Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Review Article

Melatonin and Melatonergic Influence on Neuronal Transcription Factors: Implications for the Development of Novel Therapies for Neurodegenerative Disorders

Author(s): Olakunle J. Onaolapo, Adejoke Y. Onaolapo*, Olugbenga A. Olowe, Mojisola O. Udoh, David O. Udoh and Thomas I. Nathaniel

Volume 18, Issue 7, 2020

Page: [563 - 577] Pages: 15

DOI: 10.2174/1570159X18666191230114339

Price: $65

Abstract

Melatonin is a multifunctional signalling molecule that is secreted by the mammalian pineal gland, and also found in a number of organisms including plants and bacteria. Research has continued to uncover an ever-increasing number of processes in which melatonin is known to play crucial roles in mammals. Amongst these functions is its contribution to cell multiplication, differentiation and survival in the brain. Experimental studies show that melatonin can achieve these functions by influencing transcription factors which control neuronal and glial gene expression. Since neuronal survival and differentiation are processes that are important determinants of the pathogenesis, course and outcome of neurodegenerative disorders; the known and potential influences of melatonin on neuronal and glial transcription factors are worthy of constant examination. In this review, relevant scientific literature on the role of melatonin in preventing or altering the course and outcome of neurodegenerative disorders, by focusing on melatonin’s influence on transcription factors is examined. A number of transcription factors whose functions can be influenced by melatonin in neurodegenerative disease models have also been highlighted. Finally, the therapeutic implications of melatonin’s influences have also been discussed and the potential limitations to its applications have been highlighted.

Keywords: Melatonin, glial, neurons, gene expression, transcription factors, neuroinflammation, neurodegeneration.

Graphical Abstract

[1]
Dorsey, E.R.; Sherer, T.; Okun, M.S.; Bloem, B.R. The emerging evidence of the parkinson pandemic. J. Parkinsons Dis., 2018, 8(s1), S3-S8.
[http://dx.doi.org/10.3233/JPD-181474] [PMID: 30584159]
[2]
Wyss-Coray, T. Ageing, neurodegeneration and brain rejuvenation. Nature, 2016, 539(7628), 180-186.
[http://dx.doi.org/10.1038/nature20411] [PMID: 27830812]
[3]
Reitz, C.; Brayne, C.; Mayeux, R. Epidemiology of Alzheimer disease. Nat. Rev. Neurol., 2011, 7(3), 137-152.
[http://dx.doi.org/10.1038/nrneurol.2011.2] [PMID: 21304480]
[4]
Li, M.D.; Burns, T.C.; Morgan, A.A.; Khatri, P. Integrated multi-cohort transcriptional meta-analysis of neurodegenerative diseases. Acta Neuropathol. Commun., 2014, 2, 93.
[http://dx.doi.org/10.1186/s40478-014-0093-y] [PMID: 21304480]
[5]
Reeve, A.; Simcox, E.; Turnbull, D. Ageing and Parkinson’s disease: why is advancing age the biggest risk factor? Ageing Res. Rev., 2014, 14, 19-30.
[http://dx.doi.org/10.1016/j.arr.2014.01.004] [PMID: 24503004]
[6]
Bae, B.I.; Jayaraman, D.; Walsh, C.A. Genetic changes shaping the human brain. Dev. Cell, 2015, 32(4), 423-434.
[http://dx.doi.org/10.1016/j.devcel.2015.01.035] [PMID: 25710529]
[7]
Cooper-Knock, J.; Kirby, J.; Ferraiuolo, L.; Heath, P.R.; Rattray, M.; Shaw, P.J. Gene expression profiling in human neurodegenerative disease. Nat. Rev. Neurol., 2012, 8(9), 518-530.
[http://dx.doi.org/10.1038/nrneurol.2012.156] [PMID: 22890216]
[8]
Ramanan, V.K.; Saykin, A.J. Pathways to neurodegeneration: mechanistic insights from GWAS in Alzheimer’s disease, Parkinson’s disease, and related disorders. Am. J. Neurodegener. Dis., 2013, 2(3), 145-175.
[PMID: 24093081]
[9]
Kang, S.S.; Ebbert, M.T.W.; Baker, K.E.; Cook, C.; Wang, X.; Sens, J.P.; Kocher, J.P.; Petrucelli, L.; Fryer, J.D. Microglial translational profiling reveals a convergent APOE pathway from aging, amyloid, and tau. J. Exp. Med., 2018, 215(9), 2235-2245.
[http://dx.doi.org/10.1084/jem.20180653] [PMID: 30082275]
[10]
Cenini, G.; Lloret, A.; Cascella, R. Oxidative stress in neurodegenerative diseases: from a mitochondrial point of view. Oxid. Med. Cell. Longev., 2019, 20192105607
[http://dx.doi.org/10.1155/2019/2105607] [PMID: 31210837]
[11]
Singh, A.; Kukreti, R.; Saso, L.; Kukreti, S. Oxidative Stress: A key modulator in neurodegenerative diseases. Molecules, 2019, 24(8)E1583
[http://dx.doi.org/10.3390/molecules24081583] [PMID: 31013638]
[12]
Sweeney, M.D.; Kisler, K.; Montagne, A.; Toga, A.W.; Zlokovic, B.V. The role of brain vasculature in neurodegenerative disorders. Nat. Neurosci., 2018, 21(10), 1318-1331.
[http://dx.doi.org/10.1038/s41593-018-0234-x] [PMID: 30250261]
[13]
Cruz-Haces, M.; Tang, J.; Acosta, G.; Fernandez, J.; Shi, R. Pathological correlations between traumatic brain injury and chronic neurodegenerative diseases. Transl. Neurodegener., 2017, 6, 20.
[http://dx.doi.org/10.1186/s40035-017-0088-2] [PMID: 28702179]
[14]
Wong, E.; Cuervo, A.M. Autophagy gone awry in neurodegenerative diseases. Nat. Neurosci., 2010, 13(7), 805-811.
[http://dx.doi.org/10.1038/nn.2575] [PMID: 20581817]
[15]
Chen, H.; Chan, D.C. Mitochondrial dynamics--fusion, fission, movement, and mitophagy--in neurodegenerative diseases. Hum. Mol. Genet., 2009, 18(R2), R169-R176.
[http://dx.doi.org/10.1093/hmg/ddp326] [PMID: 19808793]
[16]
Lagier-Tourenne, C.; Polymenidou, M.; Cleveland, D.W. TDP-43 and FUS/TLS: emerging roles in RNA processing and neurodegeneration. Hum. Mol. Genet., 2010, 19(R1), R46-R64.
[http://dx.doi.org/10.1093/hmg/ddq137] [PMID: 20400460]
[17]
Zheng, Q.; Huang, T.; Zhang, L.; Zhou, Y.; Luo, H.; Xu, H.; Wang, X. Dysregulation of ubiquitin-proteasome system in neurodegenerative diseases. Front. Aging Neurosci., 2016, 8, 303.
[http://dx.doi.org/10.3389/fnagi.2016.00303] [PMID: 28018215]
[18]
Eckert, D.; Buhl, S.; Weber, S.; Jäger, R.; Schorle, H. The AP-2 family of transcription factors. Genome Biol., 2005, 6(13), 246.
[http://dx.doi.org/10.1186/gb-2005-6-13-246] [PMID: 16420676]
[19]
Li, X.; Chen, X.; Zhou, W.; Ji, S.; Li, X.; Li, G.; Liu, G.; Wang, F.; Hao, A. Effect of melatonin on neuronal differentiation requires CBP/p300-mediated acetylation of histone H3 lysine 14. Neuroscience, 2017, 364, 45-59.
[http://dx.doi.org/10.1016/j.neuroscience.2017.07.064] [PMID: 28782640]
[20]
Mateus-Pinheiro, A.; Alves, N.D.; Patrício, P.; Machado-Santos, A.R.; Loureiro-Campos, E.; Silva, J.M.; Sardinha, V.M.; Reis, J.; Schorle, H.; Oliveira, J.F.; Ninkovic, J.; Sousa, N.; Pinto, L. AP2γ controls adult hippocampal neurogenesis and modulates cognitive, but not anxiety or depressive-like behavior. Mol. Psychiatry, 2017, 22(12), 1725-1734.
[http://dx.doi.org/10.1038/mp.2016.169] [PMID: 27777416]
[21]
Takahashi, K.; Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 2006, 126(4), 663-676.
[http://dx.doi.org/10.1016/j.cell.2006.07.024] [PMID: 16904174]
[22]
Yoo, Y.M.; Jung, E.M.; Choi, K.C.; Jeung, E.B. Effect of melatonin on mRNA expressions of transcription factors in murine embryonic stem cells. Brain Res., 2011, 1385, 1-7.
[http://dx.doi.org/10.1016/j.brainres.2011.02.047] [PMID: 21349252]
[23]
Calkhoven, C.F.; Ab, G. Multiple steps in the regulation of transcription-factor level and activity. Biochem. J., 1996, 317(Pt 2), 329-342.
[http://dx.doi.org/10.1042/bj3170329] [PMID: 8713055]
[24]
Shimozaki, K. Sox2 transcription network acts as a molecular switch to regulate properties of neural stem cells. World J. Stem Cells, 2014, 6(4), 485-490.
[http://dx.doi.org/10.4252/wjsc.v6.i4.485] [PMID: 25258670]
[25]
Bondy, S.C.; Campbell, A. Mechanisms underlying tumor suppressive properties of melatonin. Int. J. Mol. Sci., 2018, 19(8)E2205
[http://dx.doi.org/10.3390/ijms19082205] [PMID: 30060531]
[26]
Maston, G.A.; Evans, S.K.; Green, M.R. Transcriptional regulatory elements in the human genome. Annu. Rev. Genomics Hum. Genet., 2006, 7, 29-59.
[http://dx.doi.org/10.1146/annurev.genom.7.080505.115623] [PMID: 16719718]
[27]
Narlikar, G.J.; Fan, H.Y.; Kingston, R.E. Cooperation between complexes that regulate chromatin structure and transcription. Cell, 2002, 108(4), 475-487.
[http://dx.doi.org/10.1016/S0092-8674(02)00654-2] [PMID: 11909519]
[28]
Reiter, F.; Wienerroither, S.; Stark, A. Combinatorial function of transcription factors and cofactors. Curr. Opin. Genet. Dev., 2017, 43, 73-81.
[http://dx.doi.org/10.1016/j.gde.2016.12.007] [PMID: 28110180]
[29]
Barrow, J.J.; Masannat, J.; Bungert, J. Neutralizing the function of a β-globin-associated cis-regulatory DNA element using an artificial zinc finger DNA-binding domain. Proc. Natl. Acad. Sci. USA, 2012, 109(44), 17948-17953.
[http://dx.doi.org/10.1073/pnas.1207677109] [PMID: 23074246]
[30]
Labadorf, A.; Choi, S.H.; Myers, R.H. Evidence for a pan-neurodegenerative disease response in Huntington’s and Parkinson’s Disease expression profiles. Front. Mol. Neurosci., 2018, 10, 430.
[http://dx.doi.org/10.3389/fnmol.2017.00430] [PMID: 29375298]
[31]
Saxena, S.; Caroni, P. Selective neuronal vulnerability in neurodegenerative diseases: from stressor thresholds to degeneration. Neuron, 2011, 71(1), 35-48.
[http://dx.doi.org/10.1016/j.neuron.2011.06.031] [PMID: 21745636]
[32]
Zhang, X.; Huai, J.; Shang, F.; Xu, G.; Tang, W.; Jing, Y.; Lin, R.A. PIF1/PIF3-HY5-BBX23 transcription factor cascade affects photomorphogenesis. Plant Physiol., 2017, 174(4), 2487-2500.
[http://dx.doi.org/10.1104/pp.17.00418] [PMID: 28687557]
[33]
Seberg, H.E.; Van Otterloo, E.; Cornell, R.A. Beyond MITF: Multiple transcription factors directly regulate the cellular phenotype in melanocytes and melanoma. Pigment Cell Melanoma Res., 2017, 30(5), 454-466.
[http://dx.doi.org/10.1111/pcmr.12611] [PMID: 28649789]
[34]
Grah, R.; Friedlander, T. The relation between crosstalk and gene regulation form revisited. PLOS Comput. Biol., 2020, 16(2) e1007642
[35]
Meunier, D.; Lambiotte, R.; Bullmore, E.T. Modular and hierarchically modular organization of brain networks. Front. Neurosci., 2010, 4, 200.
[http://dx.doi.org/10.3389/fnins.2010.00200] [PMID: 21151783 ]
[36]
Hecker, N.; Seemann, S.E.; Silahtaroglu, A.; Ruzzo, W.L.; Gorodkin, J. Associating transcription factors and conserved RNA structures with gene regulation in the human brain. Sci. Rep., 2017, 7(1), 5776.
[http://dx.doi.org/10.1038/s41598-017-06200-4] [PMID: 28720872 ]
[37]
Colantuoni, C.; Lipska, B.K.; Ye, T.; Hyde, T.M.; Tao, R.; Leek, J.T.; Colantuoni, E.A.; Elkahloun, A.G.; Herman, M.M.; Weinberger, D.R.; Kleinman, J.E. Temporal dynamics and genetic control of transcription in the human prefrontal cortex. Nature, 2011, 478(7370), 519-523.
[http://dx.doi.org/10.1038/nature10524] [PMID: 22031444 ]
[38]
Kang, H.J.; Kawasawa, Y.I.; Cheng, F.; Zhu, Y.; Xu, X.; Li, M.; Sousa, A.M.; Pletikos, M.; Meyer, K.A.; Sedmak, G.; Guennel, T.; Shin, Y.; Johnson, M.B.; Krsnik, Z.; Mayer, S.; Fertuzinhos, S.; Umlauf, S.; Lisgo, S.N.; Vortmeyer, A.; Weinberger, D.R.; Mane, S.; Hyde, T.M.; Huttner, A.; Reimers, M.; Kleinman, J.E.; Sestan, N. Spatio-temporal transcriptome of the human brain. Nature, 2011, 478(7370), 483-489.
[http://dx.doi.org/10.1038/nature10523] [PMID: 22031440 ]
[39]
Krauss, S.; Johansen, T.; Korzh, V.; Fjose, A. Expression pattern of zebrafish pax genes suggests a role in early brain regionalization. Nature, 1991, 353(6341), 267-270.
[http://dx.doi.org/10.1038/353267a0] [PMID: 1680220 ]
[40]
Martínez, S. The isthmic organizer and brain regionalization. Int. J. Dev. Biol., 2001, 45(1), 367-371.
[PMID: 11291867 ]
[41]
Sandberg, R.; Yasuda, R.; Pankratz, D.G.; Carter, T.A.; Del Rio, J.A.; Wodicka, L.; Mayford, M.; Lockhart, D.J.; Barlow, C. Regional and strain-specific gene expression mapping in the adult mouse brain. Proc. Natl. Acad. Sci. USA, 2000, 97(20), 11038-11043.
[http://dx.doi.org/10.1073/pnas.97.20.11038] [PMID: 11005875 ]
[42]
Datson, N.A.; van der Perk, J.; de Kloet, E.R.; Vreugdenhil, E. Expression profile of 30,000 genes in rat hippocampus using SAGE. Hippocampus, 2001, 11(4), 430-444.
[http://dx.doi.org/10.1002/hipo.1058] [PMID: 11530848 ]
[43]
Ertekin-Taner, N. Genetics of Alzheimer disease in the pre- and post-GWAS era. Alzheimers Res. Ther., 2010, 2(1), 3.
[http://dx.doi.org/10.1186/alzrt26] [PMID: 20236449 ]
[44]
Al-Chalabi, A.; Jones, A.; Troakes, C.; King, A.; Al-Sarraj, S.; van den Berg, L.H. The genetics and neuropathology of amyotrophic lateral sclerosis. Acta Neuropathol., 2012, 124(3), 339-352.
[http://dx.doi.org/10.1007/s00401-012-1022-4] [PMID: 22903397 ]
[45]
Hooten, K.G.; Beers, D.R.; Zhao, W.; Appel, S.H. Protective and toxic neuroinflammation in amyotrophic lateral sclerosis. Neurotherapeutics, 2015, 12(2), 364-375.
[http://dx.doi.org/10.1007/s13311-014-0329-3] [PMID: 25567201 ]
[46]
Zufiría, M.; Gil-Bea, F.J.; Fernández-Torrón, R.; Poza, J.J.; Muñoz-Blanco, J.L.; Rojas-García, R.; Riancho, J.; López de Munain, A. ALS: A bucket of genes, environment, metabolism and unknown ingredients. Prog. Neurobiol., 2016, 142, 104-129.
[http://dx.doi.org/10.1016/j.pneurobio.2016.05.004] [PMID: 27236050 ]
[47]
García, J.C.; Bustos, R.H. The genetic diagnosis of neurodegenerative diseases and therapeutic perspectives. Brain Sci., 2018, 8(12)E222
[http://dx.doi.org/10.3390/brainsci8120222] [PMID: 30551598 ]
[48]
Billingsley, K.J.; Bandres-Ciga, S.; Saez-Atienzar, S.; Singleton, A.B. Genetic risk factors in Parkinson’s disease. Cell Tissue Res., 2018, 373(1), 9-20.
[http://dx.doi.org/10.1007/s00441-018-2817-y] [PMID: 29536161 ]
[49]
Pihlstrøm, L.; Wiethoff, S.; Houlden, H. Genetics of neurodegenerative diseases: an overview. Handb. Clin. Neurol., 2017, 145, 309-323.
[http://dx.doi.org/10.1016/B978-0-12-802395-2.00022-5] [PMID: 28987179 ]
[50]
Ryan, K.J.; White, C.C.; Patel, K.; Xu, J.; Olah, M.; Replogle, J.M.; Frangieh, M.; Cimpean, M.; Winn, P.; McHenry, A.; Kaskow, B.J.; Chan, G.; Cuerdon, N.; Bennett, D.A.; Boyd, J.D.; Imitola, J.; Elyaman, W.; De Jager, P.L.; Bradshaw, E.M. A human microglia-like cellular model for assessing the effects of neurodegenerative disease gene variants. Sci. Transl. Med., 2017, 9(421), 7635.
[http://dx.doi.org/10.1126/scitranslmed.aai7635] [PMID: 29263232 ]
[51]
Liu, G.; Sun, J.Y.; Xu, M.; Yang, X.Y.; Sun, B.L. SORL1 variants show different association with early-onset and late-onset alzheimer’s disease risk. J. Alzheimers Dis., 2017, 58(4), 1121-1128.
[http://dx.doi.org/10.3233/JAD-170005] [PMID: 28527213 ]
[52]
Sun, J.Y.; Hou, Y.J.; Zhang, Y.; Wang, L.; Liu, L.; Sun, B.L.; Yuan, H. genetic variants associated with neurodegenerative diseases regulate gene expression in immune cell cd14+ monocytes. Front. Genet., 2018, 9, 666.
[http://dx.doi.org/10.3389/fgene.2018.00666] [PMID: 30619483 ]
[53]
Jun, G.R.; Chung, J.; Mez, J.; Barber, R.; Beecham, G.W.; Bennett, D.A.; Buxbaum, J.D.; Byrd, G.S.; Carrasquillo, M.M.; Crane, P.K.; Cruchaga, C.; De Jager, P.; Ertekin-Taner, N.; Evans, D.; Fallin, M.D.; Foroud, T.M.; Friedland, R.P.; Goate, A.M.; Graff-Radford, N.R.; Hendrie, H.; Hall, K.S.; Hamilton-Nelson, K.L.; Inzelberg, R.; Kamboh, M.I.; Kauwe, J.S.K.; Kukull, W.A.; Kunkle, B.W.; Kuwano, R.; Larson, E.B.; Logue, M.W.; Manly, J.J.; Martin, E.R.; Montine, T.J.; Mukherjee, S.; Naj, A.; Reiman, E.M.; Reitz, C.; Sherva, R.; St George-Hyslop, P.H.; Thornton, T.; Younkin, S.G.; Vardarajan, B.N.; Wang, L.S.; Wendlund, J.R.; Winslow, A.R.; Haines, J.; Mayeux, R.; Pericak-Vance, M.A.; Schellenberg, G.; Lunetta, K.L.; Farrer, L.A. Transethnic genome-wide scan identifies novel Alzheimer’s disease loci. Alzheimers Dement., 2017, 13(7), 727-738.
[http://dx.doi.org/10.1016/j.jalz.2016.12.012] [PMID: 28183528 ]
[54]
Lambert, J.C.; Ibrahim-Verbaas, C.A.; Harold, D.; Naj, A.C.; Sims, R.; Bellenguez, C.; DeStafano, A.L.; Bis, J.C.; Beecham, G.W.; Grenier-Boley, B.; Russo, G.; Thorton-Wells, T.A.; Jones, N.; Smith, A.V.; Chouraki, V.; Thomas, C.; Ikram, M.A.; Zelenika, D.; Vardarajan, B.N.; Kamatani, Y.; Lin, C.F.; Gerrish, A.; Schmidt, H.; Kunkle, B.; Dunstan, M.L.; Ruiz, A.; Bihoreau, M.T.; Choi, S.H.; Reitz, C.; Pasquier, F.; Cruchaga, C.; Craig, D.; Amin, N.; Berr, C.; Lopez, O.L.; De Jager, P.L.; Deramecourt, V.; Johnston, J.A.; Evans, D.; Lovestone, S.; Letenneur, L.; Morón, F.J.; Rubinsztein, D.C.; Eiriksdottir, G.; Sleegers, K.; Goate, A.M.; Fiévet, N.; Huentelman, M.W.; Gill, M.; Brown, K.; Kamboh, M.I.; Keller, L.; Barberger-Gateau, P.; McGuiness, B.; Larson, E.B.; Green, R.; Myers, A.J.; Dufouil, C.; Todd, S.; Wallon, D.; Love, S.; Rogaeva, E.; Gallacher, J.; St George-Hyslop, P.; Clarimon, J.; Lleo, A.; Bayer, A.; Tsuang, D.W.; Yu, L.; Tsolaki, M.; Bossù, P.; Spalletta, G.; Proitsi, P.; Collinge, J.; Sorbi, S.; Sanchez-Garcia, F.; Fox, N.C.; Hardy, J.; Deniz Naranjo, M.C.; Bosco, P.; Clarke, R.; Brayne, C.; Galimberti, D.; Mancuso, M.; Matthews, F.; Moebus, S.; Mecocci, P.; Del Zompo, M.; Maier, W.; Hampel, H.; Pilotto, A.; Bullido, M.; Panza, F.; Caffarra, P.; Nacmias, B.; Gilbert, J.R.; Mayhaus, M.; Lannefelt, L.; Hakonarson, H.; Pichler, S.; Carrasquillo, M.M.; Ingelsson, M.; Beekly, D.; Alvarez, V.; Zou, F.; Valladares, O.; Younkin, S.G.; Coto, E.; Hamilton-Nelson, K.L.; Gu, W.; Razquin, C.; Pastor, P.; Mateo, I.; Owen, M.J.; Faber, K.M.; Jonsson, P.V.; Combarros, O.; O’Donovan, M.C.; Cantwell, L.B.; Soininen, H.; Blacker, D.; Mead, S.; Mosley, T.H., Jr; Bennett, D.A.; Harris, T.B.; Fratiglioni, L.; Holmes, C.; de Bruijn, R.F.; Passmore, P.; Montine, T.J.; Bettens, K.; Rotter, J.I.; Brice, A.; Morgan, K.; Foroud, T.M.; Kukull, W.A.; Hannequin, D.; Powell, J.F.; Nalls, M.A.; Ritchie, K.; Lunetta, K.L.; Kauwe, J.S.; Boerwinkle, E.; Riemenschneider, M.; Boada, M.; Hiltuenen, M.; Martin, E.R.; Schmidt, R.; Rujescu, D.; Wang, L.S.; Dartigues, J.F.; Mayeux, R.; Tzourio, C.; Hofman, A.; Nöthen, M.M.; Graff, C.; Psaty, B.M.; Jones, L.; Haines, J.L.; Holmans, P.A.; Lathrop, M.; Pericak-Vance, M.A.; Launer, L.J.; Farrer, L.A.; van Duijn, C.M.; Van Broeckhoven, C.; Moskvina, V.; Seshadri, S.; Williams, J.; Schellenberg, G.D.; Amouyel, P. Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer’s disease. Nat. Genet., 2013, 45(12), 1452-1458.
[http://dx.doi.org/10.1038/ng.2802] [PMID: 24162737 ]
[55]
Nalls, M.A.; Pankratz, N.; Lill, C.M.; Do, C.B.; Hernandez, D.G.; Saad, M.; DeStefano, A.L.; Kara, E.; Bras, J.; Sharma, M.; Schulte, C.; Keller, M.F.; Arepalli, S.; Letson, C.; Edsall, C.; Stefansson, H.; Liu, X.; Pliner, H.; Lee, J.H.; Cheng, R.; Ikram, M.A.; Ioannidis, J.P.; Hadjigeorgiou, G.M.; Bis, J.C.; Martinez, M.; Perlmutter, J.S.; Goate, A.; Marder, K.; Fiske, B.; Sutherland, M.; Xiromerisiou, G.; Myers, R.H.; Clark, L.N.; Stefansson, K.; Hardy, J.A.; Heutink, P.; Chen, H.; Wood, N.W.; Houlden, H.; Payami, H.; Brice, A.; Scott, W.K.; Gasser, T.; Bertram, L.; Eriksson, N.; Foroud, T.; Singleton, A.B. Large-scale meta-analysis of genome-wide association data identifies six new risk loci for Parkinson’s disease. Nat. Genet., 2014, 46(9), 989-993.
[http://dx.doi.org/10.1038/ng.3043] [PMID: 25064009 ]
[56]
Chang, D.; Nalls, M.A.; Hallgrímsdóttir, I.B.; Hunkapiller, J.; van der Brug, M.; Cai, F.; Kerchner, G.A.; Ayalon, G.; Bingol, B.; Sheng, M.; Hinds, D.; Behrens, T.W.; Singleton, A.B.; Bhangale, T.R.; Graham, R.R. A meta-analysis of genome-wide association studies identifies 17 new Parkinson’s disease risk loci. Nat. Genet., 2017, 49(10), 1511-1516.
[http://dx.doi.org/10.1038/ng.3955] [PMID: 28892059 ]
[57]
Liu, G.; Jiang, Y.; Wang, P.; Feng, R.; Jiang, N.; Chen, X.; Song, H.; Chen, Z. Cell adhesion molecules contribute to Alzheimer’s disease: multiple pathway analyses of two genome-wide association studies. J. Neurochem., 2012, 120(1), 190-198.
[http://dx.doi.org/10.1111/j.1471-4159.2011.07547.x] [PMID: 22017384 ]
[58]
Liu, G.; Zhang, Y.; Wang, L.; Xu, J.; Chen, X.; Bao, Y.; Hu, Y.; Jin, S.; Tian, R.; Bai, W.; Zhou, W.; Wang, T.; Han, Z.; Zong, J.; Jiang, Q. Alzheimer’s Disease rs11767557 Variant regulates epha1 gene expression specifically in human whole blood. J. Alzheimers Dis., 2018, 61(3), 1077-1088.
[http://dx.doi.org/10.3233/JAD-170468] [PMID: 29332039 ]
[59]
Jiang, Q.; Jin, S.; Jiang, Y.; Liao, M.; Feng, R.; Zhang, L.; Liu, G.; Hao, J. Alzheimer’s Disease variants with the genome-wide significance are significantly enriched in immune pathways and active in immune cells. Mol. Neurobiol., 2017, 54(1), 594-600.
[http://dx.doi.org/10.1007/s12035-015-9670-8] [PMID: 26746668 ]
[60]
Beecham, A.H.; Patsopoulos, N.A.; Xifara, D.K.; Davis, M.F.; Kemppinen, A.; Cotsapas, C.; Shah, T.S.; Spencer, C.; Booth, D.; Goris, A.; Oturai, A.; Saarela, J.; Fontaine, B.; Hemmer, B.; Martin, C.; Zipp, F.; D’Alfonso, S.; Martinelli-Boneschi, F.; Taylor, B.; Harbo, H.F.; Kockum, I.; Hillert, J.; Olsson, T.; Ban, M.; Oksenberg, J.R.; Hintzen, R.; Barcellos, L.F.; Agliardi, C.; Alfredsson, L.; Alizadeh, M.; Anderson, C.; Andrews, R.; Søndergaard, H.B.; Baker, A.; Band, G.; Baranzini, S.E.; Barizzone, N.; Barrett, J.; Bellenguez, C.; Bergamaschi, L.; Bernardinelli, L.; Berthele, A.; Biberacher, V.; Binder, T.M.; Blackburn, H.; Bomfim, I.L.; Brambilla, P.; Broadley, S.; Brochet, B.; Brundin, L.; Buck, D.; Butzkueven, H.; Caillier, S.J.; Camu, W.; Carpentier, W.; Cavalla, P.; Celius, E.G.; Coman, I.; Comi, G.; Corrado, L.; Cosemans, L.; Cournu-Rebeix, I.; Cree, B.A.; Cusi, D.; Damotte, V.; Defer, G.; Delgado, S.R.; Deloukas, P.; di Sapio, A.; Dilthey, A.T.; Donnelly, P.; Dubois, B.; Duddy, M.; Edkins, S.; Elovaara, I.; Esposito, F.; Evangelou, N.; Fiddes, B.; Field, J.; Franke, A.; Freeman, C.; Frohlich, I.Y.; Galimberti, D.; Gieger, C.; Gourraud, P.A.; Graetz, C.; Graham, A.; Grummel, V.; Guaschino, C.; Hadjixenofontos, A.; Hakonarson, H.; Halfpenny, C.; Hall, G.; Hall, P.; Hamsten, A.; Harley, J.; Harrower, T.; Hawkins, C.; Hellenthal, G.; Hillier, C.; Hobart, J.; Hoshi, M.; Hunt, S.E.; Jagodic, M.; Jelčić, I.; Jochim, A.; Kendall, B.; Kermode, A.; Kilpatrick, T.; Koivisto, K.; Konidari, I.; Korn, T.; Kronsbein, H.; Langford, C.; Larsson, M.; Lathrop, M.; Lebrun-Frenay, C.; Lechner-Scott, J.; Lee, M.H.; Leone, M.A.; Leppä, V.; Liberatore, G.; Lie, B.A.; Lill, C.M.; Lindén, M.; Link, J.; Luessi, F.; Lycke, J.; Macciardi, F.; Männistö, S.; Manrique, C.P.; Martin, R.; Martinelli, V.; Mason, D.; Mazibrada, G.; McCabe, C.; Mero, I.L.; Mescheriakova, J.; Moutsianas, L.; Myhr, K.M.; Nagels, G.; Nicholas, R.; Nilsson, P.; Piehl, F.; Pirinen, M.; Price, S.E.; Quach, H.; Reunanen, M.; Robberecht, W.; Robertson, N.P.; Rodegher, M.; Rog, D.; Salvetti, M.; Schnetz-Boutaud, N.C.; Sellebjerg, F.; Selter, R.C.; Schaefer, C.; Shaunak, S.; Shen, L.; Shields, S.; Siffrin, V.; Slee, M.; Sorensen, P.S.; Sorosina, M.; Sospedra, M.; Spurkland, A.; Strange, A.; Sundqvist, E.; Thijs, V.; Thorpe, J.; Ticca, A.; Tienari, P.; van Duijn, C.; Visser, E.M.; Vucic, S.; Westerlind, H.; Wiley, J.S.; Wilkins, A.; Wilson, J.F.; Winkelmann, J.; Zajicek, J.; Zindler, E.; Haines, J.L.; Pericak-Vance, M.A.; Ivinson, A.J.; Stewart, G.; Hafler, D.; Hauser, S.L.; Compston, A.; McVean, G.; De Jager, P.; Sawcer, S.J.; McCauley, J.L. Analysis of immune-related loci identifies 48 new susceptibility variants for multiple sclerosis. Nat. Genet., 2013, 45(11), 1353-1360.
[http://dx.doi.org/10.1038/ng.2770] [PMID: 24076602]
[61]
Liu, G.; Wang, T.; Tian, R.; Hu, Y.; Han, Z.; Wang, P.; Zhou, W.; Ren, P.; Zong, J.; Jin, S.; Jiang, Q. Alzheimer’s disease risk variant rs2373115 regulates GAB2 and NARS2 expression in human brain tissues. J. Mol. Neurosci., 2018, 66(1), 37-43.
[http://dx.doi.org/10.1007/s12031-018-1144-9] [PMID: 30088171 ]
[62]
Liu, G.; Zhang, F.; Hu, Y.; Jiang, Y.; Gong, Z.; Liu, S.; Chen, X.; Jiang, Q.; Hao, J. Genetic variants and multiple sclerosis risk gene SLC9A9 expression in distinct human brain regions. Mol. Neurobiol., 2017, 54(9), 6820-6826.
[http://dx.doi.org/10.1007/s12035-016-0208-5] [PMID: 27766536 ]
[63]
Cabantous, S.; Doumbo, O.; Poudiougou, B.; Louis, L.; Barry, A.; Oumar, A.A.; Traore, A.; Marquet, S.; Dessein, A. Gene expression analysis reveals genes common to cerebral malaria and neurodegenerative disorders. J. Infect. Dis., 2017, 216(6), 771-775.
[http://dx.doi.org/10.1093/infdis/jix359] [PMID: 28934429 ]
[64]
Arneson, D.; Zhang, Y.; Yang, X.; Narayanan, M. Shared mechanisms among neurodegenerative diseases: from genetic factors to gene networks. J. Genet., 2018, 97(3), 795-806.
[http://dx.doi.org/10.1007/s12041-018-0963-3] [PMID: 30027910 ]
[65]
Courtney, E.; Kornfeld, S.; Janitz, K.; Janitz, M. Transcriptome profiling in neurodegenerative disease. J. Neurosci. Methods, 2010, 193(2), 189-202.
[http://dx.doi.org/10.1016/j.jneumeth.2010.08.018] [PMID: 20800617 ]
[66]
Kim, J; Selvaraji, S; Kang, SW; Lee, WT; Chen, CL Choi H, Koo EH, Jo DG, Leong Lim K, Lim YA, Arumugam TV. Cerebral transcriptome analysis reveals age-dependent progression of neuroinflammation in P301S mutant tau transgenic male mice. Brain Behav Immun., 2019pii(S0889-1591(18)), , 30842-0.
[http://dx.doi.org/10.1016/j.bbi.2019.04.011]
[67]
van der Poel, M.; Ulas, T.; Mizee, M.R.; Hsiao, C.C.; Miedema, S.S.M. Adelia; Schuurman, K.G.; Helder, B.; Tas, S.W.; Schultze, J.L.; Hamann, J.; Huitinga, I. Transcriptional profiling of human microglia reveals grey-white matter heterogeneity and multiple sclerosis-associated changes. Nat. Commun., 2019, 10(1), 1139.
[http://dx.doi.org/10.1038/s41467-019-08976-7] [PMID: 30867424 ]
[68]
Grünblatt, E.; Zander, N.; Bartl, J.; Jie, L.; Monoranu, C.M.; Arzberger, T.; Ravid, R.; Roggendorf, W.; Gerlach, M.; Riederer, P. Comparison analysis of gene expression patterns between sporadic Alzheimer’s and Parkinson’s disease. J. Alzheimers Dis., 2007, 12(4), 291-311.
[http://dx.doi.org/10.3233/JAD-2007-12402] [PMID: 18198416 ]
[69]
Anderson, P.; Ivanov, P. tRNA fragments in human health and disease. FEBS Lett., 2014, 588(23), 4297-4304.
[http://dx.doi.org/10.1016/j.febslet.2014.09.001] [PMID: 25220675 ]
[70]
Liu, E.Y.; Cali, C.P.; Lee, E.B. RNA metabolism in neurodegenerative disease. Dis. Model. Mech., 2017, 10(5), 509-518.
[http://dx.doi.org/10.1242/dmm.028613] [PMID: 28468937 ]
[71]
Chu, C.T.; Plowey, E.D.; Wang, Y.; Patel, V.; Jordan-Sciutto, K.L. Location, location, location: altered transcription factor trafficking in neurodegeneration. J. Neuropathol. Exp. Neurol., 2007, 66(10), 873-883.
[http://dx.doi.org/10.1097/nen.0b013e318156a3d7] [PMID: 17917581 ]
[72]
Caldeira, G.L.; Ferreira, I.L.; Rego, A.C. Impaired transcription in Alzheimer’s disease: key role in mitochondrial dysfunction and oxidative stress. J. Alzheimers Dis., 2013, 34(1), 115-131.
[http://dx.doi.org/10.3233/JAD-121444] [PMID: 23364141 ]
[73]
Ciryam, P.; Kundra, R.; Freer, R.; Morimoto, R.I.; Dobson, C.M.; Vendruscolo, M. A transcriptional signature of Alzheimer’s disease is associated with a metastable subproteome at risk for aggregation. Proc. Natl. Acad. Sci. USA, 2016, 113(17), 4753-4758.
[http://dx.doi.org/10.1073/pnas.1516604113] [PMID: 27071083 ]
[74]
Kundra, R.; Ciryam, P.; Morimoto, R.I.; Dobson, C.M.; Vendruscolo, M. Protein homeostasis of a metastable subproteome associated with Alzheimer’s disease. Proc. Natl. Acad. Sci. USA, 2017, 114(28), E5703-E5711.
[http://dx.doi.org/10.1073/pnas.1618417114] [PMID: 28652376 ]
[75]
Chong, J.A.; Tapia-Ramírez, J.; Kim, S.; Toledo-Aral, J.J.; Zheng, Y.; Boutros, M.C.; Altshuller, Y.M.; Frohman, M.A.; Kraner, S.D.; Mandel, G. REST: a mammalian silencer protein that restricts sodium channel gene expression to neurons. Cell, 1995, 80(6), 949-957.
[http://dx.doi.org/10.1016/0092-8674(95)90298-8] [PMID: 7697725 ]
[76]
Hwang, J.Y.; Aromolaran, K.A.; Zukin, R.S. The emerging field of epigenetics in neurodegeneration and neuroprotection. Nat. Rev. Neurosci., 2017, 18(6), 347-361.
[http://dx.doi.org/10.1038/nrn.2017.46] [PMID: 28515491 ]
[77]
Hwang, J.Y.; Zukin, R.S. REST, a master transcriptional regulator in neurodegenerative disease. Curr. Opin. Neurobiol., 2018, 48, 193-200.
[http://dx.doi.org/10.1016/j.conb.2017.12.008] [PMID: 29351877 ]
[78]
Zuccato, C.; Tartari, M.; Crotti, A.; Goffredo, D.; Valenza, M.; Conti, L.; Cataudella, T.; Leavitt, B.R.; Hayden, M.R.; Timmusk, T.; Rigamonti, D.; Cattaneo, E. Huntingtin interacts with REST/NRSF to modulate the transcription of NRSE-controlled neuronal genes. Nat. Genet., 2003, 35(1), 76-83.
[http://dx.doi.org/10.1038/ng1219] [PMID: 12881722 ]
[79]
Lu, T.; Aron, L.; Zullo, J.; Pan, Y.; Kim, H.; Chen, Y.; Yang, T.H.; Kim, H.M.; Drake, D.; Liu, X.S.; Bennett, D.A.; Colaiácovo, M.P.; Yankner, B.A. REST and stress resistance in ageing and Alzheimer’s disease. Nature, 2014, 507(7493), 448-454.
[http://dx.doi.org/10.1038/nature13163] [PMID: 24670762 ]
[80]
Cookson, M.R. Parkinsonism due to mutations in PINK1, parkin, and DJ-1 and oxidative stress and mitochondrial pathways. Cold Spring Harb. Perspect. Med., 2012, 2(9) a009415
[http://dx.doi.org/10.1101/cshperspect.a009415] [PMID: 22951446 ]
[81]
Zhang, C.W.; Hang, L.; Yao, T.P.; Lim, K.L. parkin regulation and neurodegenerative disorders. Front. Aging Neurosci., 2016, 7, 248.
[http://dx.doi.org/10.3389/fnagi.2015.00248] [PMID: 26793099 ]
[82]
Unschuld, P.G.; Dächsel, J.; Darios, F.; Kohlmann, A.; Casademunt, E.; Lehmann-Horn, K.; Dichgans, M.; Ruberg, M.; Brice, A.; Gasser, T.; Lücking, C.B. Parkin modulates gene expression in control and ceramide-treated PC12 cells. Mol. Biol. Rep., 2006, 33(1), 13-32.
[http://dx.doi.org/10.1007/s11033-005-3961-5] [PMID: 16636914 ]
[83]
da Costa, C.A.; Sunyach, C.; Giaime, E.; West, A.; Corti, O.; Brice, A.; Safe, S.; Abou-Sleiman, P.M.; Wood, N.W.; Takahashi, H.; Goldberg, M.S.; Shen, J.; Checler, F. Transcriptional repression of p53 by parkin and impairment by mutations associated with autosomal recessive juvenile Parkinson’s disease. Nat. Cell Biol., 2009, 11(11), 1370-1375.
[http://dx.doi.org/10.1038/ncb1981] [PMID: 19801972 ]
[84]
Vargas, D.M.; De Bastiani, M.A.; Zimmer, E.R.; Klamt, F. Alzheimer’s disease master regulators analysis: search for potential molecular targets and drug repositioning candidates. Alzheimers Res. Ther., 2018, 10(1), 59.
[http://dx.doi.org/10.1186/s13195-018-0394-7] [PMID: 29935546 ]
[85]
Duplan, E.; Sevalle, J.; Viotti, J.; Goiran, T.; Bauer, C.; Renbaum, P.; Levy-Lahad, E.; Gautier, C.A.; Corti, O.; Leroudier, N.; Checler, F.; da Costa, C.A. Parkin differently regulates presenilin-1 and presenilin-2 functions by direct control of their promoter transcription. J. Mol. Cell Biol., 2013, 5(2), 132-142.
[http://dx.doi.org/10.1093/jmcb/mjt003] [PMID: 23359614 ]
[86]
Watson, G.; Ronai, Z.A.; Lau, E. ATF2, a paradigm of the multifaceted regulation of transcription factors in biology and disease. Pharmacol. Res., 2017, 119, 347-357.
[http://dx.doi.org/10.1016/j.phrs.2017.02.004] [PMID: 28212892 ]
[87]
Boissière, F.; Hunot, S.; Faucheux, B.; Duyckaerts, C.; Hauw, J.J.; Agid, Y.; Hirsch, E.C. Nuclear translocation of NF-kappaB in cholinergic neurons of patients with Alzheimer’s disease. Neuroreport, 1997, 8(13), 2849-2852.
[http://dx.doi.org/10.1097/00001756-199709080-00009] [PMID: 9376517 ]
[88]
McEachern, G.; Kassovska-Bratinova, S.; Raha, S.; Tarnopolsky, M.A.; Turnbull, J.; Bourgeois, J.; Robinson, B. Manganese superoxide dismutase levels are elevated in a proportion of amyotrophic lateral sclerosis patient cell lines. Biochem. Biophys. Res. Commun., 2000, 273(1), 359-363.
[http://dx.doi.org/10.1006/bbrc.2000.2933] [PMID: 10873611 ]
[89]
Kaltschmidt, B.; Widera, D.; Kaltschmidt, C. Signaling via NF-kappaB in the nervous system. Biochim. Biophys. Acta, 2005, 1745(3), 287-299.
[http://dx.doi.org/10.1016/j.bbamcr.2005.05.009] [PMID: 15993497 ]
[90]
Kitamura, Y.; Shimohama, S.; Ota, T.; Matsuoka, Y.; Nomura, Y.; Taniguchi, T. Alteration of transcription factors NF-kappaB and STAT1 in Alzheimer’s disease brains. Neurosci. Lett., 1997, 237(1), 17-20.
[http://dx.doi.org/10.1016/S0304-3940(97)00797-0] [PMID: 9406869]
[91]
Shahni, R.; Cale, C.M.; Anderson, G.; Osellame, L.D.; Hambleton, S.; Jacques, T.S.; Wedatilake, Y.; Taanman, J.W.; Chan, E.; Qasim, W.; Plagnol, V.; Chalasani, A.; Duchen, M.R.; Gilmour, K.C.; Rahman, S. Signal transducer and activator of transcription 2 deficiency is a novel disorder of mitochondrial fission. Brain, 2015, 138(Pt 10), 2834-2846.
[http://dx.doi.org/10.1093/brain/awv182] [PMID: 26122121 ]
[92]
Motohashi, H.; Yamamoto, M. Nrf2-Keap1 defines a physiologically important stress response mechanism. Trends Mol. Med., 2004, 10(11), 549-557.
[http://dx.doi.org/10.1016/j.molmed.2004.09.003] [PMID: 15519281 ]
[93]
Ramsey, C.P.; Glass, C.A.; Montgomery, M.B.; Lindl, K.A.; Ritson, G.P.; Chia, L.A.; Hamilton, R.L.; Chu, C.T.; Jordan-Sciutto, K.L. Expression of Nrf2 in neurodegenerative diseases. J. Neuropathol. Exp. Neurol., 2007, 66(1), 75-85.
[http://dx.doi.org/10.1097/nen.0b013e31802d6da9] [PMID: 17204939 ]
[94]
Theendakara, V.; Bredesen, D.E.; Rao, R.V. Downregulation of protein phosphatase 2A by apolipoprotein E: Implications for Alzheimer’s disease. Mol. Cell. Neurosci., 2017, 83, 83-91.
[http://dx.doi.org/10.1016/j.mcn.2017.07.002] [PMID: 28720530 ]
[95]
Theendakara, V.; Peters-Libeu, C.A.; Spilman, P.; Poksay, K.S.; Bredesen, D.E.; Rao, R.V. Direct transcriptional effects of apolipoprotein E. J. Neurosci., 2016, 36(3), 685-700.
[http://dx.doi.org/10.1523/JNEUROSCI.3562-15.2016] [PMID: 26791201 ]
[96]
Culmsee, C.; Mattson, M.P. p53 in neuronal apoptosis. Biochem. Biophys. Res. Commun., 2005, 331(3), 761-777.
[http://dx.doi.org/10.1016/j.bbrc.2005.03.149] [PMID: 15865932 ]
[97]
de la Monte, S.M.; Sohn, Y.K.; Ganju, N.; Wands, J.R. P53- and CD95-associated apoptosis in neurodegenerative diseases. Lab. Invest., 1998, 78(4), 401-411.
[PMID: 9564885 ]
[98]
Morrison, R.S.; Kinoshita, Y.; Johnson, M.D.; Guo, W.; Garden, G.A. p53-dependent cell death signaling in neurons. Neurochem. Res., 2003, 28(1), 15-27.
[http://dx.doi.org/10.1023/A:1021687810103] [PMID: 12587660]
[99]
Filtz, T.M.; Vogel, W.K.; Leid, M. Regulation of transcription factor activity by interconnected post-translational modifications. Trends Pharmacol. Sci., 2014, 35(2), 76-85.
[http://dx.doi.org/10.1016/j.tips.2013.11.005] [PMID: 24388790 ]
[100]
Everett, L.; Hansen, M.; Hannenhalli, S. Regulating the regulators: modulators of transcription factor activity. Methods Mol. Biol., 2010, 674, 297-312.
[http://dx.doi.org/10.1007/978-1-60761-854-6_19] [PMID: 20827600 ]
[101]
Whitmarsh, A.J.; Davis, R.J. Regulation of transcription factor function by phosphorylation. Cell. Mol. Life Sci., 2000, 57(8-9), 1172-1183.
[http://dx.doi.org/10.1007/PL00000757] [PMID: 11028910 ]
[102]
Conaway, R.C.; Brower, C.S.; Conaway, J.W. Emerging roles of ubiquitin in transcription regulation. Science, 2002, 296(5571), 1254-1258.
[http://dx.doi.org/10.1126/science.1067466] [PMID: 12016299 ]
[103]
Geiss-Friedlander, R.; Melchior, F. Concepts in sumoylation: a decade on. Nat. Rev. Mol. Cell Biol., 2007, 8(12), 947-956.
[http://dx.doi.org/10.1038/nrm2293] [PMID: 18000527 ]
[104]
Hart, G.W.; Slawson, C.; Ramirez-Correa, G.; Lagerlof, O. Cross talk between O-GlcNAcylation and phosphorylation: roles in signaling, transcription, and chronic disease. Annu. Rev. Biochem., 2011, 80, 825-858.
[http://dx.doi.org/10.1146/annurev-biochem-060608-102511] [PMID: 21391816 ]
[105]
Akhtar, R.A.; Reddy, A.B.; Maywood, E.S.; Clayton, J.D.; King, V.M.; Smith, A.G.; Gant, T.W.; Hastings, M.H.; Kyriacou, C.P. Circadian cycling of the mouse liver transcriptome, as revealed by cDNA microarray, is driven by the suprachiasmatic nucleus. Curr. Biol., 2002, 12(7), 540-550.
[http://dx.doi.org/10.1016/S0960-9822(02)00759-5] [PMID: 11937022 ]
[106]
Kim, M-Y.; Bae, J-S.; Kim, T-H.; Park, J-M.; Ahn, Y.H. Role of transcription factor modifications in the pathogenesis of insulin resistance. Exp. Diabetes Res., 2012, 20127, 16425.
[http://dx.doi.org/10.1155/2012/716425] [PMID: 22110478 ]
[107]
Berson, A.; Nativio, R.; Berger, S.L.; Bonini, N.M. Epigenetic regulation in neurodegenerative diseases. Trends Neurosci., 2018, 41(9), 587-598.
[http://dx.doi.org/10.1016/j.tins.2018.05.005] [PMID: 29885742]
[108]
Panda, S.; Antoch, M.P.; Miller, B.H.; Su, A.I.; Schook, A.B.; Straume, M.; Schultz, P.G.; Kay, S.A.; Takahashi, J.S.; Hogenesch, J.B. Coordinated transcription of key pathways in the mouse by the circadian clock. Cell, 2002, 109(3), 307-320.
[http://dx.doi.org/10.1016/S0092-8674(02)00722-5] [PMID: 12015981]
[109]
Ross, A.W.; Barrett, P.; Mercer, J.G.; Morgan, P.J. Melatonin suppresses the induction of AP-1 transcription factor components in the pars tuberalis of the pituitary. Mol. Cell. Endocrinol., 1996, 123(1), 71-80.
[http://dx.doi.org/10.1016/0303-7207(96)03897-X] [PMID: 8912813 ]
[110]
Bondy, S.C.; Li, H.; Zhou, J.; Wu, M.; Bailey, J.A.; Lahiri, D.K. Melatonin alters age-related changes in transcription factors and kinase activation. Neurochem. Res., 2010, 35(12), 2035-2042.
[http://dx.doi.org/10.1007/s11064-010-0206-3] [PMID: 20535557 ]
[111]
Kang, J.W.; Hong, J.M.; Lee, S.M. Melatonin enhances mitophagy and mitochondrial biogenesis in rats with carbon tetrachloride-induced liver fibrosis. J. Pineal Res., 2016, 60(4), 383-393.
[http://dx.doi.org/10.1111/jpi.12319] [PMID: 26882442 ]
[112]
Onaolapo, A.Y.; Onaolapo, O.J. Brain and Behaviour, Gokare A. Ravishankar, Akula Ramakrishna (eds), In book: Serotonin and Melatonin: Their functional role in plants and implication in human health. CRC Press. ISBN 9781498739054 , 2015.
[113]
Onaolapo, O.J.; Onaolapo, A.Y. Melatonin receptors, behaviour and brain function. Lore Correia and Germaine Mayers (eds), In book: Melatonin: medical uses and role in health and disease, Chapter 4, pp 132-148, Publisher: Nova Science Publishers ISBN: 978-1-53612-987-8 , 2018.
[114]
Srinivasan, V. Melatonin oxidative stress and neurodegenerative diseases. Indian J. Exp. Biol., 2002, 40(6), 668-679.
[PMID: 12587715 ]
[115]
Olakowska, E.; Marcol, W.; Kotulska, K.; Lewin-Kowalik, J. The role of melatonin in the neurodegenerative diseases. Bratisl. Lek Listy, 2005, 106(4-5), 171-174.
[PMID: 16080363 ]
[116]
Srinivasan, V.; Pandi-Perumal, S.R.; Maestroni, G.J.; Esquifino, A.I.; Hardeland, R.; Cardinali, D.P. Role of melatonin in neurodegenerative diseases. Neurotox. Res., 2005, 7(4), 293-318.
[http://dx.doi.org/10.1007/BF03033887] [PMID: 16179266 ]
[117]
Wu, Y.H.; Feenstra, M.G.; Zhou, J.N.; Liu, R.Y.; Toranõ, J.S.; Van Kan, H.J.; Fischer, D.F.; Ravid, R.; Swaab, D.F. Molecular changes underlying reduced pineal melatonin levels in Alzheimer disease: alterations in preclinical and clinical stages. J. Clin. Endocrinol. Metab., 2003, 88(12), 5898-5906.
[http://dx.doi.org/10.1210/jc.2003-030833] [PMID: 14671188 ]
[118]
Zhou, J.N.; Liu, R.Y.; Kamphorst, W.; Hofman, M.A.; Swaab, D.F. Early neuropathological Alzheimer’s changes in aged individuals are accompanied by decreased cerebrospinal fluid melatonin levels. J. Pineal Res., 2003, 35(2), 125-130.
[http://dx.doi.org/10.1034/j.1600-079X.2003.00065.x] [PMID: 12887656 ]
[119]
Lin, L.; Huang, Q.X.; Yang, S.S.; Chu, J.; Wang, J.Z.; Tian, Q. Melatonin in Alzheimer’s disease. Int. J. Mol. Sci., 2013, 14(7), 14575-14593.
[http://dx.doi.org/10.3390/ijms140714575] [PMID: 23857055 ]
[120]
Onaolapo, O.J.; Onaolapo, A.Y.; Abiola, A.A.; Lillian, E.A. Central depressant and nootropic effects of daytime melatonin in mice. Ann. Neurosci., 2014, 21(3), 90-96.
[http://dx.doi.org/10.5214/ans.0972.7531.210304] [PMID: 25206072]
[121]
Onaolapo, A.Y.; Adebayo, A.N.; Onaolapo, O.J. Exogenous daytime melatonin modulates response of adolescent mice in a repeated unpredictable stress paradigm. Naunyn Schmiedebergs Arch. Pharmacol., 2017, 390(2), 149-161.
[http://dx.doi.org/10.1007/s00210-016-1314-7] [PMID: 27844092 ]
[122]
Onaolapo, O.J.; Onaolapo, A.Y. Melatonin and major neurocognitive disorders: beyond the management of sleep and circadian rhythm dysfunction. Sleep Hypn., 2018, 21, 73-96.
[http://dx.doi.org/10.5350/Sleep.Hypn.2019.21.0175]
[123]
Onaolapo, O.J.; Onaolapo, A.Y. Melatonin in drug addiction and addiction management: Exploring an evolving multidimensional relationship. World J. Psychiatry, 2018, 8(2), 64-74.
[http://dx.doi.org/10.5498/wjp.v8.i2.64] [PMID: 29988891 ]
[124]
Onaolapo, A.Y.; Onaolapo, O.J. Circadian dysrhythmia-linked diabetes mellitus: Examining melatonin’s roles in prophylaxis and management. World J. Diabetes, 2018, 9(7), 99-114.
[http://dx.doi.org/10.4239/wjd.v9.i7.99] [PMID: 30079146 ]
[125]
Onaolapo, A.Y.; Onaolapo, O.J.; Nathaniel, T.I. Cerebrovascular disease in the young adult: examining melatonin’s possible multiple roles. J. Exp. Neurosci., 2019, 131179069519827300
[http://dx.doi.org/10.1177/1179069519827300] [PMID: 30783379 ]
[126]
Onaolapo, A.Y.; Aina, O.A.; Onaolapo, O.J. Melatonin attenuates behavioural deficits and reduces brain oxidative stress in a rodent model of schizophrenia. Biomed. Pharmacother., 2017, 92, 373-383.
[http://dx.doi.org/10.1016/j.biopha.2017.05.094] [PMID: 28554133 ]
[127]
Onaolapo, O.J.; Onaolapo, A.Y. Melatonin, adolescence, and the brain: an insight into the period-specific influences of a multifunctional signalling molecule. Birth Defects Res., 2017, 109(20), 1659-1671.
[http://dx.doi.org/10.1002/bdr2.1171]
[128]
Bahna, S.G.; Niles, L.P. Epigenetic regulation of melatonin receptors in neuropsychiatric disorders. Br. J. Pharmacol., 2018, 175(16), 3209-3219.
[http://dx.doi.org/10.1111/bph.14058] [PMID: 28967098 ]
[129]
Sotthibundhu, A.; Ekthuwapranee, K.; Govitrapong, P. Comparison of melatonin with growth factors in promoting precursor cells proliferation in adult mouse subventricular zone. EXCLI J., 2016, 15, 829-841.
[http://dx.doi.org/10.17179/excli2016-606] [PMID: 28275319 ]
[130]
Lin, M.T.; Beal, M.F. Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature, 2006, 443(7113), 787-795.
[http://dx.doi.org/10.1038/nature05292] [PMID: 17051205 ]
[131]
Johri, A.; Beal, M.F. Mitochondrial dysfunction in neurodegenerative diseases. J. Pharmacol. Exp. Ther., 2012, 342(3), 619-630.
[http://dx.doi.org/10.1124/jpet.112.192138] [PMID: 22700435 ]
[132]
Manczak, M.; Anekonda, T.S.; Henson, E.; Park, B.S.; Quinn, J.; Reddy, P.H. Mitochondria are a direct site of A beta accumulation in Alzheimer’s disease neurons: implications for free radical generation and oxidative damage in disease progression. Hum. Mol. Genet., 2006, 15(9), 1437-1449.
[http://dx.doi.org/10.1093/hmg/ddl066] [PMID: 16551656 ]
[133]
Ekstrand, M.I.; Terzioglu, M.; Galter, D.; Zhu, S.; Hofstetter, C.; Lindqvist, E.; Thams, S.; Bergstrand, A.; Hansson, F.S.; Trifunovic, A.; Hoffer, B.; Cullheim, S.; Mohammed, A.H.; Olson, L.; Larsson, N.G. Progressive parkinsonism in mice with respiratory-chain-deficient dopamine neurons. Proc. Natl. Acad. Sci. USA, 2007, 104(4), 1325-1330.
[http://dx.doi.org/10.1073/pnas.0605208103] [PMID: 17227870 ]
[134]
Reddy, P.H.; Beal, M.F. Amyloid beta, mitochondrial dysfunction and synaptic damage: implications for cognitive decline in aging and Alzheimer’s disease. Trends Mol. Med., 2008, 14(2), 45-53.
[http://dx.doi.org/10.1016/j.molmed.2007.12.002] [PMID: 18218341 ]
[135]
Reddy, P.H. Amyloid beta, mitochondrial structural and functional dynamics in Alzheimer’s disease. Exp. Neurol., 2009, 218(2), 286-292.
[http://dx.doi.org/10.1016/j.expneurol.2009.03.042] [PMID: 19358844 ]
[136]
Galter, D.; Pernold, K.; Yoshitake, T.; Lindqvist, E.; Hoffer, B.; Kehr, J.; Larsson, N.G.; Olson, L. MitoPark mice mirror the slow progression of key symptoms and L-DOPA response in Parkinson’s disease. Genes Brain Behav., 2010, 9(2), 173-181.
[http://dx.doi.org/10.1111/j.1601-183X.2009.00542.x] [PMID: 20002202 ]
[137]
Kim, J.; Moody, J.P.; Edgerly, C.K.; Bordiuk, O.L.; Cormier, K.; Smith, K.; Beal, M.F.; Ferrante, R.J. Mitochondrial loss, dysfunction and altered dynamics in Huntington’s disease. Hum. Mol. Genet., 2010, 19(20), 3919-3935.
[http://dx.doi.org/10.1093/hmg/ddq306] [PMID: 20660112 ]
[138]
Swerdlow, R.H.; Burns, J.M.; Khan, S.M. The Alzheimer’s disease mitochondrial cascade hypothesis. J. Alzheimers Dis., 2010, 20(Suppl. 2), S265-S279.
[http://dx.doi.org/10.3233/JAD-2010-100339] [PMID: 20442494 ]
[139]
Reddy, P.H.; Reddy, T.P.; Manczak, M.; Calkins, M.J.; Shirendeb, U.; Mao, P. Dynamin-related protein 1 and mitochondrial fragmentation in neurodegenerative diseases. Brain Res. Brain Res. Rev., 2011, 67(1-2), 103-118.
[http://dx.doi.org/10.1016/j.brainresrev.2010.11.004] [PMID: 21145355 ]
[140]
De Vos, K.J.; Mórotz, G.M.; Stoica, R.; Tudor, E.L.; Lau, K.F.; Ackerley, S.; Warley, A.; Shaw, C.E.; Miller, C.C. VAPB interacts with the mitochondrial protein PTPIP51 to regulate calcium homeostasis. Hum. Mol. Genet., 2012, 21(6), 1299-1311.
[http://dx.doi.org/10.1093/hmg/ddr559] [PMID: 22131369 ]
[141]
Sheng, B.; Wang, X.; Su, B.; Lee, H.G.; Casadesus, G.; Perry, G.; Zhu, X. Impaired mitochondrial biogenesis contributes to mitochondrial dysfunction in Alzheimer’s disease. J. Neurochem., 2012, 120(3), 419-429.
[http://dx.doi.org/10.1111/j.1471-4159.2011.07581.x] [PMID: 22077634 ]
[142]
Chen, H.; McCaffery, J.M.; Chan, D.C. Mitochondrial fusion protects against neurodegeneration in the cerebellum. Cell, 2007, 130(3), 548-562.
[http://dx.doi.org/10.1016/j.cell.2007.06.026] [PMID: 17693261 ]
[143]
Reddy, P.H. Role of mitochondria in neurodegenerative diseases: mitochondria as a therapeutic target in Alzheimer’s disease. CNS Spectr, 2009, 14(8)(Suppl. 7), , 8-13 b.
[http://dx.doi.org/10.1017/S1092852900024901] [PMID: 19890241 ]
[144]
Reiter, R.J.; Rosales-Corral, S.; Tan, D.X.; Jou, M.J.; Galano, A.; Xu, B. Melatonin as a mitochondria-targeted antioxidant: one of evolution’s best ideas. Cell. Mol. Life Sci., 2017, 74(21), 3863-3881.
[http://dx.doi.org/10.1007/s00018-017-2609-7] [PMID: 28864909 ]
[145]
Tan, D.X.; Reiter, R.J. Mitochondria: the birth place, the battle ground and the site of melatonin metabolism. Melatonin Res., 2019, 2, 44-66.
[http://dx.doi.org/10.32794/mr11250011]
[146]
Reiter, R.J.; Tan, D.X.; Rosales-Corral, S.; Galano, A.; Zhou, X.J.; Xu, B. Mitochondria: Central Organelles for Melatonin’s Antioxidant and Anti-Aging Actions. Molecules, 2018, 23(2)E509
[http://dx.doi.org/10.3390/molecules23020509] [PMID: 29495303 ]
[147]
Carlberg, C. Gene regulation by melatonin. Ann. N. Y. Acad. Sci., 2000, 917, 387-396.
[http://dx.doi.org/10.1111/j.1749-6632.2000.tb05403.x] [PMID: 11268365 ]
[148]
Wiesenberg, I.; Missbach, M.; Carlberg, C. The potential role of the transcription factor RZR/ROR as a mediator of nuclear melatonin signaling. Restor. Neurol. Neurosci., 1998, 12(2-3), 143-150.
[PMID: 12671309 ]
[149]
Swanson, D.J.; Steshina, E.Y.; Wakenight, P.; Aldinger, K.A.; Goldowitz, D.; Millen, K.J.; Chizhikov, V.V. Phenotypic and genetic analysis of the cerebellar mutant tmgc26, a new ENU-induced ROR-alpha allele. Eur. J. Neurosci., 2010, 32(5), 707-716.
[http://dx.doi.org/10.1111/j.1460-9568.2010.07330.x] [PMID: 20722722 ]
[150]
Hardeland, R. Melatonin and retinoid orphan receptors: Demand for new interpretations after their exclusion as nuclear melatonin receptors. Melatonin Res., 2018, 1, 78-93.
[http://dx.doi.org/10.32794/mr11250005]
[151]
Franco-Iborra, S.; Vila, M.; Perier, C. Mitochondrial quality control in neurodegenerative diseases: focus on Parkinson’s Disease and Huntington’s Disease. Front. Neurosci., 2018, 12, 342.
[http://dx.doi.org/10.3389/fnins.2018.00342] [PMID: 29875626 ]
[152]
Niles, L.P.; Sathiyapalan, A.; Bahna, S.; Kang, N.H.; Pan, Y. Valproic acid up-regulates melatonin MT1 and MT2 receptors and neurotrophic factors CDNF and MANF in the rat brain. Int. J. Neuropsychopharmacol., 2012, 15(9), 1343-1350.
[http://dx.doi.org/10.1017/S1461145711001969] [PMID: 22243807 ]
[153]
Bahna, S.G.; Sathiyapalan, A.; Foster, J.A.; Niles, L.P. Regional upregulation of hippocampal melatonin MT2 receptors by valproic acid: therapeutic implications for Alzheimer’s disease. Neurosci. Lett., 2014, 576, 84-87.
[http://dx.doi.org/10.1016/j.neulet.2014.05.056] [PMID: 24909617 ]
[154]
Jun, Z.; Li, Z.; Fang, W.; Fengzhen, Y.; Puyuan, W.; Wenwen, L.; Zhi, S.; Bondy, S.C. Melatonin decreases levels of S100β and NFKB, increases levels of synaptophysin in a rat model of Alzheimer’s disease. Curr. Aging Sci., 2013, 6(2), 142-149.
[http://dx.doi.org/10.2174/18746098112059990005] [PMID: 23030129 ]
[155]
Ali, T.; Rehman, S.U.; Shah, F.A.; Kim, M.O. Acute dose of melatonin via Nrf2 dependently prevents acute ethanol-induced neurotoxicity in the developing rodent brain. J. Neuroinflammation, 2018, 15(1), 119.
[http://dx.doi.org/10.1186/s12974-018-1157-x] [PMID: 29679979 ]
[156]
Xu, W.; Lu, X.; Zheng, J.; Li, T.; Gao, L.; Lenahan, C.; Shao, A.; Zhang, J.; Yu, J. Melatonin protects against neuronal apoptosis via suppression of the ATF6/CHOP pathway in a rat model of intracerebral hemorrhage. Front. Neurosci., 2018, 12, 638.
[http://dx.doi.org/10.3389/fnins.2018.00638] [PMID: 30283292 ]
[157]
Zhao, Y.; Zhao, R.; Wu, J.; Wang, Q.; Pang, K.; Shi, Q.; Gao, Q.; Hu, Y.; Dong, X.; Zhang, J.; Sun, J. Melatonin protects against Aβ-induced neurotoxicity in primary neurons via miR-132/PTEN/AKT/FOXO3a pathway. Biofactors, 2018, 44(6), 609-618.
[http://dx.doi.org/10.1002/biof.1411] [PMID: 29322615 ]
[158]
Onphachanh, X.; Lee, H.J.; Lim, J.R.; Jung, Y.H.; Kim, J.S.; Chae, C.W.; Lee, S.J.; Gabr, A.A.; Han, H.J. Enhancement of high glucose-induced PINK1 expression by melatonin stimulates neuronal cell survival: Involvement of MT2 /Akt/NF-κB pathway. J. Pineal Res., 2017, 63(2)
[http://dx.doi.org/10.1111/jpi.12427] [PMID: 28580603 ]
[159]
Deng, Y.; Zhu, J.; Mi, C.; Xu, B.; Jiao, C.; Li, Y.; Xu, D.; Liu, W.; Xu, Z. Melatonin antagonizes Mn-induced oxidative injury through the activation of keap1-Nrf2-ARE signaling pathway in the striatum of mice. Neurotox. Res., 2015, 27(2), 156-171.
[http://dx.doi.org/10.1007/s12640-014-9489-5] [PMID: 25288107 ]
[160]
Song, J.; Kang, S.M.; Lee, K.M.; Lee, J.E. The protective effect of melatonin on neural stem cell against LPS-induced inflammation. BioMed Res. Int., 2015, 2015854359
[http://dx.doi.org/10.1155/2015/854359] [PMID: 25705693 ]
[161]
Zheng, B.; Hao, D.; Guo, H.; He, B. Melatonin alleviates acute spinal cord injury in rats through promoting on progenitor cells proliferation. Saudi Pharm. J., 2017, 25, 570-574.
[http://dx.doi.org/10.1016/j.jsps.2017.04.025]
[162]
Beni, S.M.; Kohen, R.; Reiter, R.J.; Tan, D.X.; Shohami, E. Melatonin-induced neuroprotection after closed head injury is associated with increased brain antioxidants and attenuated late-phase activation of NF-kappaB and AP-1. FASEB J., 2004, 18(1), 149-151.
[http://dx.doi.org/10.1096/fj.03-0323fje] [PMID: 14597558 ]
[163]
Li, Z.; Li, X.; Bi, J.; Chan, M.T.V.; Wu, W.K.K.; Shen, J. Melatonin protected against the detrimental effects of microRNA-363 in a rat model of vitamin A-associated congenital spinal deformities: Involvement of Notch signaling. J. Pineal Res., 2019, 66(3)e12558
[http://dx.doi.org/10.1111/jpi.12558] [PMID: 30653707 ]
[164]
Sajjad, M.U.; Samson, B.; Wyttenbach, A. Heat shock proteins: therapeutic drug targets for chronic neurodegeneration? Curr. Pharm. Biotechnol., 2010, 11(2), 198-215.
[http://dx.doi.org/10.2174/138920110790909641] [PMID: 20166961 ]
[165]
Neef, D.W.; Jaeger, A.M.; Thiele, D.J. Heat shock transcription factor 1 as a therapeutic target in neurodegenerative diseases. Nat. Rev. Drug Discov., 2011, 10(12), 930-944.
[http://dx.doi.org/10.1038/nrd3453] [PMID: 22129991 ]
[166]
Mielcarek, M.; Zielonka, D.; Carnemolla, A.; Marcinkowski, J.T.; Guidez, F. HDAC4 as a potential therapeutic target in neurodegenerative diseases: a summary of recent achievements. Front. Cell. Neurosci., 2015, 9, 42.
[http://dx.doi.org/10.3389/fncel.2015.00042] [PMID: 25759639 ]
[167]
Cardinali, D.P.; Vigo, D.E.; Olivar, N.; Vidal, M.F.; Brusco, L.I. Melatonin therapy in patients with Alzheimer’s Disease. Antioxidants (Basel), 2014, 10(3(2)), 245-77.
[http://dx.doi.org/10.3390/antiox3020245]
[168]
O’Neal-Moffitt, G.; Delic, V.; Bradshaw, P.C.; Olcese, J. Prophylactic melatonin significantly reduces Alzheimer’s neuropathology and associated cognitive deficits independent of antioxidant pathways in AβPP(swe)/PS1 mice. Mol. Neurodegener., 2015, 10, 27.
[http://dx.doi.org/10.1186/s13024-015-0027-6] [PMID: 26159703 ]
[169]
Arushanian, E.B. A hormonal drug melatonin in the treatment of cognitive function disorders in parkinsonism. Eksp. Klin. Farmakol., 2010, 73(3), 35-39.
[PMID: 20408429 ]
[170]
Litvinenko, I.V.; Krasakov, I.V.; Tikhomirova, O.V. Sleep disorders in Parkinson’s disease without dementia: a comparative randomized controlled study of melatonin and clonazepam. Zh. Nevrol. Psikhiatr. Im. S. S. Korsakova, 2012, 112(12), 26-30.
[PMID: 23388588 ]
[171]
Datieva, V.K.; Rosinskaia, A.V.; Levin, O.S. The use of melatonin in the treatment of chronic fatigue syndrome and circadian rhythm disorders in Parkinson’s disease. Zh. Nevrol. Psikhiatr. Im. S. S. Korsakova, 2013, 113(7 Pt 2), 77-81.
[PMID: 23994935 ]
[172]
Zhang, Y.; Cook, A.; Kim, J.; Baranov, S.V.; Jiang, J.; Smith, K.; Cormier, K.; Bennett, E.; Browser, R.P.; Day, A.L.; Carlisle, D.L.; Ferrante, R.J.; Wang, X.; Friedlander, R.M. Melatonin inhibits the caspase-1/cytochrome c/caspase-3 cell death pathway, inhibits MT1 receptor loss and delays disease progression in a mouse model of amyotrophic lateral sclerosis. Neurobiol. Dis., 2013, 55, 26-35.
[http://dx.doi.org/10.1016/j.nbd.2013.03.008] [PMID: 23537713 ]
[173]
Asayama, K.; Yamadera, H.; Ito, T.; Suzuki, H.; Kudo, Y.; Endo, S. Double blind study of melatonin effects on the sleep-wake rhythm, cognitive and non-cognitive functions in Alzheimer type dementia. J. Nippon Med. Sch., 2003, 70(4), 334-341.
[http://dx.doi.org/10.1272/jnms.70.334] [PMID: 12928714 ]
[174]
Riemersma-van der Lek, R.F.; Swaab, D.F.; Twisk, J.; Hol, E.M.; Hoogendijk, W.J.; Van Someren, E.J. Effect of bright light and melatonin on cognitive and noncognitive function in elderly residents of group care facilities: a randomized controlled trial. JAMA, 2008, 299(22), 2642-2655.
[http://dx.doi.org/10.1001/jama.299.22.2642] [PMID: 18544724 ]
[175]
de Jonghe, A.; Korevaar, J.C.; van Munster, B.C.; de Rooij, S.E. Effectiveness of melatonin treatment on circadian rhythm disturbances in dementia. Are there implications for delirium? A systematic review. Int. J. Geriatr. Psychiatry, 2010, 25(12), 1201-1208.
[http://dx.doi.org/10.1002/gps.2454] [PMID: 21086534 ]
[176]
Cardinali, D.P.; Vigo, D.E.; Olivar, N.; Vidal, M.F.; Furio, A.M.; Brusco, L.I. Therapeutic application of melatonin in mild cognitive impairment. Am. J. Neurodegener. Dis., 2012, 1(3), 280-291.
[PMID: 23383398 ]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy