Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Meta-Analysis

The Effect of Prebiotic Products on Decreasing Adiposity Parameters in Overweight and Obese Individuals: A Systematic Review and Meta- Analysis

Author(s): Hua Qu , Lei Song , Ying Zhang, Zhu-ye Gao* and Da-zhuo Shi*

Volume 28, Issue 2, 2021

Published on: 30 December, 2019

Page: [419 - 431] Pages: 13

DOI: 10.2174/0929867327666191230110128

Price: $65

Abstract

Background: Prebiotics are substrates selectively utilized by host microorganisms to confer health benefits. The potential of prebiotics to decrease body weight in overweight/obese individuals was suggested by some clinical and animal studies. However, these studies were based on relatively small sample sizes and the precise effects of prebiotic products have not yet been evaluated. Therefore, the present meta-analysis of Randomized Controlled Trials (RCTs) was designed to comprehensively assess the effects of prebiotic products on overweight and obese individuals.

Methods: PubMed, EMBASE and Cochrane Library were searched to identify RCT investigating the effects of prebiotic products on overweight and obese individuals. We calculated the pooled weighted mean difference (WMD) to assess the effects of prebiotic products on Body Mass Index (BMI), body weight, fat mass and inflammatory biomarkers.

Results: Twelve RCTs with a total of 535 overweight and obese individuals were enrolled. Compared with placebo, prebiotic products decreased C reactive protein (WMD, -1.06 mg/L; 95%CI, -1.72 to - 0.40; p=0.002), tumour necrosis factor-α(WMD, -0.64 pg/mL; 95%CI, -1.11 to -0.18; p=0.006) and other inflammatory markers, such as interleukin-1β,lipopolysaccharide (p<0.05); whereas no reductions in BMI (WMD, -0.20 kg/m2; 95%CI, -0.58 to 0.19; p=0.32), body weight (WMD, -0.51 kg; 95%CI, -1.18 to 0.16; p=0.14) and fat mass (WMD, 0.11 kg; 95%CI, -0.04 to 0.25; p=0.15) were observed.

Conclusion: In the present analysis, comprehensive evidence suggested that prebiotic products did not decrease adiposity parameters (BMI, body weight and body fat mass), but they could decrease the levels of systemic inflammatory biomarkers, implying adherence to prebiotic products might be a promising complementary approach to managing inflammatory states in overweight and obese individuals.

Keywords: Prebiotics, overweight, obesity, inflammation, gut microbiota, meta-analysis, Body Mass Index (BMI).

« Previous
[1]
Gregor, M.F.; Hotamisligil, G.S. Inflammatory mechanisms in obesity. Annu. Rev. Immunol., 2011, 29, 415-445.
[http://dx.doi.org/10.1146/annurev-immunol-031210-101322] [PMID: 21219177]
[2]
Montague, C.T.; O’Rahilly, S. The perils of portliness: causes and consequences of visceral adiposity. Diabetes, 2000, 49(6), 883-888.
[http://dx.doi.org/10.2337/diabetes.49.6.883] [PMID: 10866038]
[3]
van Herpen, N.A.; Schrauwen-Hinderling, V.B. Lipid accumulation in non-adipose tissue and lipotoxicity. Physiol. Behav., 2008, 94(2), 231-241.
[http://dx.doi.org/10.1016/j.physbeh.2007.11.049] [PMID: 18222498]
[4]
Symons, J.D.; Abel, E.D. Lipotoxicity contributes to endothelial dysfunction: a focus on the contribution from ceramide. Rev. Endocr. Metab. Disord., 2013, 14(1), 59-68.
[http://dx.doi.org/10.1007/s11154-012-9235-3] [PMID: 23292334]
[5]
Gualillo, O. Mediators of inflammation in obesity and its comorbidities. Mediators Inflamm., 2010, 2010, 1-2.
[http://dx.doi.org/10.1155/2010/239126] [PMID: 20885924]
[6]
Kang, C.; Wang, B.; Kaliannan, K.; Wang, X.; Lang, H.; Hui, S.; Li, H.; Zhang, Y.; Zhou, M.; Chen, M.; Mi, M. Gut microbiota mediates the protective effects of dietary capsaicin against chronic low-grade inflammation and associated obesity induced by high-fat diet. MBio, 2017, 8(3), e00470-e17.
[http://dx.doi.org/10.1128/mBio.00470-17] [PMID: 28536285]
[7]
Boulangé, C.L.; Neves, A.L.; Chilloux, J.; Nicholson, J.K.; Dumas, M-E. Impact of the gut microbiota on inflammation, obesity, and metabolic disease. Genome Med., 2016, 8(1), 42.
[http://dx.doi.org/10.1186/s13073-016-0303-2] [PMID: 27098727]
[8]
Pindjakova, J.; Sartini, C.; Lo Re, O.; Rappa, F.; Coupe, B.; Lelouvier, B.; Pazienza, V.; Vinciguerra, M. Gut dysbiosis and adaptive immune response in diet-induced obesity vs. systemic inflammation. Front. Microbiol., 2017, 8, 1157.
[http://dx.doi.org/10.3389/fmicb.2017.01157] [PMID: 28690599]
[9]
de Vrese, M.; Schrezenmeir, J. Probiotics, prebiotics, and synbiotics. Adv. Biochem. Eng. Biotechnol., 2008, 111, 1-66.
[http://dx.doi.org/10.1007/10_2008_097] [PMID: 18461293]
[10]
Bindels, L.B.; Delzenne, N.M.; Cani, P.D.; Walter, J. Towards a more comprehensive concept for prebiotics. Nat. Rev. Gastroenterol. Hepatol., 2015, 12(5), 303-310.
[http://dx.doi.org/10.1038/nrgastro.2015.47] [PMID: 25824997]
[11]
Gibson, G.R.; Hutkins, R.; Sanders, M.E.; Prescott, S.L.; Reimer, R.A.; Salminen, S.J.; Scott, K.; Stanton, C.; Swanson, K.S.; Cani, P.D.; Verbeke, K.; Reid, G. Expert consensus document: the international scientific association for probiotics and prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat. Rev. Gastroenterol. Hepatol., 2017, 14(8), 491-502.
[http://dx.doi.org/10.1038/nrgastro.2017.75] [PMID: 28611480]
[12]
Nicolucci, A.C.; Hume, M.P.; Martínez, I.; Mayengbam, S.; Walter, J.; Reimer, R.A. Prebiotics reduce body fat and alter intestinal microbiota in children who are overweight or with obesity. Gastroenterology, 2017, 153(3), 711-722.
[http://dx.doi.org/10.1053/j.gastro.2017.05.055] [PMID: 28596023]
[13]
Fernandes, R.; Beserra, B.T.S.; Mocellin, M.C.; Kuntz, M.G.F.; da Rosa, J.S.; de Miranda, R.C.D.; Schreiber, C.S.O.; Forde, T.S.; Nunes, E.A.; Trindade, E.B.S.M. Effects of prebiotic and synbiotic supplementation on inflammatory markers and anthropometric indices after Roux-en-Y gastric bypass: a randomized, triple-blind, placebo-controlled pilot study. J. Clin. Gastroenterol., 2016, 50(3), 208-217.
[http://dx.doi.org/10.1097/mcg.0000000000000328] [PMID: 25909598]
[14]
Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G. PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med., 2009, 6(7)e1000097
[http://dx.doi.org/10.1371/journal.pmed.1000097] [PMID: 19621072]
[15]
Higgins, J.P.T.; Altman, D.G.; Gøtzsche, P.C.; Jüni, P.; Moher, D.; Oxman, A.D.; Savovic, J.; Schulz, K.F.; Weeks, L.; Sterne, J.A. The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ, 2011, 343, d5928.
[http://dx.doi.org/10.1136/bmj.d5928] [PMID: 22008217]
[16]
Vitaglione, P.; Mennella, I.; Ferracane, R.; Rivellese, A.A.; Giacco, R.; Ercolini, D.; Gibbsons, S.M.; Storia, A.L.; Gilbert, J.A.; Jonnalagadda, S.; Thielecke, F.; Gallo, M.A. Scalfi, l.; Fogliano, V. Whole-grain wheat consumption reduces inflammation in a randomized controlled trial on overweight and obese subjects with unhealthy dietary and lifestyle behaviors: role of polyphenols bound to cereal dietary fiber. Am. J. Clin. Nutr., 2015, 101(2), 251-261.
[http://dx.doi.org/10.3945/ajcn.114.088120] [PMID: 25646321]
[17]
Parnell, J.A.; Klancic, T.; Reimer, R.A. Oligofructose decreases serum lipopolysaccharide and plas-minogen activator inhibitor-1 in adults with over-weight/obesity. Obesity (Silver Spring), 2017, 25(3), 510-513.
[http://dx.doi.org/10.1002/oby.21763] [PMID: 28229548]
[18]
Aliasgharzadeh, A.; Dehghan, P.; Gargari, B.P.; Asghari-Jafarabadi, M. Resistant dextrin, as a prebiotic, improves insulin resistance and inflammation in women with type 2 diabetes: a randomised controlled clinical trial. Br. J. Nutr., 2015, 113(2), 321-330.
[http://dx.doi.org/10.1017/s0007114514003675] [PMID: 27028002]
[19]
Dehghan, P.; Gargari, B.P.; Jafar-Abadi, M.A.; Aliasgharzadeh, A. Inulin controls inflammation and metabolic endotoxemia in women with type 2 diabetes mellitus: a randomized-controlled clinical trial. Int. J. Food Sci. Nutr., 2014, 65(1), 117-123.
[http://dx.doi.org/10.3109/09637486.2013.836738] [PMID: 24059649]
[20]
Roshanravan, N.; Mahdavi, R.; Alizadeh, E.; Ghavami, A.; Rahbar Saadat, Y.; Mesri Alamdari, N.; Alipour, S.; Dastouri, M.R.; Ostadrahimi, A. The effects of sodium butyrate and inulin supplementation on angiotensin signaling pathway via promotion of Akker-mansia muciniphila abundance in type 2 diabetes; A ran-domized, double-blind, placebo-controlled trial. J. Cardiovasc. Thorac. Res., 2017, 9(4), 183-190.
[http://dx.doi.org/10.15171/jcvtr.2017.32] [PMID: 29391930]
[21]
Stenman, L.K.; Lehtinen, M.J.; Meland, N.; Christensen, J.E.; Yeung, N.; Saarinen, M.T.; Courtney, M.; Burcelin, R.; Lähdeaho, M.L.; Linros, J.; Apter, D.; Scheinin, M.; Kloster Smerud, H.; Rissanen, A.; Lahtinen, S. Probiotic with or without fiber controls body fat mass, associated with serum zonulin, in overweight and obese adults-randomized controlled trial. EBioMedicine, 2016, 13, 190-200.
[http://dx.doi.org/10.1016/j.ebiom.2016.10.036] [PMID: 27810310]
[22]
de Luis, D.A.; de la Fuente, B.; Izaola, O.; Conde, R.; Gutiérrez, S.; Morillo, M.; Teba Torres, C. Double blind randomized clinical trial controlled by placebo with an alpha linoleic acid and prebiotic enriched cookie on risk cardiovascular factor in obese patients. Nutr. Hosp., 2011, 26(4), 827-833.
[http://dx.doi.org/10.1590/s0212-16112011000400024] [PMID: 22470031]
[23]
Canfora, E.E.; van der Beek, C.M.; Hermes, G.D.A.; Goossens, G.H.; Jocken, J.W.E.; Holst, J.J.; van Eijk, H.M.; Venema, K.; Smidt, H.; Zoetendal, E.G.; Dejong, C.H.C.; Lenaerts, K.; Blaak, E.E. Supplementation of diet with galacto-oligosaccharides increases bifidobacteria, but not insulin sensitivity, in obese prediabetic individuals. Gastroenterology, 2017, 153(1), 87-97.e3.
[http://dx.doi.org/10.1053/j.gastro.2017.03.051] [PMID: 28396144]
[24]
Lambert, J.E.; Parnell, J.A.; Tunnicliffe, J.M.; Han, J.; Sturzenegger, T.; Reimer, R.A. Consuming yellow pea fiber reduces voluntary energy intake and body fat in overweight/obese adults in a 12-week randomized controlled trial. Clin. Nutr., 2017, 36(1), 126-133.
[http://dx.doi.org/10.1016/j.clnu.2015.12.016] [PMID: 26811130]
[25]
Reimer, R.A.; Willis, H.J.; Tunnicliffe, J.M.; Park, H.; Madsen, K.L.; Soto-Vaca, A. Inulin-type fructans and whey protein both modulate appetite but only fructans alter gut microbiota in adults with overweight/obesity: A randomized controlled trial. Mol. Nutr. Food Res., 2017, 61(11)1700484
[http://dx.doi.org/10.1002/mnfr.201700484] [PMID: 28730743]
[26]
Farrington, R.; Musgrave, I.F.; Byard, R.W. Evidence for the efficacy and safety of herbal weight loss preparations. J. Integr. Med., 2019, 17(2), 87-92.
[http://dx.doi.org/10.1016/j.joim.2019.01.009] [PMID: 30738773]
[27]
Teschke, R.; Xuan, T.D. Viewpoint: a contributory role of shell ginger (Alpinia zerumbet (Pers.) B.L. Burtt & R.M. Sm) for human longevity in okinawa, japan? Nutrients, 2018, 10(2), 166.
[http://dx.doi.org/10.3390/nu10020166] [PMID: 29385084]
[28]
Tu, P.T.; Tawata, S. Anti-oxidant, anti-aging, and anti-melanogenic properties of the essential oils from two varieties of Alpinia zerumbet. Molecules, 2015, 20(9), 16723-16740.
[http://dx.doi.org/10.3390/molecules200916723] [PMID: 26389869]
[29]
Ji, Y.P.; Shi, T.Y.; Zhang, Y.Y.; Lin, D.; Linghu, K.G.; Xu, Y.N.; Tao, L.; Lu, Q.; Shen, X.C. Essential oil from fructus alpinia zerumbet (fruit of Alpinia zerumbet (Pers.) Burtt.et Smith) protected against aortic endothelial cell injury and inflammation in vitro and in vivo. J. Ethnopharmacol., 2019, 237, 149-158.
[http://dx.doi.org/10.1016/j.jep.2019.03.011] [PMID: 30880260]
[30]
Be Tu, P.T.; Chompoo, J.; Tawata, S. Hispidin and related herbal compounds from Alpinia zerumbet inhibit both PAK1-dependent melanogenesis in melanocytes and reactive oxygen species (ROS) production in adipocytes. Drug Discov. Ther., 2015, 9(3), 197-204.
[http://dx.doi.org/10.5582/ddt.2015.01038] [PMID: 26193942]
[31]
Chen, Y.; Li, D.; Xu, Y.; Zhang, Y.; Tao, L.; Li, S.; Jiang, Y.; Shen, X. Essential oils from fructus A. zerumbet protect human aortic endothelial cells from apoptosis induced by Ox-LDL in vitro. Evid. Based Complement. Alternat. Med., 2014, 2014956824
[http://dx.doi.org/10.1155/2014/956824] [PMID: 25610487]
[32]
Tu, P.T.; Tawata, S. Anti-obesity effects of hispidin and Alpinia zerumbet bioactives in 3T3-L1 adipocytes. Molecules, 2014, 19(10), 16656-16671.
[http://dx.doi.org/10.3390/molecules191016656] [PMID: 25322285]
[33]
Bond, T.; Derbyshire, E. Tea compounds and the gut microbiome: findings from trials and mechanistic studies. Nutrients, 2019, 11(10), 2364.
[http://dx.doi.org/10.3390/nu11102364] [PMID: 31623411]
[34]
Jin, J-S.; Touyama, M.; Hisada, T.; Benno, Y. Effects of green tea consumption on human fecal microbiota with special reference to Bifidobacterium species. Microbiol. Immunol., 2012, 56(11), 729-739.
[http://dx.doi.org/10.1111/j.1348-0421.2012.00502.x] [PMID: 22924537]
[35]
Misaka, S.; Kawabe, K.; Onoue, S.; Werba, J.P.; Giroli, M.; Tamaki, S.; Kan, T.; Kimura, J.; Watanabe, H.; Yamada, S. Effects of green tea catechins on cytochrome P450 2B6, 2C8, 2C19, 2D6 and 3A activities in human liver and intestinal microsomes. Drug Metab. Pharmacokinet., 2013, 28(3), 244-249.
[http://dx.doi.org/10.2133/dmpk.DMPK-12-RG-101] [PMID: 23268924]
[36]
Cummings, J.H.; Macfarlane, G.T.; Englyst, H.N. Prebiotic digestion and fermentation. Am. J. Clin. Nutr., 2001, 73(2)(Suppl.), 415S-420S.
[http://dx.doi.org/10.1093/ajcn/73.2.415s] [PMID: 11157351]
[37]
Xu, B.; Wang, Y.; Li, J.; Lin, Q. Effect of prebiotic xylooligosaccharides on growth performances and digestive enzyme activities of allogynogenetic crucian carp (Carassius auratus gibelio). Fish Physiol. Biochem., 2009, 35(3), 351-357.
[http://dx.doi.org/10.1007/s10695-008-9248-8] [PMID: 18704733]
[38]
Alam, I.; Ng, T.P.; Larbi, A. Does inflammation determine whether obesity is metabolically healthy or unhealthy? The aging perspective. Mediators Inflamm., 2012, 2012456456
[http://dx.doi.org/10.1155/2012/456456] [PMID: 23091306]
[39]
Ruderman, N.B.; Schneider, S.H.; Berchtold, P. The “metabolically-obese,” normal-weight individual. Am. J. Clin. Nutr., 1981, 34(8), 1617-1621.
[http://dx.doi.org/10.1093/ajcn/34.8.1617] [PMID: 7270486]
[40]
Zahorska-Markiewicz, B.; Janowska, J.; Olszanecka-Glinianowicz, M.; Zurakowski, A. Serum concentrations of TNF-α and soluble TNF-α receptors in obesity. Int. J. Obes. Relat. Metab. Disord., 2000, 24(11), 1392-1395.
[http://dx.doi.org/10.1038/sj.ijo.0801398] [PMID: 11126333]
[41]
Wunderlich, C.M.; Ackermann, P.J.; Ostermann, A.L.; Adams-Quack, P.; Vogt, M.C.; Tran, M-L.; Nikolajev, A.; Waisman, A.; Garbers, C.; Theurich, S.; Mauer, J.; Hövelmeyer, N.; Wunderlich, F.T. Obesity exacerbates colitis-associated cancer via IL-6-regulated macrophage polarisation and CCL-20/CCR-6-mediated lymphocyte recruitment. Nat. Commun., 2018, 9(1), 1646.
[http://dx.doi.org/10.1038/s41467-018-03773-0] [PMID: 29695802]
[42]
Park, H.S.; Park, J.Y.; Yu, R. Relationship of obesity and visceral adiposity with serum concentrations of CRP, TNF-α and IL-6. Diabetes Res. Clin. Pract., 2005, 69(1), 29-35.
[http://dx.doi.org/10.1016/j.diabres.2004.11.007] [PMID: 15955385]
[43]
Wu, R.Y.; Määttänen, P.; Napper, S.; Scruten, E.; Li, B.; Koike, Y.; Johnson-Henry, K.C.; Pierro, A.; Rossi, L.; Botts, S.R.; Surette, M.G.; Sherman, P.M. Non-digestible oligosaccharides directly regulate host kinome to modulate host inflammatory responses without alterations in the gut microbiota. Microbiome, 2017, 5(1), 135.
[http://dx.doi.org/10.1186/s40168-017-0357-4] [PMID: 29017607]
[44]
Johnson-Henry, K.C.; Pinnell, L.J.; Waskow, A.M.; Irrazabal, T.; Martin, A.; Hausner, M.; Sherman, P.M. Short-chain fructo-oligosaccharide and inulin modulate inflammatory responses and microbial communities in Caco2-bbe cells and in a mouse model of intestinal injury. J. Nutr., 2014, 144(11), 1725-1733.
[http://dx.doi.org/10.3945/jn.114.195081] [PMID: 25143376]
[45]
de Kivit, S.; Tobin, M.C.; Forsyth, C.B.; Keshavarzian, A.; Landay, A.L. Regulation of intestinal immune responses through tlr activation: implications for pro- and prebiotics. Front. Immunol., 2014, 5, 60.
[http://dx.doi.org/10.3389/fimmu.2014.00060] [PMID: 24600450]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy