Review Article

miRNA Regulation of Glutathione Homeostasis in Cancer Initiation, Progression and Therapy Resistance

Author(s): Barbara Marengo*, Alessandra Pulliero, Alberto Izzotti and Cinzia Domenicotti

Volume 9, Issue 3, 2020

Page: [187 - 197] Pages: 11

DOI: 10.2174/2211536609666191218103220

Abstract

Glutathione (GSH) is the most abundant antioxidant that contributes to regulating the cellular production of Reactive Oxygen Species (ROS) which, maintained at physiological levels, can exert a function of second messengers in living organisms. In fact, it has been demonstrated that moderate amounts of ROS can activate the signaling pathways involved in cell growth and proliferation, while high levels of ROS induce DNA damage leading to cancer development. Therefore, GSH is a crucial player in the maintenance of redox homeostasis and its metabolism has a role in tumor initiation, progression, and therapy resistance. Our recent studies demonstrated that neuroblastoma cells resistant to etoposide, a common chemotherapeutic drug, show a partial monoallelic deletion of the locus coding for miRNA 15a and 16-1 leading to a loss of these miRNAs and the activation of GSH-dependent responses. Therefore, the aim of this review is to highlight the role of specific miRNAs in the modulation of intracellular GSH levels in order to take into consideration the use of modulators of miRNA expression as a useful strategy to better sensitize tumors to current therapies.

Keywords: Cancer, chemoresistance, epigenetic mechanisms, glutathione homeostasis, miRNA, reactive oxygen species.

Graphical Abstract

[1]
Marengo B, Nitti M, Furfaro AL, et al. Redox homeostasis and cellular antioxidant systems: crucial players in cancer growth and therapy. Oxid Med Cell Longev 2016; 2016: 6235641
[http://dx.doi.org/10.1155/2016/6235641] [PMID: 27418953]
[2]
Marengo B, Raffaghello L, Pistoia V, et al. Reactive oxygen species: biological stimuli of neuroblastoma cell response. Cancer Lett 2005; 228(1-2): 111-6.
[http://dx.doi.org/10.1016/j.canlet.2005.01.046] [PMID: 15916847]
[3]
Marengo B, De Ciucis C, Verzola D, et al. Mechanisms of BSO (L-buthionine-S,R-sulfoximine)-induced cytotoxic effects in neuroblastoma. Free Radic Biol Med 2008; 44(3): 474-82.
[http://dx.doi.org/10.1016/j.freeradbiomed.2007.10.031] [PMID: 17991446]
[4]
Sies H. Glutathione and its role in cellular functions. Free Radic Biol Med 1999; 27(9-10): 916-21.
[http://dx.doi.org/10.1016/S0891-5849(99)00177-X] [PMID: 10569624]
[5]
Traverso N, Ricciarelli R, Nitti M, et al. Role of glutathione in cancer progression and chemoresistance. Oxid Med Cell Longev 2013; 2013: 972913
[http://dx.doi.org/10.1155/2013/972913] [PMID: 23766865]
[6]
Colla R, Izzotti A, De Ciucis C, et al. Glutathione-mediated antioxidant response and aerobic metabolism: two crucial factors involved in determining the multi-drug resistance of high-risk neuroblastoma. Oncotarget 2016; 7(43): 70715-37.
[http://dx.doi.org/10.18632/oncotarget.12209] [PMID: 27683112]
[7]
Bansal A, Simon MC. Glutathione metabolism in cancer progression and treatment resistance. J Cell Biol 2018; 217(7): 2291-8.
[http://dx.doi.org/10.1083/jcb.201804161] [PMID: 29915025]
[8]
Marcellin L, Santulli P, Chouzenoux S, et al. Alteration of Nrf2 and Glutamate Cysteine Ligase expression contribute to lesions growth and fibrogenesis in ectopic endometriosis. Free Radic Biol Med 2017; 110: 1-10.
[http://dx.doi.org/10.1016/j.freeradbiomed.2017.04.362] [PMID: 28457937]
[9]
Kim AD, Zhang R, Han X, et al. Involvement of glutathione and glutathione metabolizing enzymes in human colorectal cancer cell lines and tissues. Mol Med Rep 2015; 12(3): 4314-9.
[http://dx.doi.org/10.3892/mmr.2015.3902] [PMID: 26059756]
[10]
Tanriverdi T, Hanimoglu H, Kacira T, et al. Glutathione peroxidase, glutathione reductase and protein oxidation in patients with glioblastoma multiforme and transitional meningioma. J Cancer Res Clin Oncol 2007; 133(9): 627-33.
[http://dx.doi.org/10.1007/s00432-007-0212-2] [PMID: 17457608]
[11]
Wang Q, Shu X, Dong Y, et al. Tumor and serum gamma-glutamyl transpeptidase, new prognostic and molecular interpretation of an old biomarker in gastric cancer. Oncotarget 2017; 8(22): 36171-84.
[http://dx.doi.org/10.18632/oncotarget.15609] [PMID: 28404903]
[12]
Corti A, Franzini M, Paolicchi A, Pompella A. Gamma-glutamyltransferase of cancer cells at the crossroads of tumor progression, drug resistance and drug targeting. Anticancer Res 2010; 30(4): 1169-81.
[PMID: 20530424]
[13]
Song P, Inagaki Y, Wang Z, et al. High levels of gamma-glutamyl transferase and indocyanine green retention rate at 15 min as preoperative predictors of tumor recurrence in patients with hepatocellular carcinoma. Medicine (Baltimore) 2015; 94(21): e810
[http://dx.doi.org/10.1097/MD.0000000000000810] [PMID: 26020384]
[14]
Staudigl C, Concin N, Grimm C, et al. Prognostic relevance of pretherapeutic gamma-glutamyltransferase in patients with primary metastatic breast cancer. PLoS One 2015; 10(4): e0125317
[http://dx.doi.org/10.1371/journal.pone.0125317] [PMID: 25915044]
[15]
Zhang Z, Lin G, Yan Y, et al. Transmembrane TNF-alpha promotes chemoresistance in breast cancer cells. Oncogene 2018; 37(25): 3456-70.
[http://dx.doi.org/10.1038/s41388-018-0221-4] [PMID: 29559745]
[16]
Bernig T, Ritz S, Brodt G, Volkmer I, Staege MS. Glutathione-s-transferases and chemotherapy resistance of Hodgkin’s lymphoma cell lines. Anticancer Res 2016; 36(8): 3905-15.
[PMID: 27466493]
[17]
Marengo B, Monti P, Miele M, et al. Etoposide-resistance in a neuroblastoma model cell line is associated with 13q14.3 mono-allelic deletion and miRNA-15a/16-1 down-regulation. Sci Rep 2018; 8(1): 13762.
[http://dx.doi.org/10.1038/s41598-018-32195-7] [PMID: 30213983]
[18]
Kinowaki Y, Kurata M, Ishibashi S, et al. Glutathione peroxidase 4 overexpression inhibits ROS-induced cell death in diffuse large B-cell lymphoma. Lab Invest 2018; 98(5): 609-19.
[http://dx.doi.org/10.1038/s41374-017-0008-1] [PMID: 29463878]
[19]
Rennekamp AJ. The Ferrous Awakens. Cell 2017; 171(6): 1225-7.
[http://dx.doi.org/10.1016/j.cell.2017.11.029] [PMID: 29195064]
[20]
Hangauer MJ, Viswanathan VS, Ryan MJ, et al. Drug-tolerant persister cancer cells are vulnerable to GPX4 inhibition. Nature 2017; 551(7679): 247-50.
[http://dx.doi.org/10.1038/nature24297] [PMID: 29088702]
[21]
Viswanathan VS, Ryan MJ, Dhruv HD, et al. Dependency of a therapy-resistant state of cancer cells on a lipid peroxidase pathway. Nature 2017; 547(7664): 453-7.
[http://dx.doi.org/10.1038/nature23007] [PMID: 28678785]
[22]
Kinoshita C, Aoyama K, Nakaki T. Neuroprotection afforded by circadian regulation of intracellular glutathione levels: A key role for miRNAs. Free Radic Biol Med 2018; 119: 17-33.
[http://dx.doi.org/10.1016/j.freeradbiomed.2017.11.023] [PMID: 29198727]
[23]
Almeida MI, Reis RM, Calin GA. MicroRNA history: discovery, recent applications, and next frontiers. Mutat Res 2011; 717(1-2): 1-8.
[http://dx.doi.org/10.1016/j.mrfmmm.2011.03.009] [PMID: 21458467]
[24]
Cheng X, Ku CH, Siow RC. Regulation of the Nrf2 antioxidant pathway by microRNAs: New players in micromanaging redox homeostasis. Free Radic Biol Med 2013; 64: 4-11.
[http://dx.doi.org/10.1016/j.freeradbiomed.2013.07.025] [PMID: 23880293]
[25]
Anderton B, Camarda R, Balakrishnan S, et al. MYC-driven inhibition of the glutamate-cysteine ligase promotes glutathione depletion in liver cancer. EMBO Rep 2017; 18(4): 569-85.
[http://dx.doi.org/10.15252/embr.201643068] [PMID: 28219903]
[26]
Hsu TI, Hsu CH, Lee KH, et al. MicroRNA-18a is elevated in prostate cancer and promotes tumorigenesis through suppressing STK4 in vitro and in vivo. Oncogenesis 2014; 3: e99
[http://dx.doi.org/10.1038/oncsis.2014.12] [PMID: 24752237]
[27]
Yang Z, Tsuchiya H, Zhang Y, Hartnett ME, Wang L. MicroRNA-433 inhibits liver cancer cell migration by repressing the protein expression and function of cAMP response element-binding protein. J Biol Chem 2013; 288(40): 28893-9.
[http://dx.doi.org/10.1074/jbc.M113.502682] [PMID: 23979134]
[28]
Liang T, Guo Q, Li L, Cheng Y, Ren C, Zhang G. MicroRNA-433 inhibits migration and invasion of ovarian cancer cells via targeting Notch1. Neoplasma 2016; 63(5): 696-704.
[http://dx.doi.org/10.4149/neo_2016_506] [PMID: 27468873]
[29]
Li H, Li J, Yang T, Lin S, Li H. MicroRNA-433 represses proliferation and invasion of colon cancer cells by targeting homeobox A1. Oncol Res 2018; 26(2): 315-22.
[http://dx.doi.org/10.3727/096504017X15067856789781] [PMID: 29137689]
[30]
Tak H, Kang H, Ji E, Hong Y, Kim W, Lee EK. Potential use of TIA-1, MFF, microRNA-200a-3p, and microRNA-27 as a novel marker for hepatocellular carcinoma. Biochem Biophys Res Commun 2018; 497(4): 1117-22.
[http://dx.doi.org/10.1016/j.bbrc.2018.02.189] [PMID: 29496454]
[31]
Tili E, Michaille JJ, Luo Z, et al. The down-regulation of miR-125b in chronic lymphocytic leukemias leads to metabolic adaptation of cells to a transformed state. Blood 2012; 120(13): 2631-8.
[http://dx.doi.org/10.1182/blood-2012-03-415737] [PMID: 22723551]
[32]
Wang F, Li L, Chen Z, Zhu M, Gu Y. MicroRNA-214 acts as a potential oncogene in breast cancer by targeting the PTEN-PI3K/Akt signaling pathway. Int J Mol Med 2016; 37(5): 1421-8.
[http://dx.doi.org/10.3892/ijmm.2016.2518] [PMID: 26951965]
[33]
Long H, Wang Z, Chen J, et al. microRNA-214 promotes epithelial-mesenchymal transition and metastasis in lung adenocarcinoma by targeting the suppressor-of-fused protein (Sufu). Oncotarget 2015; 6(36): 38705-18.
[http://dx.doi.org/10.18632/oncotarget.5478] [PMID: 26462018]
[34]
Chandrasekaran KS, Sathyanarayanan A, Karunagaran D. MicroRNA-214 suppresses growth, migration and invasion through a novel target, high mobility group AT-hook 1, in human cervical and colorectal cancer cells. Br J Cancer 2016; 115(6): 741-51.
[http://dx.doi.org/10.1038/bjc.2016.234] [PMID: 27537384]
[35]
Zhao X, Lu C, Chu W, et al. microRNA-214 governs lung cancer growth and metastasis by targeting Carboxypeptidase-D. DNA Cell Biol 2016; 35(11): 715-21.
[http://dx.doi.org/10.1089/dna.2016.3398] [PMID: 27494742]
[36]
Das F, Dey N, Bera A, Kasinath BS, Ghosh-Choudhury N, Choudhury GG. MicroRNA-214 reduces Insulin-Like Growth Factor-1 (IGF-1) receptor expression and downstream mTORC1 signaling in renal carcinoma cells. J Biol Chem 2016; 291(28): 14662-76.
[http://dx.doi.org/10.1074/jbc.M115.694331] [PMID: 27226530]
[37]
Akamatsu S, Hayes CN, Tsuge M, et al. Differences in serum microRNA profiles in hepatitis B and C virus infection. J Infect 2015; 70(3): 273-87.
[http://dx.doi.org/10.1016/j.jinf.2014.10.017] [PMID: 25452043]
[38]
Xia S-S, Zhang G-J, Liu Z-L, et al. MicroRNA-22 suppresses the growth, migration and invasion of colorectal cancer cells through a Sp1 negative feedback loop. Oncotarget 2017; 8(22): 36266-78.
[http://dx.doi.org/10.18632/oncotarget.16742] [PMID: 28422727]
[39]
Zuo QF, Cao LY, Yu T, et al. MicroRNA-22 inhibits tumor growth and metastasis in gastric cancer by directly targeting MMP14 and Snail. Cell Death Dis 2015; 6: e2000
[http://dx.doi.org/10.1038/cddis.2015.297] [PMID: 26610210]
[40]
Dhar S, Kumar A, Gomez CR, et al. MTA1-activated Epi-microRNA-22 regulates E-cadherin and prostate cancer invasiveness. FEBS Lett 2017; 591(6): 924-33.
[http://dx.doi.org/10.1002/1873-3468.12603] [PMID: 28231399]
[41]
Uchida Y, Chiyomaru T, Enokida H, et al. MiR-133a induces apoptosis through direct regulation of GSTP1 in bladder cancer cell lines. Urol Oncol 2013; 31(1): 115-23.
[http://dx.doi.org/10.1016/j.urolonc.2010.09.017] [PMID: 21396852]
[42]
Chen S, Jiao JW, Sun KX, Zong ZH, Zhao Y. MicroRNA-133b targets glutathione S-transferase π expression to increase ovarian cancer cell sensitivity to chemotherapy drugs. Drug Des Devel Ther 2015; 9: 5225-35.
[PMID: 26396496]
[43]
Lin C, Xie L, Lu Y, Hu Z, Chang J. miR-133b reverses cisplatin resistance by targeting GSTP1 in cisplatin-resistant lung cancer cells. Int J Mol Med 2018; 41(4): 2050-8.
[http://dx.doi.org/10.3892/ijmm.2018.3382] [PMID: 29328427]
[44]
Zhang X, Zhu J, Xing R, et al. miR-513a-3p sensitizes human lung adenocarcinoma cells to chemotherapy by targeting GSTP1. Lung Cancer 2012; 77(3): 488-94.
[http://dx.doi.org/10.1016/j.lungcan.2012.05.107] [PMID: 22749944]
[45]
Yang W, Shen Y, Wei J, Liu F. MicroRNA-153/Nrf-2/GPx1 pathway regulates radiosensitivity and stemness of glioma stem cells via reactive oxygen species. Oncotarget 2015; 6(26): 22006-27.
[http://dx.doi.org/10.18632/oncotarget.4292] [PMID: 26124081]
[46]
Zhang Z, Liu X, Feng B, et al. STIM1, a direct target of microRNA-185, promotes tumor metastasis and is associated with poor prognosis in colorectal cancer. Oncogene 2015; 34(37): 4808-20.
[http://dx.doi.org/10.1038/onc.2014.404] [PMID: 25531324]
[47]
Zhou L, Liu S, Han M, et al. MicroRNA-185 induces potent autophagy via AKT signaling in hepatocellular carcinoma. Tumour Biol 2017; 39(2): 1010428317694313
[http://dx.doi.org/10.1177/1010428317694313] [PMID: 28240051]
[48]
Xu Y, Fang F, Zhang J, Josson S, St Clair WH, St Clair DK. miR-17* suppresses tumorigenicity of prostate cancer by inhibiting mitochondrial antioxidant enzymes. PLoS One 2010; 5(12): e14356
[http://dx.doi.org/10.1371/journal.pone.0014356] [PMID: 21203553]
[49]
Liu XX, Li XJ, Zhang B, et al. MicroRNA-26b is underexpressed in human breast cancer and induces cell apoptosis by targeting SLC7A11. FEBS Lett 2011; 585(9): 1363-7.
[http://dx.doi.org/10.1016/j.febslet.2011.04.018] [PMID: 21510944]
[50]
Fan D, Lin X, Zhang F, et al. MicroRNA 26b promotes colorectal cancer metastasis by downregulating phosphatase and tensin homolog and wingless-type MMTV integration site family member 5A. Cancer Sci 2018; 109(2): 354-62.
[http://dx.doi.org/10.1111/cas.13451] [PMID: 29160937]
[51]
Miao L, Liu K, Xie M, Xing Y, Xi T. miR-375 inhibits Helicobacter pylori-induced gastric carcinogenesis by blocking JAK2-STAT3 signaling. Cancer Immunol Immunother 2014; 63(7): 699-711.
[http://dx.doi.org/10.1007/s00262-014-1550-y] [PMID: 24718681]
[52]
Wu Y, Sun X, Song B, Qiu X, Zhao J. MiR-375/SLC7A11 axis regulates oral squamous cell carcinoma proliferation and invasion. Cancer Med 2017; 6(7): 1686-97.
[http://dx.doi.org/10.1002/cam4.1110] [PMID: 28627030]
[53]
Zhang B, Li Y, Hou D, Shi Q, Yang S, Li Q. MicroRNA-375 inhibits growth and enhances radiosensitivity in oral squamous cell carcinoma by targeting insulin like growth factor 1 receptor. Cell Physiol Biochem 2017; 42(5): 2105-17.
[http://dx.doi.org/10.1159/000479913] [PMID: 28810236]
[54]
Drayton RM, Dudziec E, Peter S, et al. Reduced expression of miRNA-27a modulates cisplatin resistance in bladder cancer by targeting the cystine/glutamate exchanger SLC7A11. Clin Cancer Res 2014; 20(7): 1990-2000.
[http://dx.doi.org/10.1158/1078-0432.CCR-13-2805] [PMID: 24516043]
[55]
Liu K, Yao H, Lei S, et al. The miR-124-p63 feedback loop modulates colorectal cancer growth. Oncotarget 2017; 8(17): 29101-15.
[http://dx.doi.org/10.18632/oncotarget.16248] [PMID: 28418858]
[56]
Rodriguez Calleja L, Jacques C, Lamoureux F, et al. ΔNp63α silences a miRNA program to aberrantly initiate a wound-healing program that promotes TGFβ-induced metastasis. Cancer Res 2016; 76(11): 3236-51.
[http://dx.doi.org/10.1158/0008-5472.CAN-15-2317] [PMID: 26988989]
[57]
Yang M, Yao Y, Eades G, Zhang Y, Zhou Q. MiR-28 regulates Nrf2 expression through a Keap1-independent mechanism. Breast Cancer Res Treat 2011; 129(3): 983-91.
[http://dx.doi.org/10.1007/s10549-011-1604-1] [PMID: 21638050]
[58]
Narasimhan M, Patel D, Vedpathak D, Rathinam M, Henderson G, Mahimainathan L. Identification of novel microRNAs in post-transcriptional control of Nrf2 expression and redox homeostasis in neuronal, SH-SY5Y cells. PLoS One 2012; 7(12): e51111
[http://dx.doi.org/10.1371/journal.pone.0051111] [PMID: 23236440]
[59]
Akdemir B, Nakajima Y, Inazawa J, Inoue J. miR-432 induces nrf2 stabilization by directly targeting KEAP1. Mol Cancer Res 2017; 15(11): 1570-8.
[http://dx.doi.org/10.1158/1541-7786.MCR-17-0232] [PMID: 28760781]
[60]
Dews M, Homayouni A, Yu D, et al. Augmentation of tumor angiogenesis by a Myc-activated microRNA cluster. Nat Genet 2006; 38(9): 1060-5.
[http://dx.doi.org/10.1038/ng1855] [PMID: 16878133]
[61]
He L, Thomson JM, Hemann MT, et al. A microRNA polycistron as a potential human oncogene. Nature 2005; 435(7043): 828-33.
[http://dx.doi.org/10.1038/nature03552] [PMID: 15944707]
[62]
O’Donnell KA, Wentzel EA, Zeller KI, Dang CV, Mendell JT. c-Myc-regulated microRNAs modulate E2F1 expression. Nature 2005; 435(7043): 839-43.
[http://dx.doi.org/10.1038/nature03677] [PMID: 15944709]
[63]
Espinosa-Diez C, Fierro-Fernández M, Sánchez-Gómez F, et al. Targeting of gamma-glutamyl-cysteine ligase by miR-433 reduces glutathione biosynthesis and promotes TGF-β-dependent fibrogenesis. Antioxid Redox Signal 2015; 23(14): 1092-105.
[http://dx.doi.org/10.1089/ars.2014.6025] [PMID: 25353619]
[64]
Yang H, Li TWH, Zhou Y, et al. Activation of a novel c-Myc-miR27-prohibitin 1 circuitry in cholestatic liver injury inhibits glutathione synthesis in mice. Antioxid Redox Signal 2015; 22(3): 259-74.
[http://dx.doi.org/10.1089/ars.2014.6027] [PMID: 25226451]
[65]
Feng Y, Duan F, Liu W, Fu X, Cui S, Yang Z. Prognostic value of the microRNA-214 in multiple human cancers: a meta-analysis of observational studies. Oncotarget 2017; 8(43): 75350-60.
[http://dx.doi.org/10.18632/oncotarget.17642] [PMID: 29088870]
[66]
Dixon SJ, Lemberg KM, Lamprecht MR, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 2012; 149(5): 1060-72.
[http://dx.doi.org/10.1016/j.cell.2012.03.042] [PMID: 22632970]
[67]
Gwangwa MV, Joubert AM, Visagie MH. Crosstalk between the Warburg effect, redox regulation and autophagy induction in tumourigenesis. Cell Mol Biol Lett 2018; 23: 20.
[http://dx.doi.org/10.1186/s11658-018-0088-y] [PMID: 29760743]
[68]
Celardo I, Grespi F, Antonov A, et al. Caspase-1 is a novel target of p63 in tumor suppression. Cell Death Dis 2013; 4: e645
[http://dx.doi.org/10.1038/cddis.2013.175] [PMID: 23703390]
[69]
Moll UM, Slade N. p63 and p73: roles in development and tumor formation. Mol Cancer Res 2004; 2(7): 371-86.
[PMID: 15280445]
[70]
Wang GX, Tu HC, Dong Y, et al. ΔNp63 inhibits oxidative stress-induced cell death, including ferroptosis, and cooperates with the BCL-2 family to promote clonogenic survival. Cell Rep 2017; 21(10): 2926-39.
[http://dx.doi.org/10.1016/j.celrep.2017.11.030] [PMID: 29212036]
[71]
Sporn MB, Liby KT. NRF2 and cancer: the good, the bad and the importance of context. Nat Rev Cancer 2012; 12(8): 564-71.
[http://dx.doi.org/10.1038/nrc3278] [PMID: 22810811]
[72]
Sun Z, Zhang S, Chan JY, Zhang DD. Keap1 controls postinduction repression of the Nrf2-mediated antioxidant response by escorting nuclear export of Nrf2. Mol Cell Biol 2007; 27(18): 6334-49.
[http://dx.doi.org/10.1128/MCB.00630-07] [PMID: 17636022]
[73]
Jaiswal AK. Nrf2 signaling in coordinated activation of antioxidant gene expression. Free Radic Biol Med 2004; 36(10): 1199-207.
[http://dx.doi.org/10.1016/j.freeradbiomed.2004.02.074] [PMID: 15110384]
[74]
Satoh H, Moriguchi T, Saigusa D, et al. NRF2 intensifies host defense systems to prevent lung carcinogenesis, but after tumor initiation accelerates malignant cell growth. Cancer Res 2016; 76(10): 3088-96.
[http://dx.doi.org/10.1158/0008-5472.CAN-15-1584] [PMID: 27020858]
[75]
Furfaro AL, Macay JR, Marengo B, et al. Resistance of neuroblastoma GI-ME-N cell line to glutathione depletion involves Nrf2 and heme oxygenase-1. Free Radic Biol Med 2012; 52(2): 488-96.
[http://dx.doi.org/10.1016/j.freeradbiomed.2011.11.007] [PMID: 22142473]
[76]
Furfaro AL, Piras S, Passalacqua M, et al. HO-1 up-regulation: a key point in high-risk neuroblastoma resistance to bortezomib. Biochim Biophys Acta 2014; 1842(4): 613-22.
[http://dx.doi.org/10.1016/j.bbadis.2013.12.008] [PMID: 24380881]
[77]
Galan-Cobo A, Sitthideatphaiboon P, Qu X, et al. LKB1 and KEAP1/NRF2 pathways cooperatively promote metabolic reprogramming with enhanced glutamine dependence in KRAS-mutant lung adenocarcinoma. Cancer Res 2019; 79(13): 3251-67.
[http://dx.doi.org/10.1158/0008-5472.CAN-18-3527] [PMID: 31040157]
[78]
Ayers D, Baron B, Hunter T. miRNA influences in NRF2 pathway interactions within cancer models. J Nucleic Acids 2015; 2015: 143636
[http://dx.doi.org/10.1155/2015/143636] [PMID: 26345522]
[79]
Lu SC, Mato JM, Espinosa-Diez C, Lamas S. MicroRNA-mediated regulation of glutathione and methionine metabolism and its relevance for liver disease. Free Radic Biol Med 2016; 100: 66-72.
[http://dx.doi.org/10.1016/j.freeradbiomed.2016.03.021] [PMID: 27033954]
[80]
Martello G, Rosato A, Ferrari F, et al. A MicroRNA targeting dicer for metastasis control. Cell 2010; 141(7): 1195-207.
[http://dx.doi.org/10.1016/j.cell.2010.05.017] [PMID: 20603000]
[81]
Pavlova NN, Thompson CB. The emerging hallmarks of cancer metabolism. Cell Metab 2016; 23(1): 27-47.
[http://dx.doi.org/10.1016/j.cmet.2015.12.006] [PMID: 26771115]
[82]
Koppenol WH, Bounds PL, Dang CV. Otto Warburg’s contributions to current concepts of cancer metabolism. Nat Rev Cancer 2011; 11(5): 325-37.
[http://dx.doi.org/10.1038/nrc3038] [PMID: 21508971]
[83]
Vučetić M, Cormerais Y, Parks SK, Pouysségur J. The central role of amino acids in cancer redox homeostasis: vulnerability points of the cancer redox code. Front Oncol 2017; 7: 319.
[http://dx.doi.org/10.3389/fonc.2017.00319] [PMID: 29312889]
[84]
Xiao D, Ren P, Su H, et al. Myc promotes glutaminolysis in human neuroblastoma through direct activation of glutaminase 2. Oncotarget 2015; 6(38): 40655-66.
[http://dx.doi.org/10.18632/oncotarget.5821] [PMID: 26528759]
[85]
Osthus RC, Shim H, Kim S, et al. Deregulation of glucose transporter 1 and glycolytic gene expression by c-Myc. J Biol Chem 2000; 275(29): 21797-800.
[http://dx.doi.org/10.1074/jbc.C000023200] [PMID: 10823814]
[86]
Dang CV, Le A, Gao P. MYC-induced cancer cell energy metabolism and therapeutic opportunities. Clin Cancer Res 2009; 15(21): 6479-83.
[http://dx.doi.org/10.1158/1078-0432.CCR-09-0889] [PMID: 19861459]
[87]
Marengo B, Garbarino O, Speciale A, Monteleone L, Traverso N, Domenicotti C. MYC expression and metabolic redox changes in cancer cells: a synergy able to induce chemoresistance. Oxid Med Cell Longev 2019; 2019: 7346492
[http://dx.doi.org/10.1155/2019/7346492] [PMID: 31341534]
[88]
Jackstadt R, Hermeking H. MicroRNAs as regulators and mediators of c-MYC function. Biochim Biophys Acta 2015; 1849(5): 544-53.
[http://dx.doi.org/10.1016/j.bbagrm.2014.04.003] [PMID: 24727092]
[89]
Jeong D, Kim J, Nam J, et al. MicroRNA-124 links p53 to the NF-κB pathway in B-cell lymphomas. Leukemia 2015; 29(9): 1868-74.
[http://dx.doi.org/10.1038/leu.2015.101] [PMID: 25915824]
[90]
Zhao X, Lu C, Chu W, et al. MicroRNA-124 suppresses proliferation and glycolysis in non-small cell lung cancer cells by targeting AKT-GLUT1/HKII. Tumour Biol 2017; 39(5): 1010428317706215
[http://dx.doi.org/10.1177/1010428317706215] [PMID: 28488541]
[91]
Gao P, Tchernyshyov I, Chang TC, et al. c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism. Nature 2009; 458(7239): 762-5.
[http://dx.doi.org/10.1038/nature07823] [PMID: 19219026]
[92]
Shen Z, Wu X, Wang Z, Li B, Zhu X. Effect of miR-18a overexpression on the radiosensitivity of non-small cell lung cancer. Int J Clin Exp Pathol 2015; 8(1): 643-8.
[PMID: 25755757]
[93]
Sha LY, Zhang Y, Wang W, et al. MiR-18a upregulation decreases Dicer expression and confers paclitaxel resistance in triple negative breast cancer. Eur Rev Med Pharmacol Sci 2016; 20(11): 2201-8.
[PMID: 27338043]
[94]
Humphreys KJ, McKinnon RA, Michael MZ. miR-18a inhibits CDC42 and plays a tumour suppressor role in colorectal cancer cells. PLoS One 2014; 9(11): e112288
[http://dx.doi.org/10.1371/journal.pone.0112288] [PMID: 25379703]
[95]
Gotanda K, Hirota T, Matsumoto N, Ieiri I. MicroRNA-433 negatively regulates the expression of thymidylate synthase (TYMS) responsible for 5-fluorouracil sensitivity in HeLa cells. BMC Cancer 2013; 13: 369.
[http://dx.doi.org/10.1186/1471-2407-13-369] [PMID: 23915286]
[96]
Xu X, Zhu Y, Liang Z, et al. c-Met and CREB1 are involved in miR-433-mediated inhibition of the epithelial-mesenchymal transition in bladder cancer by regulating Akt/GSK-3β/Snail signaling. Cell Death Dis 2016; 7: e2088
[http://dx.doi.org/10.1038/cddis.2015.274] [PMID: 26844702]
[97]
Hannafon BN, Cai A, Calloway CL, et al. miR-23b and miR-27b are oncogenic microRNAs in breast cancer: evidence from a CRISPR/Cas9 deletion study. BMC Cancer 2019; 19(1): 642.
[http://dx.doi.org/10.1186/s12885-019-5839-2] [PMID: 31253120]
[98]
Guttilla IK, White BA. Coordinate regulation of FOXO1 by miR-27a, miR-96, and miR-182 in breast cancer cells. J Biol Chem 2009; 284(35): 23204-16.
[http://dx.doi.org/10.1074/jbc.M109.031427] [PMID: 19574223]
[99]
Che F, Wan C, Dai J, Chen J. Increased expression of miR-27 predicts poor prognosis and promotes tumorigenesis in human multiple myeloma. Biosci Rep 2019; 39(4): BSR20182502
[http://dx.doi.org/10.1042/BSR20182502] [PMID: 30837325]
[100]
Chen D, Si W, Shen J, et al. miR-27b-3p inhibits proliferation and potentially reverses multi-chemoresistance by targeting CBLB/GRB2 in breast cancer cells. Cell Death Dis 2018; 9(2): 188.
[http://dx.doi.org/10.1038/s41419-017-0211-4] [PMID: 29416005]
[101]
Fang F, Huang B, Sun S, et al. miR-27a inhibits cervical adenocarcinoma progression by downregulating the TGF-βRI signaling pathway. Cell Death Dis 2018; 9(3): 395.
[http://dx.doi.org/10.1038/s41419-018-0431-2] [PMID: 29531222]
[102]
Ottaviani S, Stebbing J, Frampton AE, et al. TGF-β induces miR-100 and miR-125b but blocks let-7a through LIN28B controlling PDAC progression. Nat Commun 2018; 9(1): 1845.
[http://dx.doi.org/10.1038/s41467-018-03962-x] [PMID: 29748571]
[103]
Li Q, Han Y, Wang C, et al. MicroRNA-125b promotes tumor metastasis through targeting tumor protein 53-induced nuclear protein 1 in patients with non-small-cell lung cancer. Cancer Cell Int 2015; 15: 84.
[http://dx.doi.org/10.1186/s12935-015-0233-x] [PMID: 26388699]
[104]
Vilquin P, Donini CF, Villedieu M, et al. MicroRNA-125b upregulation confers aromatase inhibitor resistance and is a novel marker of poor prognosis in breast cancer. Breast Cancer Res 2015; 17: 13.
[http://dx.doi.org/10.1186/s13058-015-0515-1] [PMID: 25633049]
[105]
Zhang X, Yao J, Guo K, et al. The functional mechanism of miR-125b in gastric cancer and its effect on the chemosensitivity of cisplatin. Oncotarget 2017; 9(2): 2105-19.
[PMID: 29416757]
[106]
Maroni P, Bendinelli P, Matteucci E, Desiderio MA. The therapeutic effect of miR-125b is enhanced by the prostaglandin endoperoxide synthase 2/cyclooxygenase 2 blockade and hampers ETS1 in the context of the microenvironment of bone metastasis. Cell Death Dis 2018; 9(5): 472.
[http://dx.doi.org/10.1038/s41419-018-0499-8] [PMID: 29700305]
[107]
Hu G, Zhao X, Wang J, et al. miR-125b regulates the drug-resistance of breast cancer cells to doxorubicin by targeting HAX-1. Oncol Lett 2018; 15(2): 1621-9.
[PMID: 29434858]
[108]
Wu S, Liu F, Xie L, et al. miR-125b suppresses proliferation and invasion by targeting MCL1 in gastric cancer. BioMed Res Int 2015; 2015: 365273
[http://dx.doi.org/10.1155/2015/365273] [PMID: 26504803]
[109]
Yang D, Zhan M, Chen T, et al. miR-125b-5p enhances chemotherapy sensitivity to cisplatin by down-regulating Bcl2 in gallbladder cancer. Sci Rep 2017; 7: 43109.
[http://dx.doi.org/10.1038/srep43109] [PMID: 28256505]
[110]
Li Y, Song X, Liu Z, et al. Upregulation of miR-214 induced radioresistance of osteosarcoma by targeting PHLDA2 via PI3K/Akt signaling. Front Oncol 2019; 9: 298.
[http://dx.doi.org/10.3389/fonc.2019.00298] [PMID: 31058093]
[111]
Dettori D, Orso F, Penna E, et al. Therapeutic silencing of miR-214 inhibits tumor progression in multiple mouse models. Mol Ther 2018; 26(8): 2008-18.
[http://dx.doi.org/10.1016/j.ymthe.2018.05.020] [PMID: 29929788]
[112]
Orso F, Quirico L, Virga F, et al. miR-214 and miR-148b targeting inhibits dissemination of melanoma and breast cancer. Cancer Res 2016; 76(17): 5151-62.
[http://dx.doi.org/10.1158/0008-5472.CAN-15-1322] [PMID: 27328731]
[113]
Hu JL, He GY, Lan XL, et al. Inhibition of ATG12-mediated autophagy by miR-214 enhances radiosensitivity in colorectal cancer. Oncogenesis 2018; 7(2): 16.
[http://dx.doi.org/10.1038/s41389-018-0028-8] [PMID: 29459645]
[114]
Li QQ, Xie YK, Wu Y, et al. Sulforaphane inhibits cancer stem-like cell properties and cisplatin resistance through miR-214-mediated downregulation of c-MYC in non-small cell lung cancer. Oncotarget 2017; 8(7): 12067-80.
[http://dx.doi.org/10.18632/oncotarget.14512] [PMID: 28076844]
[115]
Yu X, Luo A, Liu Y, et al. MiR-214 increases the sensitivity of breast cancer cells to tamoxifen and fulvestrant through inhibition of autophagy. Mol Cancer 2015; 14: 208.
[http://dx.doi.org/10.1186/s12943-015-0480-4] [PMID: 26666173]
[116]
Cagle P, Niture S, Srivastava A, et al. MicroRNA-214 targets PTK6 to inhibit tumorigenic potential and increase drug sensitivity of prostate cancer cells. Sci Rep 2019; 9(1): 9776.
[http://dx.doi.org/10.1038/s41598-019-46170-3] [PMID: 31278310]
[117]
Peng RQ, Wan HY, Li HF, Liu M, Li X, Tang H. MicroRNA-214 suppresses growth and invasiveness of cervical cancer cells by targeting UDP-N-acetyl-α-D-galactosamine:polypeptide N-acetylgalactosaminyltransferase 7. J Biol Chem 2012; 287(17): 14301-9.
[http://dx.doi.org/10.1074/jbc.M111.337642] [PMID: 22399294]
[118]
Zhang X, Li Y, Wang D, Wei X. miR-22 suppresses tumorigenesis and improves radiosensitivity of breast cancer cells by targeting Sirt1. Biol Res 2017; 50(1): 27.
[http://dx.doi.org/10.1186/s40659-017-0133-8] [PMID: 28882183]
[119]
Gu Y, Liu H, Kong F, et al. miR-22/KAT6B axis is a chemotherapeutic determiner via regulation of PI3k-Akt-NF-kB pathway in tongue squamous cell carcinoma. J Exp Clin Cancer Res 2018; 37(1): 164.
[http://dx.doi.org/10.1186/s13046-018-0834-z] [PMID: 30041677]
[120]
Wongjampa W, Ekalaksananan T, Chopjitt P, et al. Suppression of miR-22, a tumor suppressor in cervical cancer, by human papillomavirus 16 E6 via a p53/miR-22/HDAC6 pathway. PLoS One 2018; 13(10): e0206644
[http://dx.doi.org/10.1371/journal.pone.0206644] [PMID: 30379969]
[121]
Jiang X, Hu C, Arnovitz S, et al. miR-22 has a potent anti-tumour role with therapeutic potential in acute myeloid leukaemia. Nat Commun 2016; 7: 11452.
[http://dx.doi.org/10.1038/ncomms11452] [PMID: 27116251]
[122]
Xu D, Takeshita F, Hino Y, et al. miR-22 represses cancer progression by inducing cellular senescence. J Cell Biol 2011; 193(2): 409-24.
[http://dx.doi.org/10.1083/jcb.201010100] [PMID: 21502362]
[123]
Xin M, Qiao Z, Li J, et al. miR-22 inhibits tumor growth and metastasis by targeting ATP citrate lyase: evidence in osteosarcoma, prostate cancer, cervical cancer and lung cancer. Oncotarget 2016; 7(28): 44252-65.
[http://dx.doi.org/10.18632/oncotarget.10020] [PMID: 27317765]
[124]
Wang QY, Zhou CX, Zhan MN, et al. MiR-133b targets Sox9 to control pathogenesis and metastasis of breast cancer. Cell Death Dis 2018; 9(7): 752.
[http://dx.doi.org/10.1038/s41419-018-0715-6] [PMID: 29970901]
[125]
Bisagni A, Pagano M, Maramotti S, et al. Higher expression of miR-133b is associated with better efficacy of erlotinib as the second or third line in non-small cell lung cancer patients. PLoS One 2018; 13(4): e0196350
[http://dx.doi.org/10.1371/journal.pone.0196350] [PMID: 29689091]
[126]
Wu X, Li L, Li Y, Liu Z. MiR-153 promotes breast cancer cell apoptosis by targeting HECTD3. Am J Cancer Res 2016; 6(7): 1563-71.
[PMID: 27508098]
[127]
Yuan Y, Du W, Wang Y, et al. Suppression of AKT expression by miR-153 produced anti-tumor activity in lung cancer. Int J Cancer 2015; 136(6): 1333-40.
[http://dx.doi.org/10.1002/ijc.29103] [PMID: 25066607]
[128]
Liang H, Xiao J, Zhou Z, et al. Hypoxia induces miR-153 through the IRE1α-XBP1 pathway to fine tune the HIF1α/VEGFA axis in breast cancer angiogenesis. Oncogene 2018; 37(15): 1961-75.
[http://dx.doi.org/10.1038/s41388-017-0089-8] [PMID: 29367761]
[129]
Zhang W, Mao S, Shi D, et al. MicroRNA-153 decreases tryptophan catabolism and inhibits angiogenesis in bladder cancer by targeting indoleamine 2,3-dioxygenase 1. Front Oncol 2019; 9: 619.
[http://dx.doi.org/10.3389/fonc.2019.00619] [PMID: 31355138]
[130]
Pei K, Zhu JJ, Wang CE, Xie QL, Guo JY. MicroRNA-185-5p modulates chemosensitivity of human non-small cell lung cancer to cisplatin via targeting ABCC1. Eur Rev Med Pharmacol Sci 2016; 20(22): 4697-704.
[PMID: 27906433]
[131]
Tang H, Liu P, Yang L, et al. miR-185 suppresses tumor proliferation by directly targeting E2F6 and DNMT1 and indirectly upregulating BRCA1 in triple-negative breast cancer. Mol Cancer Ther 2014; 13(12): 3185-97.
[http://dx.doi.org/10.1158/1535-7163.MCT-14-0243] [PMID: 25319390]
[132]
Wang R, Tian S, Wang HB, et al. MiR-185 is involved in human breast carcinogenesis by targeting VEGFA. FEBS Lett 2014; 588(23): 4438-47.
[http://dx.doi.org/10.1016/j.febslet.2014.09.045] [PMID: 25448984]
[133]
Lu D, Tang L, Zhuang Y, Zhao P. miR-17-3P regulates the proliferation and survival of colon cancer cells by targeting Par4. Mol Med Rep 2018; 17(1): 618-23.
[PMID: 29115593]
[134]
Xu Z, Zhang Y, Ding J, et al. miR-17-3p Downregulates mitochondrial antioxidant enzymes and enhances the radiosensitivity of prostate cancer cells. Mol Ther Nucleic Acids 2018; 13: 64-77.
[http://dx.doi.org/10.1016/j.omtn.2018.08.009] [PMID: 30240971]
[135]
Zhang Z, Kim K, Li X, et al. MicroRNA-26b represses colon cancer cell proliferation by inhibiting lymphoid enhancer factor 1 expression. Mol Cancer Ther 2014; 13(7): 1942-51.
[http://dx.doi.org/10.1158/1535-7163.MCT-13-1000] [PMID: 24785257]
[136]
Li J, Kong X, Zhang J, Luo Q, Li X, Fang L. Correction: MiRNA-26b inhibits proliferation by targeting PTGS2 in breast cancer. Cancer Cell Int 2013; 13(1): 17.
[http://dx.doi.org/10.1186/1475-2867-13-17] [PMID: 23432930]
[137]
Tian L, Zhang J, Ren X, et al. Overexpression of miR-26b decreases the cisplatin-resistance in laryngeal cancer by targeting ATF2. Oncotarget 2017; 8(45): 79023-33.
[http://dx.doi.org/10.18632/oncotarget.20784] [PMID: 29108284]
[138]
Wang L, Su J, Zhao Z, et al. MiR-26b reverses temozolomide resistance via targeting Wee1 in glioma cells. Cell Cycle 2017; 16(20): 1954-64.
[http://dx.doi.org/10.1080/15384101.2017.1367071] [PMID: 28898169]
[139]
Zhao N, Wang R, Zhou L, Zhu Y, Gong J, Zhuang SM. MicroRNA-26b suppresses the NF-κB signaling and enhances the chemosensitivity of hepatocellular carcinoma cells by targeting TAK1 and TAB3. Mol Cancer 2014; 13: 35.
[http://dx.doi.org/10.1186/1476-4598-13-35] [PMID: 24565101]
[140]
Alam KJ, Mo JS, Han SH, et al. MicroRNA 375 regulates proliferation and migration of colon cancer cells by suppressing the CTGF-EGFR signaling pathway. Int J Cancer 2017; 141(8): 1614-29.
[http://dx.doi.org/10.1002/ijc.30861] [PMID: 28670764]
[141]
Xue HY, Liu Y, Liao JZ, et al. Gold nanoparticles delivered miR-375 for treatment of hepatocellular carcinoma. Oncotarget 2016; 7(52): 86675-86.
[http://dx.doi.org/10.18632/oncotarget.13431] [PMID: 27880727]
[142]
Zhang Y, Zheng L, Huang J, et al. MiR-124 Radiosensitizes human colorectal cancer cells by targeting PRRX1. PLoS One 2014; 9(4): e93917
[http://dx.doi.org/10.1371/journal.pone.0093917] [PMID: 24705396]
[143]
Zhao Y, Ling Z, Hao Y, et al. MiR-124 acts as a tumor suppressor by inhibiting the expression of sphingosine kinase 1 and its downstream signaling in head and neck squamous cell carcinoma. Oncotarget 2017; 8(15): 25005-20.
[http://dx.doi.org/10.18632/oncotarget.15334] [PMID: 28212569]
[144]
Shi XB, Ma AH, Xue L, et al. miR-124 and androgen receptor signaling inhibitors repress prostate cancer growth by downregulating androgen receptor splice variants, EZH2, and Src. Cancer Res 2015; 75(24): 5309-17.
[http://dx.doi.org/10.1158/0008-5472.CAN-14-0795] [PMID: 26573802]
[145]
Silber J, Hashizume R, Felix T, et al. Expression of miR-124 inhibits growth of medulloblastoma cells. Neuro-oncol 2013; 15(1): 83-90.
[http://dx.doi.org/10.1093/neuonc/nos281] [PMID: 23172372]
[146]
Liu J, Jiang Y, Wan Y, Zhou S, Thapa S, Cheng W. MicroRNA‑665 suppresses the growth and migration of ovarian cancer cells by targeting HOXA10. Mol Med Rep 2018; 18(3): 2661-8.
[http://dx.doi.org/10.3892/mmr.2018.9252] [PMID: 30015865]
[147]
Dong C, Du Q, Wang Z, Wang Y, Wu S, Wang A. MicroRNA-665 suppressed the invasion and metastasis of osteosarcoma by directly inhibiting RAB23. Am J Transl Res 2016; 8(11): 4975-81.
[PMID: 27904698]
[148]
Wang C, Wu C, Yang Q, et al. miR-28-5p acts as a tumor suppressor in renal cell carcinoma for multiple antitumor effects by targeting RAP1B. Oncotarget 2016; 7(45): 73888-902.
[http://dx.doi.org/10.18632/oncotarget.12516] [PMID: 27729617]
[149]
Rupaimoole R, Slack FJ. MicroRNA therapeutics: towards a new era for the management of cancer and other diseases. Nat Rev Drug Discov 2017; 16(3): 203-22.
[http://dx.doi.org/10.1038/nrd.2016.246] [PMID: 28209991]
[150]
Trivedi M, Singh A, Talekar M, Pawar G, Shah P, Amiji M. MicroRNA-34a encapsulated in hyaluronic acid nanoparticles induces epigenetic changes with altered mitochondrial bioenergetics and apoptosis in non-small-cell lung cancer cells. Sci Rep 2017; 7(1): 3636.
[http://dx.doi.org/10.1038/s41598-017-02816-8] [PMID: 28623259]
[151]
Mittal A, Chitkara D, Behrman SW, Mahato RI. Efficacy of gemcitabine conjugated and miRNA-205 complexed micelles for treatment of advanced pancreatic cancer. Biomaterials 2014; 35(25): 7077-87.
[http://dx.doi.org/10.1016/j.biomaterials.2014.04.053] [PMID: 24836307]
[152]
Qian X, Long L, Shi Z, et al. Star-branched amphiphilic PLA-b-PDMAEMA copolymers for co-delivery of miR-21 inhibitor and doxorubicin to treat glioma. Biomaterials 2014; 35(7): 2322-35.
[http://dx.doi.org/10.1016/j.biomaterials.2013.11.039] [PMID: 24332459]
[153]
Liu Q, Li RT, Qian HQ, et al. Targeted delivery of miR-200c/DOC to inhibit cancer stem cells and cancer cells by the gelatinases-stimuli nanoparticles. Biomaterials 2013; 34(29): 7191-203.
[http://dx.doi.org/10.1016/j.biomaterials.2013.06.004] [PMID: 23806972]
[154]
Chang Y, Yang K, Wei P, et al. Cationic vesicles based on amphiphilic pillar[5]arene capped with ferrocenium: a redox-responsive system for drug/siRNA co-delivery. Angew Chem Int Ed Engl 2014; 53(48): 13126-30.
[http://dx.doi.org/10.1002/anie.201407272] [PMID: 25267331]

© 2025 Bentham Science Publishers | Privacy Policy