Generic placeholder image

当代肿瘤药物靶点

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Research Article

Disintegrin Tablysin-15通过阻断FAK / Akt / ERK和NF-κB信号传导抑制黑色素瘤细胞的癌症特征

卷 20, 期 4, 2020

页: [306 - 315] 页: 10

弟呕挨: 10.2174/1568009620666200101094736

价格: $65

摘要

背景:整联蛋白是关键的抗癌治疗靶标。我们先前显示,在新的结构环境中,tablysin-15是具有Arg-Gly-Asp主题的整联蛋白拮抗剂。目的:在这里我们研究了新霉素15在黑色素瘤细胞中的抗癌作用及其作用机制。 方法:采用细胞粘附,竞争结合,细胞生存力和ATP化学发光分析法分析细胞溶素15与αVβ3整联蛋白的结合及其表型效应。进行伤口愈合,穿透孔和酶谱分析以检测运动性和基质金属蛋白酶-2 / -9活性。 PARP和caspase-3裂解用于细胞凋亡测定,而LDH释放和流式细胞仪用于坏死和细胞周期分析。分别通过qRT-PCR和蛋白质印迹法检测靶分子的mRNA和蛋白质的表达。 结果:Tablysin-15剂量依赖性地通过整合素αvβ3抑制M21细胞的增殖,迁移和侵袭。 tablysin-15引起的增殖抑制作用归因于G0 / G1期停滞,而不是细胞凋亡或坏死。此外,tablysin-15抑制MMP-2 /-9活性以及MMP-2 / -9和COX-2的mRNA表达,但在M21细胞中上调TIMP-1。同时,tablysin-15抑制了细胞周期蛋白D1 / E和CDK 2/6的表达,FAK,Akt和ERK的磷酸化以及NF-κB的核易位,同时增加了CDK抑制剂p21waf1 / C1的表达。综上所述,tablysin-15可能通过与αVβ3整联蛋白竞争而抑制黑素瘤细胞的转移和增殖,从而阻断FAK相关的信号通路和NF-κB的核易位。 结论:Tablysin-15对M21黑色素瘤细胞具有可靠的抗癌作用,表明tablysin-15是一种有前途的抗肿瘤药物。

关键词: Tablysin-15,αvβ3,黑色素瘤,RGD,FAK / Akt / ERK,NF-κB。

« Previous
图形摘要

[1]
GBD 2015 Disease and Injury Incidence and Prevalence Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet, 2016, 388(10053), 1545-1602.
[http://dx.doi.org/10.1016/S0140-6736(16)31678-6] [PMID: 27733282]
[2]
Kalal, B.S.; Upadhya, D.; Pai, V.R. Chemotherapy resistance mechanisms in advanced skin cancer. Oncol. Rev., 2017, 11(1), 326.
[http://dx.doi.org/10.4081/oncol.2017.326] [PMID: 28382191]
[3]
Huang, R.; Rofstad, E.K. Integrins as therapeutic targets in the organ-specific metastasis of human malignant melanoma. J. Exp. Clin. Cancer Res., 2018, 37(1), 92.
[http://dx.doi.org/10.1186/s13046-018-0763-x] [PMID: 29703238]
[4]
Giancotti, F.G.; Ruoslahti, E. Integrin signaling. Science, 1999, 285(5430), 1028-1032.
[http://dx.doi.org/10.1126/science.285.5430.1028] [PMID: 10446041]
[5]
Rathinam, R.; Alahari, S.K. Important role of integrins in the cancer biology. Cancer Metastasis Rev., 2010, 29(1), 223-237.
[http://dx.doi.org/10.1007/s10555-010-9211-x] [PMID: 20112053]
[6]
van der Flier, A.; Sonnenberg, A. Function and interactions of integrins. Cell Tissue Res., 2001, 305(3), 285-298.
[http://dx.doi.org/10.1007/s004410100417] [PMID: 11572082]
[7]
Desgrosellier, J.S.; Barnes, L.A.; Shields, D.J.; Huang, M.; Lau, S.K.; Prévost, N.; Tarin, D.; Shattil, S.J.; Cheresh, D.A. An integrin alpha(v)beta(3)-c-Src oncogenic unit promotes anchorage-independence and tumor progression. Nat. Med., 2009, 15(10), 1163-1169.
[http://dx.doi.org/10.1038/nm.2009] [PMID: 19734908]
[8]
Ali, Z.; Yousaf, N.; Larkin, J. Melanoma epidemiology, biology and prognosis. EJC Suppl, 2013, 11(2), 81-91.
[http://dx.doi.org/10.1016/j.ejcsup.2013.07.012] [PMID: 26217116]
[9]
Vizkeleti, L.; Kiss, T.; Koroknai, V.; Ecsedi, S.; Papp, O.; Szasz, I.; Adany, R.; Balazs, M. Altered integrin expression patterns shown by microarray in human cutaneous melanoma. Melanoma Res., 2017, 27(3), 180-188.
[http://dx.doi.org/10.1097/CMR.0000000000000322] [PMID: 28234767]
[10]
Nikkola, J.; Vihinen, P.; Vlaykova, T.; Hahka-Kemppinen, M.; Heino, J.; Pyrhönen, S. Integrin chains beta1 and alphav as prognostic factors in human metastatic melanoma. Melanoma Res., 2004, 14(1), 29-37.
[http://dx.doi.org/10.1097/00008390-200402000-00005] [PMID: 15091191]
[11]
Van Belle, P.A.; Elenitsas, R.; Satyamoorthy, K.; Wolfe, J.T.; Guerry, D., IV; Schuchter, L.; Van Belle, T.J.; Albelda, S.; Tahin, P.; Herlyn, M.; Elder, D.E. Progression-related expression of beta3 integrin in melanomas and nevi. Hum. Pathol., 1999, 30(5), 562-567.
[http://dx.doi.org/10.1016/S0046-8177(99)90202-2] [PMID: 10333228]
[12]
Hersey, P.; Sosman, J.; O’Day, S.; Richards, J.; Bedikian, A.; Gonzalez, R.; Sharfman, W.; Weber, R.; Logan, T.; Buzoianu, M.; Hammershaimb, L.; Kirkwood, J.M. Etaracizumab Melanoma Study Group. A randomized phase 2 study of etaracizumab, a monoclonal antibody against integrin alpha(v)beta(3), + or - dacarbazine in patients with stage IV metastatic melanoma. Cancer, 2010, 116(6), 1526-1534.
[http://dx.doi.org/10.1002/cncr.24821] [PMID: 20108344]
[13]
Łasiñska, I.; Mackiewicz, J. Integrins as a new target for cancer treatment. Anticancer. Agents Med. Chem., 2019, 19(5), 580-586.
[http://dx.doi.org/10.2174/1871520618666181119103413] [PMID: 30451118]
[14]
Sun, C.C.; Qu, X.J.; Gao, Z.H. Arginine-glycine-aspartate-binding integrins as therapeutic and diagnostic targets. Am. J. Ther., 2016, 23(1), e198-e207.
[http://dx.doi.org/10.1097/MJT.0000000000000053] [PMID: 24621642]
[15]
Xu, X.; Francischetti, I.M.; Lai, R.; Ribeiro, J.M.; Andersen, J.F. Structure of protein having inhibitory disintegrin and leukotriene scavenging functions contained in single domain. J. Biol. Chem., 2012, 287(14), 10967-10976.
[http://dx.doi.org/10.1074/jbc.M112.340471] [PMID: 22311975]
[16]
Ma, D.; Xu, X.; An, S.; Liu, H.; Yang, X.; Andersen, J.F.; Wang, Y.; Tokumasu, F.; Ribeiro, J.M.; Francischetti, I.M.; Lai, R. A novel family of RGD-containing disintegrins (Tablysin-15) from the salivary gland of the horsefly Tabanus yao targets αIIbβ3 or αVβ3 and inhibits platelet aggregation and angiogenesis. Thromb. Haemost., 2011, 105(6), 1032-1045.
[http://dx.doi.org/10.1160/TH11-01-0029] [PMID: 21475772]
[17]
Deng, Z.; Chai, J.; Zeng, Q.; Zhang, B.; Ye, T.; Chen, X.; Xu, X. The anticancer properties and mechanism of action of tablysin-15, the RGD-containing disintegrin, in breast cancer cells. Int. J. Biol. Macromol., 2019, 129, 1155-1167.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.01.073]
[18]
Reynolds, A.R.; Hart, I.R.; Watson, A.R.; Welti, J.C.; Silva, R.G.; Robinson, S.D.; Da Violante, G.; Gourlaouen, M.; Salih, M.; Jones, M.C.; Jones, D.T.; Saunders, G.; Kostourou, V.; Perron-Sierra, F.; Norman, J.C.; Tucker, G.C.; Hodivala-Dilke, K.M. Stimulation of tumor growth and angiogenesis by low concentrations of RGD-mimetic integrin inhibitors. Nat. Med., 2009, 15(4), 392-400.
[http://dx.doi.org/10.1038/nm.1941] [PMID: 19305413]
[19]
Zhang, B.; Deng, Z.; Zeng, B.; Yang, S.; Chen, X.; Xu, X.; Wu, J. In-vitro effects of the FS50 protein from salivary glands of Xenopsylla cheopis on voltage-gated sodium channel activity and motility of MDA-MB-231 human breast cancer cells. Anticancer Drugs, 2018, 29(9), 880-889.
[http://dx.doi.org/10.1097/CAD.0000000000000662] [PMID: 29912729]
[20]
Hou, C.; Miao, Y.; Wang, X.; Chen, C.; Lin, B.; Hu, Z. Expression of matrix metalloproteinases and tissue inhibitor of matrix metalloproteinases in the hair cycle. Exp. Ther. Med., 2016, 12(1), 231-237.
[http://dx.doi.org/10.3892/etm.2016.3319] [PMID: 27429651]
[21]
Trikha, M.; Zhou, Z.; Timar, J.; Raso, E.; Kennel, M.; Emmell, E.; Nakada, M.T. Multiple roles for platelet GPIIb/IIIa and alphavbeta3 integrins in tumor growth, angiogenesis, and metastasis. Cancer Res., 2002, 62(10), 2824-2833.
[PMID: 12019160]
[22]
Reiser, J.; Sever, S.; Faul, C. Signal transduction in podocytes--spotlight on receptor tyrosine kinases. Nat. Rev. Nephrol., 2014, 10(2), 104-115.
[http://dx.doi.org/10.1038/nrneph.2013.274] [PMID: 24394191]
[23]
Zhang, J.; Hochwald, S.N. The role of FAK in tumor metabolism and therapy. Pharmacol. Ther., 2014, 142(2), 154-163.
[http://dx.doi.org/10.1016/j.pharmthera.2013.12.003] [PMID: 24333503]
[24]
Rinkenbaugh, A.L.; Baldwin, A.S. The NF-kappaB pathway and cancer stem cells. CELLS-BASEL, 2016, 5(2), 16.
[25]
Nieberler, M.; Reuning, U.; Reichart, F.; Notni, J.; Wester, H.J.; Schwaiger, M.; Weinmüller, M.; Räder, A.; Steiger, K.; Kessler, H. Exploring the role of RGD-recognizing integrins in cancer. Cancers (Basel), 2017, 9(9), E116
[http://dx.doi.org/10.3390/cancers9090116] [PMID: 28869579]
[26]
Jiang, Q.; Pan, Y.; Cheng, Y.; Li, H.; Liu, D.; Li, H. Lunasin suppresses the migration and invasion of breast cancer cells by inhibiting matrix metalloproteinase-2/-9 via the FAK/Akt/ERK and NF-κB signaling pathways. Oncol. Rep., 2016, 36(1), 253-262.
[http://dx.doi.org/10.3892/or.2016.4798] [PMID: 27175819]
[27]
Li, S.; Wei, J.; Yuan, L.; Sun, H.; Liu, Y.; Zhang, Y.; Li, J.; Liu, X. RGD-modified endostatin peptide 30 derived from endostatin suppresses invasion and migration of HepG2 cells through the αvβ3 pathway. Cancer Biother. Radiopharm., 2011, 26(5), 529-538.
[http://dx.doi.org/10.1089/cbr.2011.0978] [PMID: 21834652]
[28]
Saviola, A.J.; Burns, P.D.; Mukherjee, A.K.; Mackessy, S.P. The disintegrin tzabcanin inhibits adhesion and migration in melanoma and lung cancer cells. INT J BIOL MACROMOL,, 2016.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.04.008]
[29]
Khan, Z.; Khan, N.; Tiwari, R.P.; Sah, N.K.; Prasad, G.B.; Bisen, P.S. Biology of Cox-2: an application in cancer therapeutics. Curr. Drug Targets, 2011, 12(7), 1082-1093.
[http://dx.doi.org/10.2174/138945011795677764] [PMID: 21443470]
[30]
Hung, Y.C.; Hsu, C.C.; Chung, C.H.; Huang, T.F. The disintegrin, trimucrin, suppresses LPS-induced activation of phagocytes primarily through blockade of NF-κB and MAPK activation. Naunyn Schmiedebergs Arch. Pharmacol., 2016, 389(7), 723-737.
[http://dx.doi.org/10.1007/s00210-016-1233-7] [PMID: 27030393]
[31]
Hu, L.; Wang, J.; Wang, Y.; Xu, H. An integrin αvβ3 antagonistic modified peptide inhibits tumor growth through inhibition of the ERK and AKT signaling pathways. Oncol. Rep., 2016, 36(4), 1953-1962.
[http://dx.doi.org/10.3892/or.2016.4994] [PMID: 27499314]
[32]
Duronio, R.J.; Xiong, Y. Signaling pathways that control cell proliferation. Cold Spring Harb. Perspect. Biol., 2013, 5(3), a008904
[http://dx.doi.org/10.1101/cshperspect.a008904] [PMID: 23457258]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy