Generic placeholder image

Current Stem Cell Research & Therapy

Editor-in-Chief

ISSN (Print): 1574-888X
ISSN (Online): 2212-3946

Review Article

Preparation and Application of Magnetic Responsive Materials in Bone Tissue Engineering

Author(s): Song Li, Changling Wei and Yonggang Lv*

Volume 15, Issue 5, 2020

Page: [428 - 440] Pages: 13

DOI: 10.2174/1574888X15666200101122505

Abstract

At present, many kinds of materials are used for bone tissue engineering, such as polymer materials, metals, etc., which in general have good biocompatibility and mechanical properties. However, these materials cannot be controlled artificially after implantation, which may result in poor repair performance. The appearance of the magnetic response material enables the scaffolds to have the corresponding ability to the external magnetic field. Within the magnetic field, the magnetic response material can achieve the targeted release of the drug, improve the performance of the scaffold, and further have a positive impact on bone formation. This paper first reviewed the preparation methods of magnetic responsive materials such as magnetic nanoparticles, magnetic polymers, magnetic bioceramic materials and magnetic alloys in recent years, and then introduced its main applications in the field of bone tissue engineering, including promoting osteogenic differentiation, targets release, bioimaging, cell patterning, etc. Finally, the mechanism of magnetic response materials to promote bone regeneration was introduced. The combination of magnetic field treatment methods will bring significant progress to regenerative medicine and help to improve the treatment of bone defects and promote bone tissue repair.

Keywords: Magnetic responsive material, magnetic nanoparticle, bone tissue engineering, stem cells, osteogenesis differentiation, bone repair.

[1]
Hao Z, Song Z, Huang J, et al. The scaffold microenvironment for stem cell based bone tissue engineering. Biomater Sci 2017; 5(8): 1382-92.
[http://dx.doi.org/10.1039/C7BM00146K] [PMID: 28447671]
[2]
Hou G, Zhou F, Guo Y, et al. In vivo study of a bioactive nanoparticle-gelatin composite scaffold for bone defect repair in rabbits. J Mater Sci Mater Med 2017; 28(11): 181-9.
[http://dx.doi.org/10.1007/s10856-017-5991-7] [PMID: 29022190]
[3]
Abdeen AA, Lee J, Bharadwaj NA, Ewoldt RH, Kilian KA. Temporal modulation of stem cell activity using magnetoactive hydrogels. Adv Healthc Mater 2016; 5(19): 2536-44.
[http://dx.doi.org/10.1002/adhm.201600349] [PMID: 27276521]
[4]
Asghari F, Samiei M, Adibkia K, Akbarzadeh A, Davaran S. Biodegradable and biocompatible polymers for tissue engineering application: a review. Artif Cells Nanomed Biotechnol 2017; 45(2): 185-92.
[http://dx.doi.org/10.3109/21691401.2016.1146731] [PMID: 26923861]
[5]
Huang J, Liu W, Liang Y, et al. Preparation and biocompatibility of diphasic magnetic nanocomposite scaffold. Mater Sci Eng C 2018; 87: 70-7.
[http://dx.doi.org/10.1016/j.msec.2018.02.003] [PMID: 29549951]
[6]
Kubasiewicz-Ross P, Hadzik J, Seeliger J, et al. New nano-hydroxyapatite in bone defect regeneration: A histological study in rats. Ann Anat 2017; 213: 83-90.
[http://dx.doi.org/10.1016/j.aanat.2017.05.010] [PMID: 28655570]
[7]
Kang MH, Lee H, Jang TS, et al. Biomimetic porous Mg with tunable mechanical properties and biodegradation rates for bone regeneration. Acta Biomater 2019; 84: 453-67.
[http://dx.doi.org/10.1016/j.actbio.2018.11.045] [PMID: 30500444]
[8]
Russo A, Bianchi M, Sartori M, et al. Bone regeneration in a rabbit critical femoral defect by means of magnetic hydroxyapatite macroporous scaffolds. J Biomed Mater Res B Appl Biomater 2018; 106(2): 546-54.
[http://dx.doi.org/10.1002/jbm.b.33836] [PMID: 28199046]
[9]
Zhao Y, Fan T, Chen J, et al. Magnetic bioinspired micro/nanostructured composite scaffold for bone regeneration. Colloids Surf B Biointerfaces 2019; 174: 70-9.
[http://dx.doi.org/10.1016/j.colsurfb.2018.11.003] [PMID: 30439640]
[10]
Xia Y, Chen H, Zhang F, et al. Injectable calcium phosphate scaffold with iron oxide nanoparticles to enhance osteogenesis via dental pulp stem cells. Artif Cells Nanomed Biotechnol 2018; 461: 423-33.
[http://dx.doi.org/10.1080/21691401.2018.1428813]
[11]
Panseri S, Russo A, Giavaresi G, et al. Innovative magnetic scaffolds for orthopedic tissue engineering. J Biomed Mater Res A 2012; 100(9): 2278-86.
[http://dx.doi.org/10.1002/jbm.a.34167] [PMID: 22499413]
[12]
Paun IA, Popescu RC, Calin BS, Mustaciosu CC, Dinescu M, Luculescu CR. 3D biomimetic magnetic structures for static magnetic field stim-ulation of osteogenesis. Int J Mol Sci 2018; 19(2): 495.
[http://dx.doi.org/10.3390/ijms19020495] [PMID: 29414875]
[13]
Zhang N, Lock J, Sallee A, Liu H. Magnetic nanocomposite hydrogel for potential cartilage tissue engineering: synthesis, characterization, and cytocompatibility with bone marrow derived mesenchymal stem cells. ACS Appl Mater Interfaces 2015; 7(37): 20987-98.
[http://dx.doi.org/10.1021/acsami.5b06939] [PMID: 26360342]
[14]
Anderson SD, Gwenin VV, Gwenin CD. Magnetic functionalized nanoparticles for biomedical, drug delivery and imaging applications. Nanoscale Res Lett 2019; 14(1): 188-203.
[http://dx.doi.org/10.1186/s11671-019-3019-6] [PMID: 31147786]
[15]
Li Y, Ye D, Li M, Ma M, Gu N. Adaptive materials based on iron oxide nanoparticles for bone regeneration. ChemPhysChem 2018; 19(16): 1965-79.
[http://dx.doi.org/10.1002/cphc.201701294] [PMID: 29542233]
[16]
Liu T, Zhang P, Huang X, et al. Magnetic core-shell S-nitrosothiols nanoparticles as tumor dual-targeting theranostic platform. Colloids Surf B Biointerfaces 2019; 181: 400-7.
[http://dx.doi.org/10.1016/j.colsurfb.2019.05.075] [PMID: 31174075]
[17]
Gonzalez-Rodriguez R, Campbell E, Naumov A. Multifunctional graphene oxide/iron oxide nanoparticles for magnetic targeted drug delivery dual magnetic resonance/fluorescence imaging and cancer sensing. PLoS One 2019; 14(6)e0217072
[http://dx.doi.org/10.1371/journal.pone.0217072] [PMID: 31170197]
[18]
Xia Y, Sun J, Zhao L, et al. Magnetic field and nano-scaffolds with stem cells to enhance bone regeneration. Biomaterials 2018; 183: 151-70.
[http://dx.doi.org/10.1016/j.biomaterials.2018.08.040] [PMID: 30170257]
[19]
Barsan MM, Enache TA, Preda N, et al. Direct immobilization of biomolecules through magnetic forces on Ni electrodes via Ni nanoparticles: applications in electrochemical biosensors. ACS Appl Mater Interfaces 2019; 11(22): 19867-77.
[http://dx.doi.org/10.1021/acsami.9b04990] [PMID: 31081608]
[20]
Lisjak D, Mertelj A. Anisotropic magnetic nanoparticles: A review of their properties, syntheses and potential applications. Prog Mater Sci 2018; 95: 286-328.
[http://dx.doi.org/10.1016/j.pmatsci.2018.03.003]
[21]
Huang WS, Chu IM. Injectable polypeptide hydrogel/inorganic nanoparticle composites for bone tissue engineering. PLoS One 2019; 14(1)e0210285
[http://dx.doi.org/10.1371/journal.pone.0210285] [PMID: 30629660]
[22]
Aliramaji S, Zamanian A, Mozafari M. Super-paramagnetic responsive silk fibroin/chitosan/magnetite scaffolds with tunable pore structures for bone tissue engineering applications. Mater Sci Eng C 2017; 70(Pt 1): 736-44.
[http://dx.doi.org/10.1016/j.msec.2016.09.039] [PMID: 27770949]
[23]
Huang Z, Wu Z, Ma B, et al. Enhanced in vitro biocompatibility and osteogenesis of titanium substrates immobilized with dopamine-assisted superparamagnetic Fe3O4 nanoparticles for hBMSCs. R Soc Open Sci 2018; 5(8): 172033-47.
[http://dx.doi.org/10.1098/rsos.172033] [PMID: 30224987]
[24]
Yang F, Lu J, Ke Q, Peng X, Guo Y, Xie X. Magnetic mesoporous calcium sillicate/chitosan porous scaffolds for enhanced bone regeneration and photothermal-chemotherapy of osteosarcoma. Sci Rep 2018; 8(1): 7345-58.
[http://dx.doi.org/10.1038/s41598-018-25595-2] [PMID: 29743489]
[25]
Tan G, Huang Y, Sheng H. Magnetoelectric response in multiferroic SrFe12O19 ceramics. PLoS One 2016; 11(12)e0167084
[http://dx.doi.org/10.1371/journal.pone.0167084] [PMID: 27935996]
[26]
Bigham A, Aghajanian AH, Behzadzadeh S, et al. Nanostructured magnetic Mg2SiO4-CoFe2O4 composite scaffold with multiple capabilities for bone tissue regeneration. Mater Sci Eng C 2019; 99: 83-95.
[http://dx.doi.org/10.1016/j.msec.2019.01.096] [PMID: 30889758]
[27]
Lu JW, Yang F, Ke QF, Xie XT, Guo YP. Magnetic nanoparticles modified-porous scaffolds for bone regeneration and photothermal therapy against tumors. Nanomedicine (Lond) 2018; 14(3): 811-22.
[http://dx.doi.org/10.1016/j.nano.2017.12.025] [PMID: 29339189]
[28]
Díaz E, Valle MB, Ribeiro S, Lanceros-Mendez S, Barandiarán JM. Development of magnetically active scaffolds for bone regeneration. Nanomaterials (Basel) 2018; 8(9): 678.
[http://dx.doi.org/10.3390/nano8090678] [PMID: 30200267]
[29]
Mitsumata T, Honda A, Kanazawa H, Kawai M. Magnetically tunable elasticity for magnetic hydrogels consisting of carrageenan and carbonyl iron particles. J Phys Chem B 2012; 116(40): 12341-8.
[http://dx.doi.org/10.1021/jp3049372] [PMID: 22974066]
[30]
Hu X, Nian G, Liang X, et al. Adhesive tough magnetic hydrogels with high Fe3O4 content. ACS Appl Mater Interfaces 2019; 11(10): 10292-300.
[http://dx.doi.org/10.1021/acsami.8b20937] [PMID: 30773877]
[31]
Huang J, Liang Y, Jia Z, et al. Development of magnetic nanocomposite hydrogel with potential cartilage tissue engineering. ACS Omega 2018; 3(6): 6182-9.
[http://dx.doi.org/10.1021/acsomega.8b00291] [PMID: 30023943]
[32]
Crippa F, Moore TL, Mortato M, et al. Dynamic and biocompatible thermo-responsive magnetic hydrogels that respond to an alternating magnetic field. J Magn Magn Mater 2016; 427: 212-9.
[http://dx.doi.org/10.1016/j.jmmm.2016.11.023]
[33]
Hu K, Zhou N, Li Y, et al. Sliced magnetic polyacrylamide hydrogel with cell-adhesive microarray interface: a novel multicellular spheroid culturing platform. ACS Appl Mater Interfaces 2016; 8(24): 15113-9.
[http://dx.doi.org/10.1021/acsami.6b04112] [PMID: 27258682]
[34]
Shi X, Shi Z, Wang D, Ullah MW, Yang G. Microbial cells with a Fe3O4 doped hydrogel extracellular matrix: Manipulation of living cells by magnetic stimulus. Macromol Biosci 2016; 16(10): 1506-14.
[http://dx.doi.org/10.1002/mabi.201600143] [PMID: 27412820]
[35]
Rodkate N, Rutnakornpituk M. Multi-responsive magnetic microsphere of poly(N-isopropylacrylamide)/carboxymethylchitosan hydrogel for drug controlled release. Carbohydr Polym 2016; 151: 251-9.
[http://dx.doi.org/10.1016/j.carbpol.2016.05.081] [PMID: 27474565]
[36]
Margolis G, Polyak B, Cohen S. Magnetic induction of multiscale anisotropy in macroporous alginate scaffolds. Nano Lett 2018; 18(11): 7314-22.
[http://dx.doi.org/10.1021/acs.nanolett.8b03514] [PMID: 30380888]
[37]
Chen X, Fan M, Tan H, et al. Magnetic and self-healing chitosan-alginate hydrogel encapsulated gelatin microspheres via covalent cross-linking for drug delivery. Mater Sci Eng C 2019; 101: 619-29.
[http://dx.doi.org/10.1016/j.msec.2019.04.012] [PMID: 31029355]
[38]
Rao KM, Kumar A, Han SS. Polysaccharide-based magnetically responsive polyelectrolyte hydrogels for tissue engineering applications. J Mater Sci Technol 2018; 34(08): 1371-7.
[http://dx.doi.org/10.1016/j.jmst.2017.10.003]
[39]
Corbin EA, Vite A, Peyster EG, et al. Tunable and reversible substrate stiffness reveals dynamic mechanosensitivity of cardiomyocytes. ACS Appl Mater Interfaces 2019; 11(23): 20603-14.
[http://dx.doi.org/10.1021/acsami.9b02446] [PMID: 31074953]
[40]
Mayer M, Rabindranath R, Börner J, et al. Ultra-soft PDMS-based magnetoactive elastomers as dynamic cell culture substrata. PLoS One 2013; 8(10)e76196
[http://dx.doi.org/10.1371/journal.pone.0076196] [PMID: 24204603]
[41]
Gloria A, Russo T, D’Amora U, et al. Magnetic poly(ε-caprolactone)/iron-doped hydroxyapatite nanocomposite substrates for advanced bone tissue engineering. J R Soc Interface 2013; 10(80)20120833
[http://dx.doi.org/10.1098/rsif.2012.0833] [PMID: 23303218]
[42]
Yun HM, Ahn SJ, Park KR, et al. Magnetic nanocomposite scaffolds combined with static magnetic field in the stimulation of osteoblastic differentiation and bone formation. Biomaterials 2016; 85: 88-98.
[http://dx.doi.org/10.1016/j.biomaterials.2016.01.035] [PMID: 26854394]
[43]
Durán-Guerrero JG, Martínez-Rodríguez MA, Garza-Navarro MA, González-González VA, Torres-Castro A, De La Rosa JR. Magnetic nanofibrous materials based on CMC/PVA polymeric blends. Carbohydr Polym 2018; 200: 289-96.
[http://dx.doi.org/10.1016/j.carbpol.2018.08.015] [PMID: 30177169]
[44]
Ivan FD, Balan V, Butnaru M, et al. Magnetic nanoparticles inclusion into scaffolds based on calcium phosphates and biopolymers for bone regeneration. Key Eng Mater 2017; 745: 16-25.
[http://dx.doi.org/10.4028/www.scientific.net/KEM.745.16]
[45]
Cai Q, Shi Y, Shan D, et al. Osteogenic differentiation of MC3T3-E1 cells on poly(L-lactide)/Fe3O4 nanofibers with static magnetic field exposure. Mater Sci Eng C 2015; 55: 166-73.
[http://dx.doi.org/10.1016/j.msec.2015.05.002] [PMID: 26117751]
[46]
Hajinasab A, Saber-Samandari S, Ahmadi S, et al. Preparation and characterization of a biocompatible magnetic scaffold for biomedical engi-neering. Mater Chem Phys 2018; 204: 378-87.
[http://dx.doi.org/10.1016/j.matchemphys.2017.10.080]
[47]
Kamitakahara M, Ohtoshi N, Kawashita M, Ioku K. Spherical porous hydroxyapatite granules containing composites of magnetic and hydroxyapatite nanoparticles for the hyperthermia treatment of bone tumor. J Mater Sci Mater Med 2016; 27(5): 93-9.
[http://dx.doi.org/10.1007/s10856-016-5704-7] [PMID: 26984358]
[48]
Yan Y, Zhang Y, Zuo Y, et al. Development of Fe3O4–HA/PU superparamagnetic composite porous scaffolds for bone repair application. Mater Lett 2018; 212: 303-6.
[http://dx.doi.org/10.1016/j.matlet.2017.10.067]
[49]
Huang J, Wang D, Chen J, et al. Osteogenic differentiation of bone marrow mesenchymal stem cells by magnetic nanoparticle composite scaffolds under a pulsed electromagnetic field. Saudi Pharm J 2017; 25(4): 575-9.
[http://dx.doi.org/10.1016/j.jsps.2017.04.026] [PMID: 28579894]
[50]
Cojocaru FD, Balan V, Popa IM, Munteanu A, Anghelache A, Verestiuc L. Magnetic composite scaffolds for potential applications in radi-ochemotherapy of malignant bone tumors. Medicina (Kaunas) 2019; 55(5): 153.
[http://dx.doi.org/10.3390/medicina55050153] [PMID: 31108965]
[51]
Zhu Y, Yang Q, Yang M, et al. Protein corona of magnetic hydroxyapatite scaffold improves cell proliferation via activation of mitogen-activated protein kinase signaling pathway. ACS Nano 2017; 11(4): 3690-704.
[http://dx.doi.org/10.1021/acsnano.6b08193] [PMID: 28314099]
[52]
Hu Y, Chen J, Fan T, et al. Biomimetic mineralized hierarchical hybrid scaffolds based on in situ synthesis of nano-hydroxyapatite/chitosan/chondroitin sulfate/hyaluronic acid for bone tissue engineering. Colloids Surf B Biointerfaces 2017; 157: 93-100.
[http://dx.doi.org/10.1016/j.colsurfb.2017.05.059] [PMID: 28578273]
[53]
De Santis R, Russo A, Gloria A, et al. Towards the design of 3D fiber-deposited poly(ε-caprolactone)/iron-doped hydroxyapatite nanocom-posite magnetic scaffolds for bone regeneration. J Biomed Nanotechnol 2015; 11(7): 1236-46.
[http://dx.doi.org/10.1166/jbn.2015.2065] [PMID: 26307846]
[54]
Zilm ME, Yu L, Hines WA, Wei M. Magnetic properties and cytocompatibility of transition-metal-incorporated hydroxyapatite. Mater Sci Eng C 2018; 87: 112-9.
[http://dx.doi.org/10.1016/j.msec.2018.02.018] [PMID: 29549940]
[55]
Chandra VS, Elayaraja K, Arul KT, et al. Synthesis of magnetic hydroxyapatite by hydrothermal–microwave technique: Dielectric, protein adsorption, blood compatibility and drug release studies. Ceram Int 2015; 41(10): 13153-63.
[http://dx.doi.org/10.1016/j.ceramint.2015.07.088]
[56]
Kim EC, Leesungbok R, Lee SW, et al. Effects of moderate intensity static magnetic fields on human bone marrow-derived mesenchymal stem cells. Bioelectromagnetics 2015; 36(4): 267-76.
[http://dx.doi.org/10.1002/bem.21903] [PMID: 25808160]
[57]
Marędziak M, Śmieszek A, Tomaszewski KA, et al. The effect of low static magnetic field on osteogenic and adipogenic differentiation po-tential of human adipose stromal/stem cells. J Magn Magn Mater 2016; 398: 235-45.
[http://dx.doi.org/10.1016/j.jmmm.2015.09.004]
[58]
Wang J, Xiang B, Deng J, Freed DH, Arora RC, Tian G. Inhibition of viability, proliferation, cytokines secretion, surface antigen expression, and adipogenic and osteogenic differentiation of adipose-derived stem cells by seven-day exposure to 0.5 T static magnetic fields. Stem Cells Int 2016; 20167168175
[http://dx.doi.org/10.1155/2016/7168175] [PMID: 26880984]
[59]
Petecchia L, Sbrana F, Utzeri R, et al. Electro-magnetic field promotes osteogenic differentiation of BM-hMSCs through a selective action on Ca(2+)-related mechanisms. Sci Rep 2015; 5: 13856.
[http://dx.doi.org/10.1038/srep13856] [PMID: 26364969]
[60]
Zhang Y, Yan J, Xu H, et al. Extremely low frequency electromagnetic fields promote mesenchymal stem cell migration by increasing intracellular Ca2+ and activating the FAK/Rho GTPases signaling pathways in vitro. Stem Cell Res Ther 2018; 9(1): 143.
[http://dx.doi.org/10.1186/s13287-018-0883-4] [PMID: 29784011]
[61]
Ehnert S, Fentz AK, Schreiner A, et al. Extremely low frequency pulsed electromagnetic fields cause antioxidative defense mechanisms in human osteoblasts via induction of •O2- and H2O2. Sci Rep 2017; 7(1): 14544.
[http://dx.doi.org/10.1038/s41598-017-14983-9] [PMID: 29109418]
[62]
Arjmand M, Ardeshirylajimi A, Maghsoudi H, Azadian E. Osteogenic differentiation potential of mesenchymal stem cells cultured on nanofibrous scaffold improved in the presence of pulsed electromagnetic field. J Cell Physiol 2018; 233(2): 1061-70.
[http://dx.doi.org/10.1002/jcp.25962] [PMID: 28419435]
[63]
Ferroni L, Gardin C, Dolkart O, et al. Pulsed electromagnetic fields increase osteogenetic commitment of MSCs via the mTOR pathway in TNF-α mediated inflammatory conditions: an in-vitro study. Sci Rep 2018; 8(1): 5108.
[http://dx.doi.org/10.1038/s41598-018-23499-9] [PMID: 29572540]
[64]
Sekeroğlu V, Akar A, Sekeroğlu ZA. Cytotoxic and genotoxic effects of high-frequency electromagnetic fields (GSM 1800 MHz) on immature and mature rats. Ecotoxicol Environ Saf 2012; 80: 140-4.
[http://dx.doi.org/10.1016/j.ecoenv.2012.02.028] [PMID: 22405939]
[65]
Zhou P, Wu J, Xia Y, et al. Loading BMP-2 on nanostructured hydroxyapatite microspheres for rapid bone regeneration. Int J Nanomedicine 2018; 13: 4083-92.
[http://dx.doi.org/10.2147/IJN.S158280] [PMID: 30034234]
[66]
Rotherham M, Henstock JR, Qutachi O, El Haj AJ. Remote regulation of magnetic particle targeted Wnt signaling for bone tissue engineering. Nanomedicine (Lond) 2018; 14(1): 173-84.
[http://dx.doi.org/10.1016/j.nano.2017.09.008] [PMID: 28965980]
[67]
Lei T, Liang Z, Li F, et al. Pulsed electromagnetic fields (PEMF) attenuate changes in vertebral bone mass, architecture and strength in ovariectomized mice. Bone 2018; 108: 10-9.
[http://dx.doi.org/10.1016/j.bone.2017.12.008] [PMID: 29229438]
[68]
Taniguchi N, Kanai S, Kawamoto M, Endo H, Higashino H. Study on application of static magnetic field for adjuvant arthritis rats. Evid Based Complement Alternat Med 2004; 1(2): 187-91.
[http://dx.doi.org/10.1093/ecam/neh024] [PMID: 15480444]
[69]
Ross CL, Ang DC, Almeida-Porada G. Targeting mesenchymal stromal cells/pericytes (MSCs) with pulsed electromagnetic field (PEMF) has the potential to treat rheumatoid arthritis. Front Immunol 2019; 10: 266.
[http://dx.doi.org/10.3389/fimmu.2019.00266] [PMID: 30886614]
[70]
Filippi M, Dasen B, Guerrero J, et al. Magnetic nanocomposite hydrogels and static magnetic field stimulate the osteoblastic and vasculogenic profile of adipose-derived cells. Biomaterials 2019; 223119468
[http://dx.doi.org/10.1016/j.biomaterials.2019.119468] [PMID: 31505394]
[71]
Chen H, Sun J, Wang Z, et al. Magnetic cell-scaffold interface constructed by superparamagnetic IONP enhanced steogenesis of adipose-derived stem cells. ACS Appl Mater Interfaces 2018; 10(51): 44279-89.
[http://dx.doi.org/10.1021/acsami.8b17427] [PMID: 30499649]
[72]
Cojocaru FD, Balan V, Popa MI, et al. Biopolymers - Calcium phosphates composites with inclusions of magnetic nanoparticles for bone tissue engineering. Int J Biol Macromol 2019; 125: 612-20.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.12.083] [PMID: 30537500]
[73]
Meng J, Xiao B, Zhang Y, et al. Super-paramagnetic responsive nanofibrous scaffolds under static magnetic field enhance osteogenesis for bone repair in vivo. Sci Rep 2013; 3: 2655.
[http://dx.doi.org/10.1038/srep02655] [PMID: 24030698]
[74]
Wan L, Song H, Chen X, et al. A magnetic-field guided interface coassembly approach to magnetic mesoporous silica nanochains for osteo-clast-targeted inhibition and heterogeneous nanocatalysis. Adv Mater 2018; 30(25)e1707515
[http://dx.doi.org/10.1002/adma.201707515] [PMID: 29733478]
[75]
Park SY, Madhurakkat Perikamana SK, Park JH, et al. Osteoinductive superparamagnetic Fe nanocrystal/calcium phosphate heterostructured microspheres. Nanoscale 2017; 9(48): 19145-53.
[http://dx.doi.org/10.1039/C7NR06777A] [PMID: 29185575]
[76]
Ferroni L, Tocco I, De Pieri A, et al. Pulsed magnetic therapy increases osteogenic differentiation of mesenchymal stem cells only if they are pre-committed. Life Sci 2016; 152: 44-51.
[http://dx.doi.org/10.1016/j.lfs.2016.03.020] [PMID: 26979772]
[77]
Gao Y, Lim J, Teoh SH, Xu C. Emerging translational research on magnetic nanoparticles for regenerative medicine. Chem Soc Rev 2015; 44(17): 6306-29.
[http://dx.doi.org/10.1039/C4CS00322E] [PMID: 26505058]
[78]
Bock N, Riminucci A, Dionigi C, et al. A novel route in bone tissue engineering: magnetic biomimetic scaffolds. Acta Biomater 2010; 6(3): 786-96.
[http://dx.doi.org/10.1016/j.actbio.2009.09.017] [PMID: 19788946]
[79]
Jardim KV, Palomec-Garfias AF, Andrade BYG, et al. Novel magneto-responsive nanoplatforms based on MnFe2O4 nanoparticles layer-by-layer functionalized with chitosan and sodium alginate for magnetic controlled release of curcumin. Mater Sci Eng C 2018; 92: 184-95.
[http://dx.doi.org/10.1016/j.msec.2018.06.039] [PMID: 30184741]
[80]
Jeon S, Subbiah R, Bonaedy T, Van S, Park K, Yun K. Surface functionalized magnetic nanoparticles shift cell behavior with on/off magnetic fields. J Cell Physiol 2018; 233(2): 1168-78.
[http://dx.doi.org/10.1002/jcp.25980] [PMID: 28464242]
[81]
Kerans FFA, Lungaro L, Azfer A, Salter DM. The potential of intrinsically magnetic mesenchymal stem cells for tissue engineering. Int J Mol Sci 2018; 19(10)E3159
[http://dx.doi.org/10.3390/ijms19103159] [PMID: 30322202]
[82]
Svoboda O, Fohlerova Z, Baiazitova L, et al. Transfection by polyethyleneimine-coated magnetic nanoparticles: Fine-tuning the condition for electrophysiological experiments. J Biomed Nanotechnol 2018; 14(8): 1505-14.
[http://dx.doi.org/10.1166/jbn.2018.2602] [PMID: 29903065]
[83]
Yamoah MA, Moshref M, Sharma J, et al. Highly efficient transfection of human induced pluripotent stem cells using magnetic nanoparticles. Int J Nanomedicine 2018; 13: 6073-8.
[http://dx.doi.org/10.2147/IJN.S172254] [PMID: 30323594]
[84]
Kwon HJ, Shin K, Soh M, et al. Large-scale synthesis and medical applications of uniform-sized metal oxide nanoparticles. Adv Mater 2018; 30(42)e1704290
[http://dx.doi.org/10.1002/adma.201704290] [PMID: 29573296]
[85]
Xu Q, Zhang T, Wang Q, et al. Uniformly sized iron oxide nanoparticles for efficient gene delivery to mesenchymal stem cells. Int J Pharm 2018; 552(1-2): 443-52.
[http://dx.doi.org/10.1016/j.ijpharm.2018.10.023] [PMID: 30312747]
[86]
Touma J, Dai J, Gaston A, Gervais M, Allaire E. Catheter injected bone marrow mesenchymal stem cells induce efficacious occlusion of arteriovenous nidus in a swine model. Eur J Vasc Endovasc Surg 2018; 55(3): 433-42.
[http://dx.doi.org/10.1016/j.ejvs.2017.12.011] [PMID: 29352651]
[87]
Theruvath AJ, Nejadnik H, Muehe AM, et al. Tracking cell transplants in femoral osteonecrosis with magnetic resonance imaging: a proof-of-concept study in patients. Clin Cancer Res 2018; 24(24): 6223-9.
[http://dx.doi.org/10.1158/1078-0432.CCR-18-1687] [PMID: 30224340]
[88]
Busato A, Bonafede R, Bontempi P, et al. Labeling and magnetic resonance imaging of exosomes isolated from adipose stem cells Curr Protoc Cell Biol 2017 ; 75: 3.44.1-3.44.15..
[http://dx.doi.org/10.1002/cpcb.23]
[89]
Sweeney SK, Manzar GS, Zavazava N, Assouline JG. Tracking embryonic hematopoietic stem cells to the bone marrow: nanoparticle options to evaluate transplantation efficiency. Stem Cell Res Ther 2018; 9(1): 204.
[http://dx.doi.org/10.1186/s13287-018-0944-8] [PMID: 30053892]
[90]
Jiang L, Li R, Tang H, et al. MRI tracking of iPS cells-induced neural stem cells in traumatic brain injury rats. Cell Transplant 2019; 28(6): 747-55.
[91]
Tremblay ML, Davis C, Bowen CV, et al. Using MRI cell tracking to monitor immune cell recruitment in response to a peptide-based cancer vaccine. Magn Reson Med 2018; 80(1): 304-16.
[http://dx.doi.org/10.1002/mrm.27018] [PMID: 29193231]
[92]
Chen J, Hu H, Feng L, et al. Preparation and characterization of 3D porous conductive scaffolds with magnetic resonance enhancement in tissue engineering. Biomed Mater 2019; 14(4)045013
[http://dx.doi.org/10.1088/1748-605X/ab1d9c] [PMID: 31035263]
[93]
Hu S, Zhou Y, Zhao Y, et al. Enhanced bone regeneration and visual monitoring via superparamagnetic iron oxide nanoparticle scaffold in rats. J Tissue Eng Regen Med 2018; 12(4): e2085-98.
[http://dx.doi.org/10.1002/term.2641] [PMID: 29327431]
[94]
Guillotin B, Guillemot F. Cell patterning technologies for organotypic tissue fabrication. Trends Biotechnol 2011; 29(4): 183-90.
[http://dx.doi.org/10.1016/j.tibtech.2010.12.008] [PMID: 21256609]
[95]
Zhang W, Yang G, Wang X, et al. Magnetically controlled growth-factor-immobilized multilayer cell sheets for complex tissue regeneration. Adv Mater 2017; 29(43)
[http://dx.doi.org/10.1002/adma.201703795]
[96]
Wang Y, Huang Q, He X, et al. Multifunctional melanin-like nanoparticles for bone-targeted chemo-photothermal therapy of malignant bone tumors and osteolysis. Biomaterials 2018; 183: 10-9.
[http://dx.doi.org/10.1016/j.biomaterials.2018.08.033] [PMID: 30144589]
[97]
Melancon MP, Appleton Figueira T, Fuentes DT, et al. Development of an electroporation and nanoparticle-based therapeutic platform for bone metastases. Radiology 2018; 286(1): 149-57.
[http://dx.doi.org/10.1148/radiol.2017161721] [PMID: 28825892]
[98]
Lassenberger A, Scheberl A, Stadlbauer A, Stiglbauer A, Helbich T, Reimhult E. Individually stabilized, superparamagnetic nanoparticles with controlled shell and size leading to exceptional stealth properties and high relaxivities. ACS Appl Mater Interfaces 2017; 9(4): 3343-53.
[http://dx.doi.org/10.1021/acsami.6b12932] [PMID: 28071883]
[99]
Cardoso VF, Francesko A, Ribeiro C, Bañobre-López M, Martins P, Lanceros-Mendez S. Advances in magnetic nanoparticles for biomedical applications. Adv Healthc Mater 2018; 7(5)
[http://dx.doi.org/10.1002/adhm.201700845] [PMID: 29280314]
[100]
Engler AJ, Sen S, Sweeney HL, Discher DE. Matrix elasticity directs stem cell lineage specification. Cell 2006; 126(4): 677-89.
[http://dx.doi.org/10.1016/j.cell.2006.06.044] [PMID: 16923388]
[101]
Chen G, Dong C, Yang L, Lv Y. 3D scaffolds with different stiffness but the same microstructure for bone tissue engineering. ACS Appl Mater Interfaces 2015; 7(29): 15790-802.
[http://dx.doi.org/10.1021/acsami.5b02662] [PMID: 26151287]
[102]
Liu C, Luo JW, Liang T, et al. Matrix stiffness regulates the differentiation of tendon-derived stem cells through FAK-ERK1/2 activation. Exp Cell Res 2018; 373(1-2): 62-70.
[http://dx.doi.org/10.1016/j.yexcr.2018.08.023] [PMID: 30138615]
[103]
Lambertini E, Penolazzi L, Morganti C, et al. Osteogenic differentiation of human MSCs: Specific occupancy of the mitochondrial DNA by NFATc1 transcription factor. Int J Biochem Cell Biol 2015; 64: 212-9.
[http://dx.doi.org/10.1016/j.biocel.2015.04.011] [PMID: 25952151]
[104]
Sun M, Chi G, Xu J, et al. Extracellular matrix stiffness controls osteogenic differentiation of mesenchymal stem cells mediated by integrin α5. Stem Cell Res Ther 2018; 9(1): 52.
[http://dx.doi.org/10.1186/s13287-018-0798-0] [PMID: 29490668]
[105]
Lopes HB, Freitas GP, Elias CN, et al. Participation of integrin β3 in osteoblast differentiation induced by titanium with nano or microtopography. J Biomed Mater Res A 2019; 107(6): 1303-13.
[http://dx.doi.org/10.1002/jbm.a.36643] [PMID: 30707485]
[106]
Hwang JH, Byun MR, Kim AR, et al. Extracellular matrix stiffness regulates osteogenic differentiation through MAPK activation. PLoS One 2015; 10(8)e0135519
[http://dx.doi.org/10.1371/journal.pone.0135519] [PMID: 26262877]
[107]
Aiyelabegan HT, Sadroddiny E. Fundamentals of protein and cell interactions in biomaterials. Biomed Pharmacother 2017; 88: 956-70.
[http://dx.doi.org/10.1016/j.biopha.2017.01.136] [PMID: 28178627]
[108]
Xie J, Zhang D, Zhou C, Yuan Q, Ye L, Zhou X. Substrate elasticity regulates adipose-derived stromal cell differentiation towards osteogenesis and adipogenesis through β-catenin transduction. Acta Biomater 2018; 79: 83-95.
[http://dx.doi.org/10.1016/j.actbio.2018.08.018] [PMID: 30134207]
[109]
Fathi E, Farahzadi R. Enhancement of osteogenic differentiation of rat adipose tissue-derived mesenchymal stem cells by zinc sulphate under electromagnetic field via the PKA, ERK1/2 and Wnt/β-catenin signaling pathways. PLoS One 2017; 12(3)e0173877
[http://dx.doi.org/10.1371/journal.pone.0173877] [PMID: 28339498]
[110]
Yong Y, Ming ZD, Feng L, Chun ZW, Hua W. Electromagnetic fields promote osteogenesis of rat mesenchymal stem cells through the PKA and ERK1/2 pathways. J Tissue Eng Regen Med 2016; 10(10): E537-45.
[http://dx.doi.org/10.1002/term.1864] [PMID: 24634418]
[111]
Wu S, Yu Q, Lai A, Tian J. Pulsed electromagnetic field induces Ca2+-dependent osteoblastogenesis in C3H10T1/2 mesenchymal cells through the Wnt-Ca2+/Wnt-β-catenin signaling pathway. Biochem Biophys Res Commun 2018; 503(2): 715-21.
[http://dx.doi.org/10.1016/j.bbrc.2018.06.066] [PMID: 29909008]
[112]
He Y, Yu L, Liu J, et al. Enhanced osteogenic differentiation of human bone-derived mesenchymal stem cells in 3-dimensional printed porous titanium scaffolds by static magnetic field through up-regulating Smad4. FASEB J 2019; 33(5): 6069-81.
[http://dx.doi.org/10.1096/fj.201802195R] [PMID: 30763124]
[113]
Kim EC, Park J, Kwon IK, Lee SW, Park SJ, Ahn SJ. Static magnetic fields promote osteoblastic/cementoblastic differentiation in osteoblasts, cementoblasts, and periodontal ligament cells. J Periodontal Implant Sci 2017; 47(5): 273-91.
[http://dx.doi.org/10.5051/jpis.2017.47.5.273] [PMID: 29093986]

© 2025 Bentham Science Publishers | Privacy Policy