Generic placeholder image

Recent Patents on Mechanical Engineering

Editor-in-Chief

ISSN (Print): 2212-7976
ISSN (Online): 1874-477X

Review Article

Recent Patents on Roll Crushing Mills for Selective Crushing of Coal and Gangue

Author(s): Daolong Yang*, Yanxiang Wang, Bangsheng Xing, Yanting Yu, Yuntao Wang and Youtao Xia

Volume 13, Issue 1, 2020

Page: [2 - 12] Pages: 11

DOI: 10.2174/2212797613666200109112255

Price: $65

Abstract

Background: Gangue is the concomitant product of coal mining. The traditional approach for gangue treatment is to transport it from underground to ground level to accumulate and form gangue hills.

Objective: On the basis of summarizing previous research results, this paper introduces the hydraulic roller crusher and the electric machine built-in coal gangue roller crusher, which avoids the complex transmission problems caused by the movement of the central axis when the roller crusher is allowed to roll.

Methods: The hydraulic counter-roll crusher directly separates large pieces of coal and underground gangue such that large pieces of coal gangue do not escape from the well. The electric machine built-in roller crusher is an explosion-proof electric machine used in the crushing roller.

Results: Both of these crushers can be used in the selective crushing technology of coal gangue in a coal mine and can meet the requirements of crushing different material sizes and generally avoid the centre of the roller crusher.

Conclusion: Both of these crushers reduce transportation costs, minimise land occupation, prevent surface subsidence, decrease environmental treatment costs, reduce environmental pollution, and decrease the transport volume of gangue underground. Various patents have been discussed in this article.

Keywords: Counter roller crusher, coal gangue, crushing, let roll, patent, selective crushing technology, separation of coal and gangue.

[1]
Yang DL, Li JP, Zheng KH, Du CL, Liu SY. Particle size distribution of coal and gangue after impact-crush separation. J Cent South Univ 2017; 24(6): 1252-62.
[http://dx.doi.org/10.1007/s11771-017-3529-2]
[2]
Yang DL, Li JP, Zheng KH, Du CL, Liu SY. Impact-crush separation characteristics of coal and gangue. Int J Coal Prep Util 2018; 38(3): 127-34.
[http://dx.doi.org/10.1080/19392699.2016.1207634]
[3]
Yang DL, Li JP, Xing BS, Wang YX. Recent patents on gangue pneumatic filling for coal auger mining method. Recent Pat Mech Eng 2018; 11(1): 31-40.
[http://dx.doi.org/10.2174/2212797611666180118094926]
[4]
Yang DL, Xing BS, Li JP, Wang YX. Recent patents on pressurization and dedusting for pneumatic conveying. Recent Pat Mech Eng 2018; 11(3): 180-9.
[http://dx.doi.org/10.2174/2212797611666180713104013]
[5]
Yang DL, Xing BS, Li JP, Wang YX, Hu NN, Jiang SB. Experiment and simulation analysis of the suspension behavior of large (5-30mm) nonspherical particles in vertical pneumatic conveying. Powder Technol 2019; 354: 442-55.
[http://dx.doi.org/10.1016/j.powtec.2019.06.023]
[6]
Li ZL. Yang DL, Xing BS, Li JP, Wang YX, Gao KD, Zhou F, et al. Experimental study on the injection performance of the gas-solid injector for large coal particles. Powder Technol 2019.
[http://dx.doi.org/10.1016/j.powtec.2019.11.087]
[7]
Li ZL. Efficient paired roller type crushing machine. CN107876141 (2018)
[8]
Wang Z. Roll rotary shaft, roll crusher and disassembly-assembly method. CN107552146 (2018)
[9]
Wu YS. Roll type tooth roller abrasion detecting device for double- tooth-roller crusher. CN107913762 (2018)
[10]
Shen RX. Detachable single-roll crusher. CN107626413 (2017)
[11]
Zhang RB. Double-roll crusher. CN107511203 (2017)
[12]
Zhang SH, Liu WD, Shi HH, Jiang LH, Hong X, Sun XR. Small stone crusher used for mine. CN107051639 (2017)
[13]
Xu GP, Wang ZG. A roller-type coal mine crusher. CN206334711 (2017)
[14]
Zhang ZT, Xu SH, Zhu X. Environment-friendly dust removal type ore crusher. CN107413472 (2017)
[15]
Chen YJ, Chen BJ, Chen F, Ma WL. Double-roller crusher. CN107199074 (2017)
[16]
Shi CS, Tang JF. Rotary shaft roll crusher. CN107694685 (2017)
[17]
Qian JN. Ore crusher for mine. CN106345563 (2017)
[18]
Jia FJ, Lu XS, Sun JF. Hydraulic control system for overcoming harmful oscillation of oil cylinder of four-roll crusher. CN107882823 (2016)
[19]
Szczelina P, Papajewski D, Schatz P. Roller crusher. CN104903001 (2015)
[20]
Papajewski D, Schatz P, Szczelina P. Roller crusher. AU2013339611 (2017)
[21]
Gui XH, Wang Q, Zhang HJ, et al. Selective crusher. CN104815715 (2015)
[22]
Hmlinen M. Crusher. US2015001325 (2015)
[23]
Yu P. Hydraulic toothed roll helical dual crusher. CN104907129 (2015)
[24]
Zhu Y. Roll crusher. CN104984785 (2015)
[25]
Zhang H, Liao ZG, Dai XM, Sheng W. Toothed roll crusher. CN105032540 (2015)
[26]
Croyle RC. Handling apparatus and methods for handling a roller of a roller crusher. US8973856 (2015)
[27]
Webster A. Monitoring device for a roller crusher. WO2014068453 (2014)
[28]
Iafrate JA. Roller jaw crusher system and method. US8702024 (2014)
[29]
Sun YP. Roll crushing mill for underground coal mine. CN104043511 (2014)
[30]
Huang KW. Vibration jaw-type roller crusher. CN104117399 (2014)
[31]
Jie YL. Four-roller crusher. CN103785499 (2014)
[32]
Reznitchenko V, Harbold K. Roller crusher with cheek plates. US8695907 (2014)
[33]
Reznitchenko V, Harbold K. Roller crusher, and method of protecting a roller crusher from uncrushable objects. CA2870881 (2013)
[34]
Schmidt M, Bailey W. Arc-shaped and polygonal crushing tooth arrangement in rotor crushers and roller crushers. CA2848983 (2014)
[35]
Hong W. Double-roller crusher. CN102989548 (2013)
[36]
Gronvall L. Roller crusher having at least one roller comprising a flange. AU2013203833 (2013)
[37]
Niklewski A. Test device for roller crusher. AU2013205189 (2013)
[38]
Niklewski A, Barscevicius P. Bearing arrangement for a roller crusher. EP2321053 (2011)
[39]
Su WM, Huang YS. Thrust adjustment device for roller crusher. CN202666915 (2013)
[40]
Dong HW, Wang XW, Dong JY, Sun BF, Ju EN. Singleroller crusher. CN103433094 (2013)
[41]
He ZX, Jing SZ. Toothed roller of crushing machine. CN103127980 (2013)
[42]
Wang QW, Ni J. Roller-type crusher. CN103203259 (2013)
[43]
Tang WD, Cui GJ, Xu B. Roll crusher. CN102784680 (2012)
[44]
Steinbrecher MW. Multi-purpose milling crusher. WO2011054339 (2011)
[45]
Zhang Q, Cao DY, Huo CS. Double roller crusher. CN101992138 (2011)
[46]
Shin HH, Kim S. Ceramic roller for crusher and manufacturing method thereof. KR20090046610 (2009)
[47]
Liu JG. Analysis of the working principle of the crusher of coal mechanized sampling equipment. Coal Quality Technol 2018; 2: 33-5.
[48]
Wei W. Analysis of roller surface wear of roller crusher. China Plant Eng 2018; 5: 97-8.
[49]
Hou Y, Xu YY, Yang HY, Yao J, Wu ZX, Zhang X. Effect of high pressure roller milling operating parameters on ball milling power index of magnetite. J Cent South Univ 2018; 49(1): 8-14.
[50]
Hou Y, Yin WZ, Yu GT, et al. Selective decomposition of molybdenum-copper ore in Bangpu by high-pressure roller mill and its mechanism. Nonferrous Met 2016; 26(7): 1538-46.
[51]
Chang XZ, Yao HL, Gao YH. Study on crushing process of double tooth roller crusher. Nonferrous Met 2017; 1: 55-9.
[52]
Ieberwirth H, Hillmann P, Hesse M. Dynamics in double roll crushers. Miner Eng 2017; 103-104: 60-6.
[http://dx.doi.org/10.1016/j.mineng.2016.08.009]
[53]
Wei ZB. Discussion on prolonging the service life of gear-to-roll crusher hobbing. Electr Fabricat 2017; 8: 35-6.
[54]
Tang Y, Yin WZ, Ma YQ, Chi XP, Huang FL. The mechanism of the effect of high-pressure roller mill on heap leaching of gold ores. Nonferrous Met 2016; 26(7): 1531-7.
[55]
Li GH. Installation, maintenance and troubleshooting of mine roll crusher. Informatization Construction 2016; 5: 310.
[56]
Peng JN. Particle crushing principle and application of roller press. Sichuan Cement 2016; 6: 10.
[57]
Liu HQ, Hong YH, Yang J. Reconstruction design of crusher for sintered coke powder fuel in Shaoguan Iron and Steel Co. Southern Metal 2015; 3: 48-9.
[58]
Pang SB. Design analysis of twin roll crusher. Industrial Design 2015; 5: 77-8.
[59]
Qiao YP, Zhang Y, Yang CR. Practice of technical transformation of a carbon leaching plant. Gold 2015; 36(7): 60-2.
[60]
Yu CH, Wang Y, Yang DB, Feng Y. Research and development of a roller crusher. Popular Sci Technol 2015; 17(7): 79-80.
[61]
Yang DB, Yu CH, Xu LZ. Research and development of a roller crusher with elastic protection device. Popular Sci Technol 2015; 17(6): 76-7.
[62]
Yang DB, Wang XJ, Yu CH. Development of a counter-roll crusher with baffle plate. Popular Sci Technol 2015; 17(7): 59-60.
[63]
Yang DB, Wang XJ, Yu CH. Development of a counter-roll crusher with a sweeping scraper. Popular Sci Technol 2015; 17(8): 73-80.
[64]
Yang DB, Feng Y, Xu SH, Yu CH. Research and development of a counter-roll crusher with oblique adjusting device. Popular Sci Technol 2015; 17(9): 93-4.
[65]
Liu L, Cao JC, Lu L, Guo ZX, Yue TB. Technical efficiency of grinding under different crushing methods. Nonferrous Met 2015; 25(9): 2565-74.
[66]
Wang YM. Installation, maintenance and troubleshooting of mine roller crusher. Heilongjiang Sci Technol Inf 2014; 2: 121.
[67]
Yang WJ, Deng XL, Xu H, Chen CH, Zhang Peng. Frame dynamics analysis of non-cylindrical counter-roller crusher. Mech Eng 2014; 2: 104-5.
[68]
Chen ZH, Deng XL, Zhang P, Xu H, Zhu LF, Yang WJ. Finite element analysis of dual-sping assembly in dual-roller crusher. Mech Res Appl 2014; 27(2): 76-8.
[69]
Xu H, Deng XL, Yang WJ, Zhang P, Chen ZH. Finite element analysis of non-cylindrical counter-roll crusher based on solid works. Mech Eng 2014; 3: 97-8.
[70]
Xu H. Influence of sample preparation method and sample preparation time on determination of cohesion index of Yanzhou coal. Coal Quality Technol 2010; 1: 28-9.
[71]
Yang BH. Application of high chromium roller-to-roller crusher in phosphorus ore processing. Sulphur Phosphorus & Bulk Materials Handling Related Eng 2014; 3: 35-7.
[72]
Zhang P, Deng XL, Chen ZH, Zhu LF, Xu H, Yang WJ. Design of new non-cylindrical roller crusher. Mining Machinery 2014; 42(5): 73-6.
[73]
van Schoor JCR, Sandenbergh RF. Evaluation of the batch press as a laboratory tool to simulate medium-pressure roller crushers. J South Afric Inst Min Metal 2012; 112(3): 185-96.
[74]
Mao CG, Zhou JY, Li Y. Design study of counter roller crusher. Coal Min Machinery 2012; 33(8): 24-6.
[75]
Kwon J, Cho H, Mun M, Kim K. Modeling of coal breakage in a double-roll crusher considering the reagglomeration phenomena. Powder Technol 2012; 232(12): 113-23.
[http://dx.doi.org/10.1016/j.powtec.2012.08.021]
[76]
Karimi HR, Djokoto SS. Instrumentation and modeling of high-pressure roller crusher for silicon carbide production. Int J Adv Manuf Technol 2012; 62(9-12): 1107-13.
[http://dx.doi.org/10.1007/s00170-011-3871-8]
[77]
Yuan ZT, Liu L, Yan Y, Han YX. Product size characteristics of low grade hematite in high pressure grinding roll. J Northeastern Univ (Nat Sci) 201l; 32(6): 875-.
[78]
Hua XJ, Yuan YP, Zhou CQ, Qiu P. Optimization and upgrading of sintering fuel crushing system at Jigang. Gansu Metallurg 2010; 32(5): 139-41.
[79]
Wang ZS, Chen ZL. Safety study of special roller crusher for coal mine explosive production. Safety Coal Mines 2010; 41(4): 78-80.
[80]
Soni SK, Shukla SC, Kundu G. Modeling of particle breakage in a smooth double roll crusher. Int J Miner Process 2009; 90(2): 97-100.
[http://dx.doi.org/10.1016/j.minpro.2008.10.007]
[81]
Cotabarren I, Schulz PG, Bucala V, Pina J. Modeling of an industrial double-roll crusher of a urea granulation circuit. Powder Technol 2008; 182(2): 224-30.
[http://dx.doi.org/10.1016/j.powtec.2007.07.023]
[82]
Di ZC, Yang FL, Cao Y. Optimization of particle size distribution in circulating fluidized beds via adjustment of crushers and tuning parameters of two-toothed roll crusher. Powder Technol 2019; 352: 151-8.
[http://dx.doi.org/10.1016/j.powtec.2019.04.068]
[83]
Johansson M, Evertsson M. A time dynamic model of a high pressure grinding rolls crusher. Miner Eng 2019; 132: 27-38.
[http://dx.doi.org/10.1016/j.mineng.2018.12.008]
[84]
Anticoi H, Guasch E, Ahmad Hamid S. An improved high-pressure roll crusher model for tungsten and tantalum ores. Minerals 2018; 8(11): 483.
[http://dx.doi.org/10.3390/min8110483]
[85]
Zhang ZL, Ren TZ, Cheng JY. The improved model of inter-particle breakage considering the transformation of particle shape for cone crusher. Miner Eng 2017; 112: 11-8.
[86]
Liu L, Tan Q, Liu L. Comparison of grinding characteristics in High-Pressure Grinding Roller (HPGR) and Cone Crusher (CC). Physicochem Probl Miner Proces 2017; 53(2): 1009-22.
[87]
Ma YJ, Fan XM, He QC. Prediction of cone crusher performance considering liner wear. Appl Sci (Basel) 2016; 6(12): 404.
[http://dx.doi.org/10.3390/app6120404]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy