long-term prognosis in patients with histologically advanced non-decompensated alcoholic liver disease. Liver Int 2014; 34(2): 235-42.
[http://dx.doi.org/10.1111/liv.12242] [PMID: 23834275]
[129]
Stepanova M, Rafiq N, Younossi ZM. Components of metabolic syndrome are independent predictors of mortality in patients with chronic liver disease: a population-based study. Gut 2010; 59(10): 1410-5.
[http://dx.doi.org/10.1136/gut.2010.213553] [PMID: 20660697]
[130]
Cortez-Pinto H, Baptista A, Camilo ME, De Moura MC. Nonalcoholic steatohepatitis--a long-term follow-up study: comparison with alcoholic hepatitis in ambulatory and hospitalized patients. Dig Dis Sci 2003; 48(10): 1909-13.
[http://dx.doi.org/10.1023/A:1026152415917] [PMID: 14627331]
[131]
Solà R, Alvarez MA, Ballesté B, et al. Probability of liver cancer and survival in HCV-related or alcoholic-decompensated cirrhosis. A study of 377 patients. Liver Int 2006; 26(1): 62-72.
[http://dx.doi.org/10.1111/j.1478-3231.2005.01181.x] [PMID: 16420511]
[132]
White DL, Kanwal F, El-Serag HB. Association between nonalcoholic fatty liver disease and risk for hepatocellular cancer, based on systematic review. Clin Gastroenterol Hepatol 2012; 10: 1342-59. e1342
[http://dx.doi.org/10.1016/j.cgh.2012.10.001]
[133]
Kodama K, Tokushige K, Hashimoto E, Taniai M, Shiratori K. Hepatic and extrahepatic malignancies in cirrhosis caused by nonalcoholic steatohepatitis and alcoholic liver disease. Alcohol Clin Exp Res 2013; 37(Suppl. 1): E247-52.
[http://dx.doi.org/10.1111/j.1530-0277.2012.01900.x] [PMID: 23320802]
[134]
Hashimoto E, Taniai M, Kaneda H, et al. Comparison of hepatocellular carcinoma patients with alcoholic liver disease and nonalcoholic steatohepatitis. Alcohol Clin Exp Res 2004; 28(8)(Suppl Proceedings): 164S-8S.
[http://dx.doi.org/10.1111/j.1530-0277.2004.tb03237.x] [PMID: 15318106]
[135]
Kawada N, Imanaka K, Kawaguchi T, et al. Hepatocellular carcinoma arising from non-cirrhotic nonalcoholic steatohepatitis. J Gastroenterol 2009; 44(12): 1190-4.
[http://dx.doi.org/10.1007/s00535-009-0112-0] [PMID: 19672551]
[136]
Ertle J, Dechêne A, Sowa JP, et al. Non-alcoholic fatty liver disease progresses to hepatocellular carcinoma in the absence of apparent cirrhosis. Int J Cancer 2011; 128(10): 2436-43.
[http://dx.doi.org/10.1002/ijc.25797] [PMID: 21128245]
[137]
Sanyal AJ, Banas C, Sargeant C, et al. Similarities and differences in outcomes of cirrhosis due to nonalcoholic steatohepatitis and hepatitis C. Hepatology 2006; 43(4): 682-9.
[http://dx.doi.org/10.1002/hep.21103] [PMID: 16502396]
[138]
Yatsuji S, Hashimoto E, Tobari M, Taniai M, Tokushige K, Shiratori K. Clinical features and outcomes of cirrhosis due to non-alcoholic steatohepatitis compared with cirrhosis caused by chronic hepatitis C. J Gastroenterol Hepatol 2009; 24(2): 248-54.
[http://dx.doi.org/10.1111/j.1440-1746.2008.05640.x] [PMID: 19032450]
[139]
Nyblom H, Berggren U, Balldin J, Olsson R. High AST/ALT ratio may indicate advanced alcoholic liver disease rather than heavy drinking. Alcohol Alcohol 2004; 39(4): 336-9.
[http://dx.doi.org/10.1093/alcalc/agh074] [PMID: 15208167]
[140]
Sorbi D, Boynton J, Lindor KD. The ratio of aspartate aminotransferase to alanine aminotransferase: potential value in differentiating nonalcoholic steatohepatitis from alcoholic liver disease. Am J Gastroenterol 1999; 94(4): 1018-22.
[http://dx.doi.org/10.1111/j.1572-0241.1999.01006.x] [PMID: 10201476]
[141]
Dunn W, Angulo P, Sanderson S, et al. Utility of a new model to diagnose an alcohol basis for steatohepatitis. Gastroenterology 2006; 131(4): 1057-63.
[http://dx.doi.org/10.1053/j.gastro.2006.08.020] [PMID: 17030176]
[142]
Cerović I, Mladenović D, Ješić R, et al. Alcoholic liver disease/nonalcoholic fatty liver disease index: distinguishing alcoholic from nonalcoholic fatty liver disease. Eur J Gastroenterol Hepatol 2013; 25(8): 899-904.
[http://dx.doi.org/10.1097/MEG.0b013e32835f0786] [PMID: 23426271]
[143]
Conigrave KM, Davies P, Haber P, Whitfield JB. Traditional markers of excessive alcohol use. Addiction 2003; 98(Suppl. 2): 31-43.
[http://dx.doi.org/10.1046/j.1359-6357.2003.00581.x] [PMID: 14984240]
[144]
Scaglioni F, Ciccia S, Marino M, Bedogni G, Bellentani S. ASH and NASH. Dig Dis 2011; 29(2): 202-10.
[http://dx.doi.org/10.1159/000323886] [PMID: 21734385]
[145]
Leoni S, Tovoli F, Napoli L, Serio I, Ferri S, Bolondi L. Current guidelines for the management of non-alcoholic fatty liver disease: A systematic review with comparative analysis. World J Gastroenterol 2018; 24(30): 3361-73.
[http://dx.doi.org/10.3748/wjg.v24.i30.3361] [PMID: 30122876]
[146]
Moreno C, Mueller S, Szabo G. Non-invasive diagnosis and biomarkers in alcohol-related liver disease. J Hepatol 2019; 70(2): 273-83.
[http://dx.doi.org/10.1016/j.jhep.2018.11.025] [PMID: 30658728]
[147]
Bedogni G, Bellentani S, Miglioli L, et al. The Fatty Liver Index: a simple and accurate predictor of hepatic steatosis in the general population. BMC Gastroenterol 2006; 6: 33.
[http://dx.doi.org/10.1186/1471-230X-6-33] [PMID: 17081293]
[148]
Bedogni G, Kahn HS, Bellentani S, Tiribelli C. A simple index of lipid overaccumulation is a good marker of liver steatosis. BMC Gastroenterol 2010; 10: 98.
[http://dx.doi.org/10.1186/1471-230X-10-98] [PMID: 20738844]
[149]
Poynard T, Ratziu V, Naveau S, et al. The diagnostic value of biomarkers (SteatoTest) for the prediction of liver steatosis. Comp Hepatol 2005; 4: 10.
[http://dx.doi.org/10.1186/1476-5926-4-10] [PMID: 16375767]
[150]
Kotronen A, Peltonen M, Hakkarainen A, et al. Prediction of non-alcoholic fatty liver disease and liver fat using metabolic and genetic factors. Gastroenterology 2009; 137(3): 865-72.
[http://dx.doi.org/10.1053/j.gastro.2009.06.005] [PMID: 19524579]
[151]
Gastaldelli A, Kozakova M, Højlund K, et al. Fatty liver is associated with insulin resistance, risk of coronary heart disease, and early atherosclerosis in a large European population. Hepatology 2009; 49(5): 1537-44.
[http://dx.doi.org/10.1002/hep.22845] [PMID: 19291789]
[152]
Fedchuk L, Nascimbeni F, Pais R, et al. Performance and limitations of steatosis biomarkers in patients with nonalcoholic fatty liver disease. Aliment Pharmacol Ther 2014; 40(10): 1209-22.
[http://dx.doi.org/10.1111/apt.12963] [PMID: 25267215]
[153]
Saadeh S, Younossi ZM, Remer EM, et al. The utility of radiological imaging in nonalcoholic fatty liver disease. Gastroenterology 2002; 123(3): 745-50.
[http://dx.doi.org/10.1053/gast.2002.35354] [PMID: 12198701]
[154]
Angulo P. Nonalcoholic fatty liver disease. N Engl J Med 2002; 346(16): 1221-31.
[http://dx.doi.org/10.1056/NEJMra011775] [PMID: 11961152]
[155]
Schwenzer NF, Springer F, Schraml C, Stefan N, Machann J, Schick F. Non-invasive assessment and quantification of liver steatosis by ultrasound, computed tomography and magnetic resonance. J Hepatol 2009; 51(3): 433-45.
[http://dx.doi.org/10.1016/j.jhep.2009.05.023] [PMID: 19604596]
[156]
Lupşor-Platon M, Stefănescu H, Mureșan D, et al. Noninvasive assessment of liver steatosis using ultrasound methods. Med Ultrason 2014; 16(3): 236-45.
[PMID: 25110765]
[157]
Dulai PS, Sirlin CB, Loomba R. MRI and MRE for non-invasive quantitative assessment of hepatic steatosis and fibrosis in NAFLD and NASH: Clinical trials to clinical practice. J Hepatol 2016; 65(5): 1006-16.
[http://dx.doi.org/10.1016/j.jhep.2016.06.005] [PMID: 27312947]
[158]
Szczepaniak LS, Nurenberg P, Leonard D, et al. Magnetic resonance spectroscopy to measure hepatic triglyceride content: prevalence of hepatic steatosis in the general population. Am J Physiol Endocrinol Metab 2005; 288(2): E462-8.
[http://dx.doi.org/10.1152/ajpendo.00064.2004] [PMID: 15339742]
[159]
Permutt Z, Le TA, Peterson MR, et al. Correlation between liver histology and novel magnetic resonance imaging in adult patients with non-alcoholic fatty liver disease - MRI accurately quantifies hepatic steatosis in NAFLD. Aliment Pharmacol Ther 2012; 36(1): 22-9.
[http://dx.doi.org/10.1111/j.1365-2036.2012.05121.x] [PMID: 22554256]
[160]
Noureddin M, Lam J, Peterson MR, et al. Utility of magnetic resonance imaging versus histology for quantifying changes in liver fat in nonalcoholic fatty liver disease trials. Hepatology 2013; 58(6): 1930-40.
[http://dx.doi.org/10.1002/hep.26455] [PMID: 23696515]
[161]
Noureddin M, Yates KP, Vaughn IA, et al. Clinical and histological determinants of nonalcoholic steatohepatitis and advanced fibrosis in elderly patients. Hepatology 2013; 58(5): 1644-54.
[http://dx.doi.org/10.1002/hep.26465] [PMID: 23686698]
[162]
Sasso M, Beaugrand M, de Ledinghen V, et al. Controlled attenuation parameter (CAP): a novel VCTE™ guided ultrasonic attenuation measurement for the evaluation of hepatic steatosis: preliminary study and validation in a cohort of patients with chronic liver disease from various causes. Ultrasound Med Biol 2010; 36(11): 1825-35.
[http://dx.doi.org/10.1016/j.ultrasmedbio.2010.07.005] [PMID: 20870345]
[163]
de Lédinghen V, Vergniol J, Capdepont M, et al. Controlled attenuation parameter (CAP) for the diagnosis of steatosis: a prospective study of 5323 examinations. J Hepatol 2014; 60(5): 1026-31.
[http://dx.doi.org/10.1016/j.jhep.2013.12.018] [PMID: 24378529]
[164]
Thiele M, Rausch V, Fluhr G, et al. Controlled attenuation parameter and alcoholic hepatic steatosis: Diagnostic accuracy and role of alcohol detoxification. J Hepatol 2018; 68(5): 1025-32.
[http://dx.doi.org/10.1016/j.jhep.2017.12.029] [PMID: 29343427]
[165]
Ratziu V, Massard J, Charlotte F, et al. Diagnostic value of biochemical markers (FibroTest-FibroSURE) for the prediction of liver fibrosis in patients with non-alcoholic fatty liver disease. BMC Gastroenterol 2006; 6: 6.
[http://dx.doi.org/10.1186/1471-230X-6-6] [PMID: 16503961]
[166]
Guha IN, Parkes J, Roderick P, et al. Noninvasive markers of fibrosis in nonalcoholic fatty liver disease: Validating the European Liver Fibrosis Panel and exploring simple markers. Hepatology 2008; 47(2): 455-60.
[http://dx.doi.org/10.1002/hep.21984] [PMID: 18038452]
[167]
Calès P, Lainé F, Boursier J, et al. Comparison of blood tests for liver fibrosis specific or not to NAFLD. J Hepatol 2009; 50(1): 165-73.
[http://dx.doi.org/10.1016/j.jhep.2008.07.035] [PMID: 18977552]
[168]
Rosenberg WM, Voelker M, Thiel R, et al. Serum markers detect the presence of liver fibrosis: a cohort study. Gastroenterology 2004; 127(6): 1704-13.
[http://dx.doi.org/10.1053/j.gastro.2004.08.052] [PMID: 15578508]
[169]
Xie Q, Zhou X, Huang P, Wei J, Wang W, Zheng S. The performance of enhanced liver fibrosis (ELF) test for the staging of liver fibrosis: a meta-analysis. PLoS One 2014; 9(4): e92772
[http://dx.doi.org/10.1371/journal.pone.0092772] [PMID: 24736610]
[170]
Fagan KJ, Pretorius CJ, Horsfall LU, et al. ELF score ≥9.8 indicates advanced hepatic fibrosis and is influenced by age, steatosis and histological activity. Liver Int 2015; 35(6): 1673-81.
[http://dx.doi.org/10.1111/liv.12760] [PMID: 25495373]
[171]
Mueller S, Seitz HK, Rausch V. Non-invasive diagnosis of alcoholic liver disease. World J Gastroenterol 2014; 20(40): 14626-41.
[http://dx.doi.org/10.3748/wjg.v20.i40.14626] [PMID: 25356026]
[172]
Reiberger T, Ferlitsch A, Payer BA, et al. Noninvasive screening for liver fibrosis and portal hypertension by transient elastography--a large single center experience. Wien Klin Wochenschr 2012; 124(11-12): 395-402.
[http://dx.doi.org/10.1007/s00508-012-0190-5] [PMID: 22699260]
[173]
Nguyen-Khac E, Chatelain D, Tramier B, et al. Assessment of asymptomatic liver fibrosis in alcoholic patients using fibroscan: prospective comparison with seven non-invasive laboratory tests. Aliment Pharmacol Ther 2008; 28(10): 1188-98.
[http://dx.doi.org/10.1111/j.1365-2036.2008.03831.x] [PMID: 18705692]
[174]
Mueller S, Sandrin L. Liver stiffness: a novel parameter for the diagnosis of liver disease. Hepat Med 2010; 2: 49-67.
[http://dx.doi.org/10.2147/HMER.S7394] [PMID: 24367208]
[175]
Palmeri ML, Wang MH, Rouze NC, et al. Noninvasive evaluation of hepatic fibrosis using acoustic radiation force-based shear stiffness in patients with nonalcoholic fatty liver disease. J Hepatol 2011; 55(3): 666-72.
[http://dx.doi.org/10.1016/j.jhep.2010.12.019] [PMID: 21256907]
[176]
Poynard T, Munteanu M, Luckina E, et al. Liver fibrosis evaluation using real-time shear wave elastography: applicability and diagnostic performance using methods without a gold standard. J Hepatol 2013; 58(5): 928-35.
[http://dx.doi.org/10.1016/j.jhep.2012.12.021] [PMID: 23321316]
[177]
Mannelli L, Godfrey E, Graves MJ, et al. Magnetic resonance elastography: feasibility of liver stiffness measurements in healthy volunteers at 3T. Clin Radiol 2012; 67(3): 258-62.
[http://dx.doi.org/10.1016/j.crad.2011.08.022] [PMID: 22014555]
[178]
Lee MS, Bae JM, Joo SK, et al. Prospective comparison among transient elastography, supersonic shear imaging, and ARFI imaging for predicting fibrosis in nonalcoholic fatty liver disease. PLoS One 2017; 12(11): e0188321
[http://dx.doi.org/10.1371/journal.pone.0188321] [PMID: 29176844]
[179]
Cassinotto C, Lapuyade B, Mouries A, et al. Non-invasive assessment of liver fibrosis with impulse elastography: comparison of Supersonic Shear Imaging with ARFI and FibroScan®. J Hepatol 2014; 61(3): 550-7.
[http://dx.doi.org/10.1016/j.jhep.2014.04.044] [PMID: 24815876]
[180]
Ratziu V, Martin L, Fedchuk L, Poynard T. Can nonalcoholic steatohepatitis be diagnosed without liver biopsy? Biomarkers Med 2009; 3(4): 353-61.
[http://dx.doi.org/10.2217/bmm.09.36] [PMID: 20477484]
[181]
Poynard T, Ratziu V, Charlotte F, et al. Diagnostic value of biochemical markers (NashTest) for the prediction of non alcoholo steato hepatitis in patients with non-alcoholic fatty liver disease. BMC Gastroenterol 2006; 6: 34.
[http://dx.doi.org/10.1186/1471-230X-6-34] [PMID: 17096854]
[182]
Feldstein AE, Wieckowska A, Lopez AR, Liu YC, Zein NN, McCullough AJ. Cytokeratin-18 fragment levels as noninvasive biomarkers for nonalcoholic steatohepatitis: a multicenter validation study. Hepatology 2009; 50(4): 1072-8.
[http://dx.doi.org/10.1002/hep.23050] [PMID: 19585618]
[183]
Gonzalez-Quintela A, García J, Campos J, et al. Serum cytokeratins in alcoholic liver disease: contrasting levels of cytokeratin-18 and cytokeratin-19. Alcohol 2006; 38(1): 45-9.
[http://dx.doi.org/10.1016/j.alcohol.2006.01.003] [PMID: 16762691]
[184]
Gonzalez-Quintela A, Abdulkader I, Campos J, Fernandez-Hernandez L, Lojo S. Serum levels of keratin-18 fragments [tissue polypeptide-specific antigen (TPS)] are correlated with hepatocyte apoptosis in alcoholic hepatitis. Dig Dis Sci 2009; 54(3): 648-53.
[http://dx.doi.org/10.1007/s10620-008-0371-2] [PMID: 18618253]
[185]
Cave M, Falkner KC, Henry L, Costello B, Gregory B, McClain CJ. Serum cytokeratin 18 and cytokine elevations suggest a high prevalence of occupational liver disease in highly exposed elastomer/polymer workers. J Occup Environ Med 2011; 53(10): 1128-33.
[http://dx.doi.org/10.1097/JOM.0b013e31822cfd68] [PMID: 21915069]
[186]
Hyun J, Jung Y. MicroRNAs in liver fibrosis: Focusing on the interaction with hedgehog signaling. World J Gastroenterol 2016; 22(29): 6652-62.
[http://dx.doi.org/10.3748/wjg.v22.i29.6652] [PMID: 27547008]
[187]
Loosen SH, Schueller F, Trautwein C, Roy S, Roderburg C. Role of circulating microRNAs in liver diseases. World J Hepatol 2017; 9(12): 586-94.
[http://dx.doi.org/10.4254/wjh.v9.i12.586] [PMID: 28515844]
[188]
Yeh MM, Brunt EM. Pathological features of fatty liver disease. Gastroenterology 2014; 147(4): 754-64.
[http://dx.doi.org/10.1053/j.gastro.2014.07.056] [PMID: 25109884]
[189]
Sakhuja P. Pathology of alcoholic liver disease, can it be differentiated from nonalcoholic steatohepatitis? World J Gastroenterol 2014; 20(44): 16474-9.
[http://dx.doi.org/10.3748/wjg.v20.i44.16474] [PMID: 25469015]
[190]
Tiniakos DG. Liver biopsy in alcoholic and non-alcoholic steatohepatitis patients. Gastroenterol Clin Biol 2009; 33(10-11): 930-9.
[http://dx.doi.org/10.1016/j.gcb.2009.05.009] [PMID: 19646834]
[191]
Uchida T, Kao H, Quispe-Sjogren M, Peters RL. Alcoholic foamy degeneration--a pattern of acute alcoholic injury of the liver. Gastroenterology 1983; 84(4): 683-92.
[http://dx.doi.org/10.1016/0016-5085(83)90131-2] [PMID: 6825980]
[192]
Yip WW, Burt AD. Alcoholic liver disease. Semin Diagn Pathol 2006; 23(3-4): 149-60.
[http://dx.doi.org/10.1053/j.semdp.2006.11.002] [PMID: 17355088]
[193]
Edmondson HA, Peters RL, Reynolds TB, Kuzma OT. Sclerosing hyaline necrosis of the liver in the chronic alcoholic. A recognizable clinical syndrome. Ann Intern Med 1963; 59: 646-73.
[http://dx.doi.org/10.7326/0003-4819-59-5-646] [PMID: 14082718]
[194]
Nakano M, Fukusato T. Histological study on comparison between NASH and ALD. Hepatol Res 2005; 33(2): 110-5.
[http://dx.doi.org/10.1016/j.hepres.2005.09.016] [PMID: 16219486]
[195]
Nakano M. Histological study on the resemblance and difference between non-alcoholic steatohepatitis (NASH) and alcoholic liver diseases (ALD). Alcohol Clin Exp Res 2005; 29(12)(Suppl.): 230S-5S.
[http://dx.doi.org/10.1097/01.alc.0000191948.27106.85] [PMID: 16385228]
[196]
Katoonizadeh A, Laleman W, Verslype C, et al. Early features of acute-on-chronic alcoholic liver failure: a prospective cohort study. Gut 2010; 59(11): 1561-9.
[http://dx.doi.org/10.1136/gut.2009.189639] [PMID: 20675694]
[197]
Mookerjee RP, Lackner C, Stauber R, et al. The role of liver biopsy in the diagnosis and prognosis of patients with acute deterioration of alcoholic cirrhosis. J Hepatol 2011; 55(5): 1103-11.
[http://dx.doi.org/10.1016/j.jhep.2011.02.021] [PMID: 21376092]
[198]
Spahr L, Rubbia-Brandt L, Genevay M, Hadengue A, Giostra E. Early liver biopsy, intraparenchymal cholestasis, and prognosis in patients with alcoholic steatohepatitis. BMC Gastroenterol 2011; 11: 115.
[http://dx.doi.org/10.1186/1471-230X-11-115] [PMID: 22035247]
[199]
Altamirano J, Miquel R, Katoonizadeh A, et al. A histologic scoring system for prognosis of patients with alcoholic hepatitis. Gastroenterology 2014; 146: 1231-9..
[http://dx.doi.org/10.1053/j.gastro.2014.01.018]
[200]
Randall B. Sudden death and hepatic fatty metamorphosis. A North Carolina survey. JAMA 1980; 243(17): 1723-5.
[http://dx.doi.org/10.1001/jama.1980.03300430025017] [PMID: 7365935]
[201]
Wanless IR. Quantitative SHG-microscopy: Unraveling the nano-architecture of the cirrhotic liver. Clin Res Hepatol Gastroenterol 2019 ; 44(1): 1-3.
[http://dx.doi.org/10.1016/j.clinre.2019.07.009] [PMID: 31416788]
[202]
Forgione A, Miele L, Cefalo C, Gasbarrini G, Grieco A. Alcoholic and nonalcoholic forms of fatty liver disease. Minerva Gastroenterol Dietol 2007; 53(1): 83-100.
[PMID: 17415346]
[203]
Dunn W, Sanyal AJ, Brunt EM, et al. Modest alcohol consumption is associated with decreased prevalence of steatohepatitis in patients with non-alcoholic fatty liver disease (NAFLD). J Hepatol 2012; 57(2): 384-91.
[http://dx.doi.org/10.1016/j.jhep.2012.03.024] [PMID: 22521357]
[204]
Kwon HK, Greenson JK, Conjeevaram HS. Effect of lifetime alcohol consumption on the histological severity of non-alcoholic fatty liver disease. Liver Int 2014; 34(1): 129-35.
[http://dx.doi.org/10.1111/liv.12230] [PMID: 23809459]
[205]
Ekstedt M, Franzén LE, Holmqvist M, et al. Alcohol consumption is associated with progression of hepatic fibrosis in non-alcoholic fatty liver disease. Scand J Gastroenterol 2009; 44(3): 366-74.
[http://dx.doi.org/10.1080/00365520802555991] [PMID: 19016382]
[206]
Ascha MS, Hanouneh IA, Lopez R, Tamimi TA, Feldstein AF, Zein NN. The incidence and risk factors of hepatocellular carcinoma in patients with nonalcoholic steatohepatitis. Hepatology 2010; 51(6): 1972-8.
[http://dx.doi.org/10.1002/hep.23527] [PMID: 20209604]
[207]
Ndugga N, Lightbourne TG, Javaherian K, et al. Disparities between research attention and burden in liver diseases: implications on uneven advances in pharmacological therapies in Europe and the USA. BMJ Open 2017; 7(3)e013620
[http://dx.doi.org/10.1136/bmjopen-2016-013620] [PMID: 28336739]
[208]
Mizrahi M, Shabat Y, Ben Ya’acov A, et al. Alleviation of insulin resistance and liver damage by oral administration of Imm124-E is mediated by increased Tregs and associated with increased serum GLP-1 and adiponectin: results of a phase I/II clinical trial in NASH. J Inflamm Res 2012; 5: 141-50.
[PMID: 23293533]
[209]
Verbeke L, Farre R, Trebicka J, et al. Obeticholic acid, a farnesoid X receptor agonist, improves portal hypertension by two distinct pathways in cirrhotic rats. Hepatology 2014; 59(6): 2286-98.
[http://dx.doi.org/10.1002/hep.26939] [PMID: 24259407]
[210]
Iracheta-Vellve A, Calenda CD, Petrasek J, et al. FXR and TGR5 Agonists Ameliorate Liver Injury, Steatosis, and Inflammation After Binge or Prolonged Alcohol Feeding in Mice. Hepatol Commun 2018; 2(11): 1379-91.
[http://dx.doi.org/10.1002/hep4.1256] [PMID: 30411084]
[211]
Friedman SL, Ratziu V, Harrison SA, et al. A randomized, placebo-controlled trial of cenicriviroc for treatment of nonalcoholic steatohepatitis with fibrosis. Hepatology 2018; 67(5): 1754-67.
[http://dx.doi.org/10.1002/hep.29477] [PMID: 28833331]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy