Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

Research Article

Sensitivity Enhancement of Pre-Capillary Chelation Method for the Separation of Metal Ions: Experimental and DFT Study

Author(s): Suvardhan Kanchi*, Myalowenkosi I. Sabela, Mohd Shahbaaz and Krishna Bisetty

Volume 17, Issue 6, 2021

Published on: 08 January, 2020

Page: [839 - 848] Pages: 10

DOI: 10.2174/1573411016666200108145109

Price: $65

Abstract

Background: Heavy metal toxicity has proven to be a major threat and there are several health risks associated with it. The toxic effects of these metals, even though they do not have any biological role, remain present in some or the other form harmful for the human body and its proper functioning. They sometimes act as a pseudo-element of the body while at certain times they may even interfere with metabolic processes. Sensitivity enhancement and selective pre-capillary chelation and separation method was developed for the simultaneous determination of metal ions by capillary zone electrophoresis (CZE) with UV light as a detector.

Methods: This method was based on the chelation of metal ions such as nickel(II), cobalt(II), lead(II) and zinc(II) with 2.0 mM Ammonium Morpholine-4-Carbodithioate (AMC) at pH 7.2 prior to analysis in 2.0 mM of phosphate buffer.

Results: Different optimal conditions such as the effect of pH, concentration of AMC, applied voltage, nature of the buffer solution and excipient ions were investigated to enhance the sensitivity of the method.

Conclusion: The developed method separate nickel(II), cobalt(II), lead(II) & zinc(II) in less than 5 min with good reproducibility and recoveries ranging from 93.50 to 100.00% in agricultural materials. Furthermore, the interaction and Density Functional Theory (DFT) based studies reveal that the metal ions form relatively stable complexes with AMC and follow the experimental trend performed with CZE.

Keywords: Agricultural materials, ammonium morpholine-4-carbodithioate, capillary zone electrophoresis, metal ions, phosphate buffer, density functional theory.

Graphical Abstract

[1]
Grossman, P.D.; Colburn, J.C.; Lauer, H.H.; Nielsen, R.G.; Riggin, R.M.; Sittampalam, G.S.; Rickard, E.C. Application of free-solution capillary electrophoresis to the analytical scale separation of proteins and peptides. Anal. Chem., 1989, 61(11), 1186-1194.
[http://dx.doi.org/10.1021/ac00186a003] [PMID: 2757205]
[2]
Soylak, M.; Saracoglu, S.; Divrikli, U.; Elci, L. Coprecipitation of heavy metals with erbium hydroxide for their flame atomic absorption spectrometric determinations in environmental samples. Talanta, 2005, 66(5), 1098-1102.
[http://dx.doi.org/10.1016/j.talanta.2005.01.030] [PMID: 18970095]
[3]
Pourreza, N.; Zolgharnein, J.; Kiasat, A.R.; Dastyar, T. Silica gel-polyethylene glycol as a new adsorbent for solid phase extraction of cobalt and nickel and determination by flame atomic absorption spectrometry. Talanta, 2010, 81(3), 773-777.
[http://dx.doi.org/10.1016/j.talanta.2010.01.010] [PMID: 20298852]
[4]
Soylak, M.; Narin, I.; Dogan, M. Trace enrichment and atomic absorption spectrometric determination of lead, copper, cadmium and nickel in drinking water samples by use of an activated carbon column. Anal. Lett., 1997, 30, 2801-2810.
[http://dx.doi.org/10.1080/00032719708001823]
[5]
Soylak, M.; Türkoglu, O. Trace metal accumulation caused by traffic in an agricultural soil near a motorway in Kayseri, Turkey. J. Trace Microprobe Techniques, 1999, 17, 209-217.
[6]
Berton, P.; Wuilloud, R.G. Highly selective ionic liquid-based microextraction method for sensitive trace cobalt determination in environmental and biological samples. Anal. Chim. Acta, 2010, 662(2), 155-162.
[http://dx.doi.org/10.1016/j.aca.2010.01.012] [PMID: 20171314]
[7]
Citak, D.; Tuzen, M. A novel preconcentration procedure using cloud point extraction for determination of lead, cobalt and copper in water and food samples using flame atomic absorption spectrometry. Food Chem. Toxicol., 2010, 48(5), 1399-1404.
[http://dx.doi.org/10.1016/j.fct.2010.03.008] [PMID: 20226223]
[8]
Hosseni, M.; Dalali, N.; Karimi, A.; Dastanra, K. Solid phase extraction of copper, nickel, and cobalt in water samples after extraction using surfactant coated alumina modified with indane-1, 2, 3-trione 1, 2-dioxime and determination by flame atomic absorption spectrometry. Turk. J. Chem., 2010, 34, 805-814.
[9]
Afridi, H.I.; Kazi, T.G.; Kazi, N.G.; Jamali, M.K.; Arain, M.B. Sirajuddin; Kandhro, G.A.; Shah, A.Q.; Baig, J.A. Evaluation of arsenic, cobalt, copper and manganese in biological Samples of Steel mill workers by electrothermal atomic absorption Spectrometry. Toxicol. Ind. Health, 2009, 25(1), 59-69.
[http://dx.doi.org/10.1177/0748233709103036] [PMID: 19318505]
[10]
Weng, C-H.; Lin, Y-T.; Tzeng, T-W. Removal of methylene blue from aqueous solution by adsorption onto pineapple leaf powder. J. Hazard. Mater., 2009, 170(1), 417-424.
[http://dx.doi.org/10.1016/j.jhazmat.2009.04.080] [PMID: 19447547]
[11]
Olivera, S.; Chaitra, K.; Venkatesh, K.; Muralidhara, H.B.; Asiri, A.M.; Ahamed, M.I. Cerium dioxide and composites for the removal of toxic metal ions. Environ. Chem. Lett., 2018, 16, 1233-1246.
[http://dx.doi.org/10.1007/s10311-018-0747-2]
[12]
Ibrahim, G.S.; Isloor, A.M.; Asiri, A.M.; Ismail, A.; Kumar, R.; Ahamed, M.I. Performance intensification of the polysulfone ultrafiltration membrane by blending with copolymer encompassing novel derivative of poly (styrene-co-maleic anhydride) for heavy metal removal from wastewater. Chem. Eng. J., 2018, 353, 425-435.
[http://dx.doi.org/10.1016/j.cej.2018.07.098]
[13]
Cai, Y.; Jiang, G.; Liu, J. Preconcentration of cobalt with 8-hydroxyquinoline and gas chromatographic stationary phase Chromosorb 105 and its determination by graphite furnace atomic absorption spectrometry. Talanta, 2002, 57(6), 1173-1180.
[http://dx.doi.org/10.1016/S0039-9140(02)00194-7] [PMID: 18968723]
[14]
Ilander, A.; Väisänen, A. An ultrasound-assisted digestion method for the determination of toxic element concentrations in ash samples by inductively coupled plasma optical emission spectrometry. Anal. Chim. Acta, 2007, 602(2), 195-201.
[http://dx.doi.org/10.1016/j.aca.2007.09.015] [PMID: 17933604]
[15]
Afkhami, A.; Bahram, M. H-point standard addition method for simultaneous spectrophotometric determination of Co(II) and Ni(II) by 1-(2-pyridylazo)2-naphthol in micellar media. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2004, 60(1-2), 181-186.
[http://dx.doi.org/10.1016/S1386-1425(03)00192-6] [PMID: 14670476]
[16]
Safavi, A.; Abdollahi, H.; Hormozi Nezhad, M.R.; Kamali, R. Cloud point extraction, preconcentration and simultaneous spectrophotometric determination of nickel and cobalt in water samples. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2004, 60(12), 2897-2901.
[http://dx.doi.org/10.1016/j.saa.2004.02.001] [PMID: 15350927]
[17]
Ahmed, M.J.; Uddin, M.N. A simple spectrophotometric method for the determination of cobalt in industrial, environmental, biological and soil samples using bis(salicylaldehyde)orthophenylene-diamine. Chemosphere, 2007, 67(10), 2020-2027.
[http://dx.doi.org/10.1016/j.chemosphere.2006.11.020] [PMID: 17215023]
[18]
Karimi, H.; Ghaedi, M.; Shokrollahi, A.; Rajabi, H.R.; Soylak, M.; Karami, B. Development of a selective and sensitive flotation method for determination of trace amounts of cobalt, nickel, copper and iron in environmental samples. J. Hazard. Mater., 2008, 151(1), 26-32.
[http://dx.doi.org/10.1016/j.jhazmat.2007.05.051] [PMID: 17602834]
[19]
Sabermahani, F.; Taher, M.A. Determination of trace amounts of nickel, manganese, cobalt, and zinc in environmental samples after separation and preconcentration by use of polyacrylic acid/alumina sorbent. J. AOAC Int., 2008, 91(3), 646-652.
[PMID: 18567312]
[20]
Moghimi, A.; Tajodini, N. Preconcentration of copper (II) in water samples using polyurethane foam/2-(6¢-ethyl-2¢-benzothiazolylazo) chromotropic acid. Asian J. Chem., 2010, 22, 3325-3334.
[21]
Jinendra, U.; Bilehal, D.; Nagabhushana, B.; Reddy, K.R.; Reddy, C.V.; Raghu, A.V. Template-free hydrothermal synthesis of hexa ferrite nanoparticles and its adsorption capability for different organic dyes: Comparative adsorption studies, isotherms and kinetic studies. Mat. Sci. Energy Technol., 2019, 2, 657-666.
[http://dx.doi.org/10.1016/j.mset.2019.08.005]
[22]
Fang, L.; Li, L.; Qu, Z.; Xu, H.; Xu, J.; Yan, N. A novel method for the sequential removal and separation of multiple heavy metals from wastewater. J. Hazard. Mater., 2018, 342, 617-624.
[http://dx.doi.org/10.1016/j.jhazmat.2017.08.072] [PMID: 28892798]
[23]
Crouch, E.; Cowell, D.C.; Hoskins, S.; Pittson, R.W.; Hart, J.P. Amperometric, screen-printed, glucose biosensor for analysis of human plasma samples using a biocomposite water-based carbon ink incorporating glucose oxidase. Anal. Biochem., 2005, 347(1), 17-23.
[http://dx.doi.org/10.1016/j.ab.2005.08.011] [PMID: 16266677]
[24]
Singh, A.K.; Singh, P.; Bhattacharjee, G. Determination of cobalt ions at nano-level based on newly synthesized pendant armed macrocycle by polymeric membrane and coated graphite electrode. Talanta, 2009, 80(2), 685-693.
[http://dx.doi.org/10.1016/j.talanta.2009.07.049] [PMID: 19836538]
[25]
Kanchi, S.; Saraswathi, K.; Venkatasubba Naidu, N. The determination of cobalt(II) at DME using catalytic hydrogen current technique in various water samples, agricultural materials and pharmaceuticals. Environ. Monit. Assess., 2011, 183(1-4), 531-543.
[http://dx.doi.org/10.1007/s10661-011-1938-5] [PMID: 21380921]
[26]
Kanchi, S.; Saraswathi, K.; Naidu, N.V. Voltammetric method for manganese analysis in Indian traditional leafy vegetables and medicinal plants collected around Tirupati town, a famous pilgrim center in India: the catalytic hydrogen wave (CHW) technique. Food Anal. Methods, 2012, 5, 69-81.
[http://dx.doi.org/10.1007/s12161-011-9211-7]
[27]
Kanchi, S.; Singh, P.; Sabela, M.I.; Naidu, N.V.; Bisetty, K. Polarographic catalytic hydrogen wave technique for the determination of copper (II) in leafy vegetables and biological samples. Int. J. Electrochem. Sci., 2013, 8, 4260-4282.
[28]
Kanchi, S.; Sulochana, M.; Naidu, K.B.; Saraswathi, K.; Naidu, N.V. Dithiocarbamates as a sensitive electroanalytical reagent: determination of chromium by catalytic hydrogen wave at dme in water systems and vegetables. Food Anal. Methods, 2011, 4, 453-464.
[http://dx.doi.org/10.1007/s12161-010-9191-z]
[29]
Conradi, S.; Vogt, C.; Wittrisch, H.; Knobloch, G.; Werner, G. Capillary electrophoretic separation of metal ions using complex forming equilibria of different stabilities. J. Chromatogr. A, 1996, 745, 103-109.
[http://dx.doi.org/10.1016/0021-9673(96)00268-3]
[30]
Široká, J.; Jáč, P.; Polášek, M. Use of inorganic, complex-forming ions for selectivity enhancement in capillary electrophoretic separation of organic compounds. Trends Analyt. Chem., 2011, 30, 142-152.
[http://dx.doi.org/10.1016/j.trac.2010.08.006]
[31]
Systèmes, D. Materials Studio 2018; BIOVIA: San Diego, CA, 2017.
[32]
Frisch, M.; Trucks, G.; Schlegel, H.; Scuseria, G.; Robb, M.; Cheeseman, J. Preconcentration of copper (II) in water samples using polyurethane foam/2-(6¢-ethyl-2¢-benzothiazolylazo) chromotropic acid. Asian J. Chem., 2009, 22, 3325-3334.
[33]
Vanommeslaeghe, K.; Hatcher, E.; Acharya, C.; Kundu, S.; Zhong, S.; Shim, J.; Darian, E.; Guvench, O.; Lopes, P.; Vorobyov, I.; Mackerell, A.D. Jr CHARMM general force field: A force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. J. Comput. Chem., 2010, 31(4), 671-690.
[PMID: 19575467]
[34]
Timerbaev, A.; Buchberger, W.; Semenova, O.; Bonn, G. Metal ion capillary zone electrophoresis with direct UV detection: determination of transition metals using an 8-hydroxyquinoline-5-sulphonic acid chelating system. J. Chromatogr. A, 1993, 630, 379-389.
[http://dx.doi.org/10.1016/0021-9673(93)80475-N]
[35]
Motomizu, S.; Mori, N.; Kuwabara, M.; Oshima, M. Separation and sensitive determination of metal ions by capillary zone electrophoresis with 2-(5-nitro-2-pyridylazo)-5-(N-propyl-N-sulfopro-pylamino) phenol. Anal. Sci., 1994, 10, 101-103.
[http://dx.doi.org/10.2116/analsci.10.101]
[36]
Mehta, A.; Mishra, A.; Basu, S.; Shetti, N.P.; Reddy, K.R.; Saleh, T.A.; Aminabhavi, T.M. Band gap tuning and surface modification of carbon dots for sustainable environmental remediation and photocatalytic hydrogen production - A review. J. Environ. Manage., 2019, 250, 109486.
[http://dx.doi.org/10.1016/j.jenvman.2019.109486] [PMID: 31518793]
[37]
De, D.; Kumar, A.; Adhikari, S.; Pahari, S.; Islam, N.; Banerjee, P. Influence of quantum confinement on the photoemission from superlattices of optoelectronic materials. Superlattices Microstruct., 2010, 47, 377-410.
[http://dx.doi.org/10.1016/j.spmi.2009.12.007]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy