Review Article

细胞源性微粒与急性冠状动脉综合征:微粒是否具有预测作用

卷 27, 期 27, 2020

页: [4440 - 4468] 页: 29

弟呕挨: 10.2174/0929867327666191213104841

价格: $65

摘要

背景:尽管急性冠脉综合征(ACS)的治疗最近取得了进展,但ACS患者发生不良心血管事件的风险仍在增加,而其预后仍难以确定。实验和临床研究表明,细胞来源的微颗粒(MPs)与动脉粥样硬化发生的基本病理生理过程有关,可能与动脉粥样硬化血栓形成的诱导有关。 目的:在这篇文章中,我们旨在综述关于MPs在ACS患者中预测作用的现有证据。 结果:证据表明,内皮细胞MPs与ACS患者未来不良心血管事件相关。血小板来源的MPs的研究有很多,因为他们被发现可以触发凝血级联;然而,它们作为未来心血管事件预测因子的作用仍然存在争议。红细胞来源的MPs的作用更有趣;它们被认为是ACS患者血栓形成的标志,而之前的研究表明它们在健康人群中具有抗凝特性。白细胞来源的MPs也可能具有预测作用,尽管这方面的研究仍然有限。最后同样重要的是,循环MPs可以提供关于ACS患者血管造影病变的信息,这是一个有趣的发现。 结论:MPs作为潜在的循环生物标志物在ACS患者中具有很大的前景。然而,需要进行大规模的临床研究来评估血浆MPs的测量是否具有临床意义,从而指导对循环中高水平MPs的患者采取更积极的治疗策略。

关键词: 微粒,急性冠状动脉综合征,内皮细胞源性微粒,血小板源性微粒,急性心肌哽塞,不稳定型心绞痛,预后,效果。

[1]
Libby, P.; Ridker, P.M.; Hansson, G.K. Leducq Transatlantic Network on Atherothrombosis. Inflammation in atherosclerosis: from pathophysiology to practice. J. Am. Coll. Cardiol., 2009, 54(23), 2129-2138.
[http://dx.doi.org/10.1016/j.jacc.2009.09.009] [PMID: 19942084]
[2]
Crea, F.; Liuzzo, G. Pathogenesis of acute coronary syndromes. J. Am. Coll. Cardiol., 2013, 61(1), 1-11.
[http://dx.doi.org/10.1016/j.jacc.2012.07.064] [PMID: 23158526]
[3]
Libby, P.; Ridker, P.M.; Hansson, G.K. Progress and challenges in translating the biology of atherosclerosis. Nature, 2011, 473(7347), 317-325.
[http://dx.doi.org/10.1038/nature10146] [PMID: 21593864]
[4]
Hargett, L.A.; Bauer, N.N. On the origin of microparticles: From “platelet dust” to mediators of intercellular communication. Pulm. Circ., 2013, 3(2), 329-340.
[http://dx.doi.org/10.4103/2045-8932.114760] [PMID: 24015332]
[5]
Curtis, A.M.; Edelberg, J.; Jonas, R.; Rogers, W.T.; Moore, J.S.; Syed, W.; Mohler, E.R., III Endothelial microparticles: sophisticated vesicles modulating vascular function. Vasc. Med., 2013, 18(4), 204-214.
[http://dx.doi.org/10.1177/1358863X13499773] [PMID: 23892447]
[6]
Souza, A.C.; Yuen, P.S.; Star, R.A. Microparticles: markers and mediators of sepsis-induced microvascular dysfunction, immunosuppression, and AKI. Kidney Int., 2015, 87(6), 1100-1108.
[http://dx.doi.org/10.1038/ki.2015.26] [PMID: 25692956]
[7]
Nomura, S.; Niki, M.; Nisizawa, T.; Tamaki, T.; Shimizu, M. Microparticles as biomarkers of blood coagulation in cancer. Biomark. Cancer, 2015, 7, 51-56.
[http://dx.doi.org/10.4137/BIC.S30347] [PMID: 26462252]
[8]
Mackman, N. On the trail of microparticles. Circ. Res., 2009, 104(8), 925-927.
[http://dx.doi.org/10.1161/CIRCRESAHA.109.196840] [PMID: 19390059]
[9]
Morel, O.; Morel, N.; Jesel, L.; Freyssinet, J.M.; Toti, F. Microparticles: a critical component in the nexus between inflammation, immunity, and thrombosis. Semin. Immunopathol., 2011, 33(5), 469-486.
[http://dx.doi.org/10.1007/s00281-010-0239-3] [PMID: 21866419]
[10]
Habersberger, J.; Strang, F.; Scheichl, A.; Htun, N.; Bassler, N.; Merivirta, R.M.; Diehl, P.; Krippner, G.; Meikle, P.; Eisenhardt, S.U.; Meredith, I.; Peter, K. Circulating microparticles generate and transport monomeric C-reactive protein in patients with myocardial infarction. Cardiovasc. Res., 2012, 96(1), 64-72.
[http://dx.doi.org/10.1093/cvr/cvs237] [PMID: 22798388]
[11]
Tsiantoulas, D.; Perkmann, T.; Afonyushkin, T.; Mangold, A.; Prohaska, T.A.; Papac-Milicevic, N.; Millischer, V.; Bartel, C.; Hörkkö, S.; Boulanger, C.M.; Tsimikas, S.; Fischer, M.B.; Witztum, J.L.; Lang, I.M.; Binder, C.J. Circulating microparticles carry oxidation-specific epitopes and are recognized by natural IgM antibodies. J. Lipid Res., 2015, 56(2), 440-448.
[http://dx.doi.org/10.1194/jlr.P054569] [PMID: 25525116]
[12]
Berckmans, R.J.; Nieuwland, R.; Böing, A.N.; Romijn, F.P.; Hack, C.E.; Sturk, A. Cell-derived microparticles circulate in healthy humans and support low grade thrombin generation. Thromb. Haemost., 2001, 85(4), 639-646.
[http://dx.doi.org/10.1055/s-0037-1615646] [PMID: 11341498]
[13]
Rautou, P.E.; Vion, A.C.; Amabile, N.; Chironi, G.; Simon, A.; Tedgui, A.; Boulanger, C.M. Microparticles, vascular function, and atherothrombosis. Circ. Res., 2011, 109(5), 593-606.
[http://dx.doi.org/10.1161/CIRCRESAHA.110.233163] [PMID: 21852557]
[14]
Boulanger, C.M.; Scoazec, A.; Ebrahimian, T.; Henry, P.; Mathieu, E.; Tedgui, A.; Mallat, Z. Circulating microparticles from patients with myocardial infarction cause endothelial dysfunction. Circulation, 2001, 104(22), 2649-2652.
[http://dx.doi.org/10.1161/hc4701.100516] [PMID: 11723013]
[15]
Han, W.Q.; Chang, F.J.; Wang, Q.R.; Pan, J.Q. Microparticles from patients with the acute coronary syndrome impair vasodilatation by inhibiting the Akt/eNOS-Hsp90 signaling pathway. Cardiology, 2015, 132(4), 252-260.
[http://dx.doi.org/10.1159/000438782] [PMID: 26329646]
[16]
Dignat-George, F.; Boulanger, C.M. The many faces of endothelial microparticles. Arterioscler. Thromb. Vasc. Biol., 2011, 31(1), 27-33.
[http://dx.doi.org/10.1161/ATVBAHA.110.218123] [PMID: 21160065]
[17]
Horn, P.; Cortese-Krott, M.M.; Amabile, N.; Hundsdörfer, C.; Kröncke, K.D.; Kelm, M.; Heiss, C. Circulating microparticles carry a functional endothelial nitric oxide synthase that is decreased in patients with endothelial dysfunction. J. Am. Heart Assoc., 2012, 2(1) e003764
[http://dx.doi.org/10.1161/jaha.112.003764] [PMID: 23525410]
[18]
Mallat, Z.; Benamer, H.; Hugel, B.; Benessiano, J.; Steg, P.G.; Freyssinet, J.M.; Tedgui, A. Elevated levels of shed membrane microparticles with procoagulant potential in the peripheral circulating blood of patients with acute coronary syndromes. Circulation, 2000, 101(8), 841-843.
[http://dx.doi.org/10.1161/01.CIR.101.8.841] [PMID: 10694520]
[19]
Bernard, S.; Loffroy, R.; Sérusclat, A.; Boussel, L.; Bonnefoy, E.; Thévenon, C.; Rabilloud, M.; Revel, D.; Moulin, P.; Douek, P. Increased levels of endothelial microparticles CD144 (VE-Cadherin) positives in type 2 diabetic patients with coronary noncalcified plaques evaluated by multidetector computed tomography (MDCT). Atherosclerosis, 2009, 203(2), 429-435.
[http://dx.doi.org/10.1016/j.atherosclerosis.2008.07.039] [PMID: 18804209]
[20]
Stępień, E.; Stankiewicz, E.; Zalewski, J.; Godlewski, J.; Zmudka, K.; Wybrańska, I. Number of microparticles generated during acute myocardial infarction and stable angina correlates with platelet activation. Arch. Med. Res., 2012, 43(1), 31-35.
[http://dx.doi.org/10.1016/j.arcmed.2012.01.006] [PMID: 22306248]
[21]
Lu, Y.; Li, L.; Yan, H.; Su, Q.; Huang, J.; Fu, C. Endothelial microparticles exert differential effects on functions of Th1 in patients with acute coronary syndrome. Int. J. Cardiol., 2013, 168(6), 5396-5404.
[http://dx.doi.org/10.1016/j.ijcard.2013.08.050] [PMID: 24012161]
[22]
Nijiati, M.; Gao, Y.; Abudureheman, Z.; Yu, X.; Li, G. Relationship between the level of circulating endothelial micro-particles in the blood and blood lipid content in Uyghur and Han patients with acute coronary syndrome. Clin. Lab., 2015, 61(8), 1071-1075.
[http://dx.doi.org/10.7754/Clin.Lab.2015.150137] [PMID: 26427153]
[23]
Zhang, Y.; Cheng, J.; Chen, F.; Wu, C.; Zhang, J.; Ren, X.; Pan, Y.; Nie, B.; Li, Q.; Li, Y. Circulating endothelial microparticles and miR-92a in acute myocardial infarction. Biosci. Rep., 2017, 37(2), BSR2017004
[http://dx.doi.org/10.1042/BSR20170047] [PMID: 28213360]
[24]
Bernal-Mizrachi, L.; Jy, W.; Jimenez, J.J.; Pastor, J.; Mauro, L.M.; Horstman, L.L.; de Marchena, E.; Ahn, Y.S. High levels of circulating endothelial microparticles in patients with acute coronary syndromes. Am. Heart J., 2003, 145(6), 962-970.
[http://dx.doi.org/10.1016/S0002-8703(03)00103-0] [PMID: 12796750]
[25]
Zielińska, M.; Koniarek, W.; Goch, J.H.; Cebula, B.; Tybura, M.; Robak, T.; Smolewski, P. Circulating endothelial microparticles in patients with acute myocardial infarction. Kardiol. Pol., 2005, 62(6), 531-542.
[PMID: 16123851]
[26]
Biasucci, L.M.; Porto, I.; Di Vito, L.; De Maria, G.L.; Leone, A.M.; Tinelli, G.; Tritarelli, A.; Di Rocco, G.; Snider, F.; Capogrossi, M.C.; Crea, F. Differences in microparticle release in patients with acute coronary syndrome and stable angina. Circ. J., 2012, 76(9), 2174-2182.
[http://dx.doi.org/10.1253/circj.CJ-12-0068] [PMID: 22664782]
[27]
George, M.; Ganesh, M.R.; Sridhar, A.; Jena, A.; Rajaram, M.; Shanmugam, E.; Dhandapani, V.E. Evaluation of endothelial and platelet derived microparticles in patients with acute coronary syndrome. J. Clin. Diagn. Res., 2015, 9(12), OC09-OC13.
[http://dx.doi.org/10.7860/JCDR/2015/14493.6920] [PMID: 26816931]
[28]
Lumsden, N.G.; Andrews, K.L.; Bobadilla, M.; Moore, X.L.; Sampson, A.K.; Shaw, J.A.; Mizrahi, J.; Kaye, D.M.; Dart, A.M.; Chin-Dusting, J.P. Endothelial dysfunction in patients with type 2 diabetes post acute coronary syndrome. Diab. Vasc. Dis. Res., 2013, 10(4), 368-374.
[http://dx.doi.org/10.1177/1479164113482593] [PMID: 23673378]
[29]
Ye, S.; Shan, X.F.; Han, W.Q.; Zhang, Q.R.; Gao, J.; Jin, A.P.; Wang, Y.; Sun, C.F.; Zhang, S.L. Microparticles from patients undergoing percutaneous coronary intervention impair vasodilatation by uncoupling endothelial nitric oxide synthase. Shock, 2017, 48(2), 201-208.
[http://dx.doi.org/10.1097/SHK.0000000000000823] [PMID: 28002238]
[30]
Zhou, B.; Li, J.; Chen, S.; Zhou, E.; Zheng, L.; Zu, L.; Gao, W. Time course of various cell origin circulating microparticles in ST-segment elevation myocardial infarction patients undergoing percutaneous transluminal coronary intervention. Exp. Ther. Med., 2016, 11(4), 1481-1486.
[http://dx.doi.org/10.3892/etm.2016.3060] [PMID: 27073469]
[31]
Min, P.K.; Kim, J.Y.; Chung, K.H.; Lee, B.K.; Cho, M.; Lee, D.L.; Hong, S.Y.; Choi, E.Y.; Yoon, Y.W.; Hong, B.K.; Rim, S.J.; Kwon, H.M. Local increase in microparticles from the aspirate of culprit coronary arteries in patients with ST-segment elevation myocardial infarction. Atherosclerosis, 2013, 227(2), 323-328.
[http://dx.doi.org/10.1016/j.atherosclerosis.2013.01.032] [PMID: 23422831]
[32]
Montoro-García, S.; Shantsila, E.; Tapp, L.D.; López-Cuenca, A.; Romero, A.I.; Hernández-Romero, D.; Orenes-Piñero, E.; Manzano-Fernández, S.; Valdés, M.; Marín, F.; Lip, G.Y. Small-size circulating microparticles in acute coronary syndromes: relevance to fibrinolytic status, reparative markers and outcomes. Atherosclerosis, 2013, 227(2), 313-322.
[http://dx.doi.org/10.1016/j.atherosclerosis.2013.01.028] [PMID: 23415055]
[33]
Morel, O.; Pereira, B.; Averous, G.; Faure, A.; Jesel, L.; Germain, P.; Grunebaum, L.; Ohlmann, P.; Freyssinet, J.M.; Bareiss, P.; Toti, F. Increased levels of procoagulant tissue factor-bearing microparticles within the occluded coronary artery of patients with ST-segment elevation myocardial infarction: role of endothelial damage and leukocyte activation. Atherosclerosis, 2009, 204(2), 636-641.
[http://dx.doi.org/10.1016/j.atherosclerosis.2008.10.039] [PMID: 19091315]
[34]
Porto, I.; Biasucci, L.M.; De Maria, G.L.; Leone, A.M.; Niccoli, G.; Burzotta, F.; Trani, C.; Tritarelli, A.; Vergallo, R.; Liuzzo, G.; Crea, F. Intracoronary microparticles and microvascular obstruction in patients with ST elevation myocardial infarction undergoing primary percutaneous intervention. Eur. Heart J., 2012, 33(23), 2928-2938.
[http://dx.doi.org/10.1093/eurheartj/ehs065] [PMID: 22453653]
[35]
Suades, R.; Padró, T.; Crespo, J.; Ramaiola, I.; Martin-Yuste, V.; Sabaté, M.; Sans-Roselló, J.; Sionis, A.; Badimon, L. Circulating microparticle signature in coronary and peripheral blood of ST elevation myocardial infarction patients in relation to pain-to-PCI elapsed time. Int. J. Cardiol., 2016, 202, 378-387.
[http://dx.doi.org/10.1016/j.ijcard.2015.09.011] [PMID: 26432487]
[36]
Gawaz, M.; Neumann, F.J.; Ott, I.; Schiessler, A.; Schömig, A. Platelet function in acute myocardial infarction treated with direct angioplasty. Circulation, 1996, 93(2), 229-237.
[http://dx.doi.org/10.1161/01.CIR.93.2.229] [PMID: 8548893]
[37]
Katopodis, J.N.; Kolodny, L.; Jy, W.; Horstman, L.L.; De Marchena, E.J.; Tao, J.G.; Haynes, D.H.; Ahn, Y.S. Platelet microparticles and calcium homeostasis in acute coronary ischemias. Am. J. Hematol., 1997, 54(2), 95-101.
[http://dx.doi.org/10.1002/(SICI)1096-8652(199702)54:2<95::AID-AJH1>3.0.CO;2-Z] [PMID: 9034282]
[38]
Li, M.; Goto, S.; Sakai, H.; Kim, J.Y.; Ichikawa, N.; Yoshida, M.; Ikeda, Y.; Handa, S. Enhanced shear-induced von Willebrand factor binding to platelets in acute myocardial infarction. Thromb. Res., 2000, 100(4), 251-261.
[http://dx.doi.org/10.1016/S0049-3848(00)00326-1] [PMID: 11113268]
[39]
Vidal, C.; Spaulding, C.; Picard, F.; Schaison, F.; Melle, J.; Weber, S.; Fontenay-Roupie, M. Flow cytometry detection of platelet procoagulation activity and microparticles in patients with unstable angina treated by percutaneous coronary angioplasty and stent implantation. Thromb. Haemost., 2001, 86(3), 784-790.
[http://dx.doi.org/10.1055/s-0037-1616132] [PMID: 11583308]
[40]
Matsumoto, N.; Nomura, S.; Kamihata, H.; Kimura, Y.; Iwasaka, T. Association of platelet-derived microparticles with C-C chemokines on vascular complication in patients with acute myocardial infarction. Clin. Appl. Thromb. Hemost., 2002, 8(3), 279-286.
[http://dx.doi.org/10.1177/107602960200800313] [PMID: 12361207]
[41]
Héloire, F.; Weill, B.; Weber, S.; Batteux, F. Aggregates of endothelial microparticles and platelets circulate in peripheral blood. Variations during stable coronary disease and acute myocardial infarction. Thromb. Res., 2003, 110(4), 173-180.
[http://dx.doi.org/10.1016/S0049-3848(03)00297-4] [PMID: 14512078]
[42]
Matsumoto, N.; Nomura, S.; Kamihata, H.; Kimura, Y.; Iwasaka, T. Increased level of oxidized LDL-dependent monocyte-derived microparticles in acute coronary syndrome. Thromb. Haemost., 2004, 91(1), 146-154.
[http://dx.doi.org/10.1160/TH03-04-0247] [PMID: 14691580]
[43]
Morel, O.; Hugel, B.; Jesel, L.; Mallat, Z.; Lanza, F.; Douchet, M.P.; Zupan, M.; Chauvin, M.; Cazenave, J.P.; Tedgui, A.; Freyssinet, J.M.; Toti, F. Circulating procoagulant microparticles and soluble GPV in myocardial infarction treated by primary percutaneous transluminal coronary angioplasty. A possible role for GPIIb-IIIa antagonists. J. Thromb. Haemost., 2004, 2(7), 1118-1126.
[http://dx.doi.org/10.1111/j.1538-7836.2004.00805.x] [PMID: 15219195]
[44]
Dymicka-Piekarska, V.; Kemona, H.; Butkiewicz, A.; Bychowski, J. [Platelets and platelet microparticles glycoprotein IIb/IIIa complex in patients with unstable angina.J Pol. Merkuriusz Lek., 2005, 18(103), 9-12.
[PMID: 15859538]
[45]
van der Zee, P.M.; Biró, E.; Ko, Y.; de Winter, R.J.; Hack, C.E.; Sturk, A.; Nieuwland, R. P-selectin- and CD63-exposing platelet microparticles reflect platelet activation in peripheral arterial disease and myocardial infarction. Clin. Chem., 2006, 52(4), 657-664.
[http://dx.doi.org/10.1373/clinchem.2005.057414] [PMID: 16439610]
[46]
Huisse, M.G.; Lanoy, E.; Tcheche, D.; Feldman, L.J.; Bezeaud, A.; Anglès-Cano, E.; Mary-Krause, M.; de Prost, D.; Guillin, M.C.; Steg, P.G. Prothrombotic markers and early spontaneous recanalization in ST-segment elevation myocardial infarction. Thromb. Haemost., 2007, 98(2), 420-426.
[PMID: 17721626]
[47]
Michelsen, A.E.; Brodin, E.; Brosstad, F.; Hansen, J.B. Increased level of platelet microparticles in survivors of myocardial infarction. Scand. J. Clin. Lab. Invest., 2008, 68(5), 386-392.
[http://dx.doi.org/10.1080/00365510701794957] [PMID: 18752144]
[48]
Huisse, M.G.; Ajzenberg, N.; Feldman, L.; Guillin, M.C.; Steg, P.G. Microparticle-linked tissue factor activity and increased thrombin activity play a potential role in fibrinolysis failure in ST-segment elevation myocardial infarction. Thromb. Haemost., 2009, 101(4), 734-740.
[http://dx.doi.org/10.1160/TH08-06-0407] [PMID: 19350119]
[49]
Maly, M.; Hrachovinova, I.; Tomasov, P.; Salaj, P.; Hajek, P.; Veselka, J. Patients with acute coronary syndromes have low tissue factor activity and microparticle count, but normal concentration of tissue factor antigen in platelet free plasma: a pilot study. Eur. J. Haematol., 2009, 82(2), 148-153.
[http://dx.doi.org/10.1111/j.1600-0609.2008.01175.x] [PMID: 19018869]
[50]
Keuren, J.F.; Jie, K.S.; Leers, M.P. Increased expression of TF on monocytes, but decreased numbers of TF bearing microparticles in blood from patients with acute myocardial infarction. Eur. J. Haematol., 2009, 83(4), 387-388.
[http://dx.doi.org/10.1111/j.1600-0609.2009.01306.x] [PMID: 19558505]
[51]
Skeppholm, M.; Mobarrez, F.; Malmqvist, K.; Wallén, H. Platelet-derived microparticles during and after acute coronary syndrome. Thromb. Haemost., 2012, 107(6), 1122-1129.
[http://dx.doi.org/10.1160/TH11-11-0779] [PMID: 22371053]
[52]
Giannopoulos, G.; Oudatzis, G.; Paterakis, G.; Synetos, A.; Tampaki, E.; Bouras, G.; Hahalis, G.; Alexopoulos, D.; Tousoulis, D.; Cleman, M.W.; Stefanadis, C.; Deftereos, S. Red blood cell and platelet microparticles in myocardial infarction patients treated with primary angioplasty. Int. J. Cardiol., 2014, 176(1), 145-150.
[http://dx.doi.org/10.1016/j.ijcard.2014.07.022] [PMID: 25062560]
[53]
Suades, R.; Padró, T.; Vilahur, G.; Martin-Yuste, V.; Sabaté, M.; Sans-Roselló, J.; Sionis, A.; Badimon, L. Growing thrombi release increased levels of CD235a(+) microparticles and decreased levels of activated platelet-derived microparticles. Validation in ST-elevation myocardial infarction patients. J. Thromb. Haemost., 2015, 13(10), 1776-1786.
[http://dx.doi.org/10.1111/jth.13065] [PMID: 26239059]
[54]
Wang, L.; Bi, Y.; Cao, M.; Ma, R.; Wu, X.; Zhang, Y.; Ding, W.; Liu, Y.; Yu, Q.; Zhang, Y.; Jiang, H.; Sun, Y.; Tong, D.; Guo, L.; Dong, Z.; Tian, Y.; Kou, J.; Shi, J. Microparticles and blood cells induce procoagulant activity via phosphatidylserine exposure in NSTEMI patients following stent implantation. Int. J. Cardiol., 2016, 223, 121-128.
[http://dx.doi.org/10.1016/j.ijcard.2016.07.260] [PMID: 27537737]
[55]
Hartopo, A.B.; Puspitawati, I.; Gharini, P.P.; Setianto, B.Y. Platelet microparticle number is associated with the extent of myocardial damage in acute myocardial infarction. Arch. Med. Sci., 2016, 12(3), 529-537.
[http://dx.doi.org/10.5114/aoms.2016.59926] [PMID: 27279844]
[56]
Sun, C.; Zhao, W.B.; Chen, Y.; Hu, H.Y. Higher plasma concentrations of platelet microparticles in patients with acute coronary syndrome: a systematic review and meta-analysis. Can. J. Cardiol., 2016, 32(11), 1325.e1-1325.e10.
[http://dx.doi.org/10.1016/j.cjca.2016.02.052] [PMID: 27177836]
[57]
Liu, Y.; He, Z.; Zhang, Y.; Dong, Z.; Bi, Y.; Kou, J.; Zhou, J.; Shi, J. Dissimilarity of increased phosphatidylserine-positive microparticles and associated coagulation activation in acute coronary syndromes. Coron. Artery Dis., 2016, 27(5), 365-375.
[http://dx.doi.org/10.1097/MCA.0000000000000368] [PMID: 27058313]
[58]
Chiva-Blanch, G.; Laake, K.; Myhre, P.; Bratseth, V.; Arnesen, H.; Solheim, S.; Badimon, L.; Seljeflot, I. Platelet, monocyte-derived and tissue factor-carrying circulating microparticles are related to acute myocardial infarction severity. PLoS One, 2017, 12(2) e0172558
[http://dx.doi.org/10.1371/journal.pone.0172558] [PMID: 28207887]
[59]
Christersson, C.; Thulin, Å.; Siegbahn, A. Microparticles during long-term follow-up after acute myocardial infarction. Association to atherosclerotic burden and risk of cardiovascular events. Thromb. Haemost., 2017, 117(8), 1571-1581.
[http://dx.doi.org/10.1160/TH16-11-0837] [PMID: 28424820]
[60]
Mavroudis, C.A.; Eleftheriou, D.; Hong, Y.; Majumder, B.; Koganti, S.; Sapsford, R.; North, J.; Lowdell, M.; Klein, N.; Brogan, P.; Rakhit, R.D. Microparticles in acute coronary syndrome. Thromb. Res., 2017, 156, 109-116.
[http://dx.doi.org/10.1016/j.thromres.2017.06.003] [PMID: 28624718]
[61]
Nijiati, M.; Saidaming, A.; Guoqing, L. In vitro study of the thrombogenic activity of platelet-derived microparticles from patients with acute coronary syndrome. Ann. Clin. Lab. Sci., 2017, 47(2), 156-161.
[PMID: 28442516]
[62]
Fan, Y.; Wang, L.; Li, Y.; Yin, Z.; Xu, Z.; Wang, C. Quantification of endothelial microparticles on modified cytometric bead assay and prognosis in chest pain patients. Circ. J., 2014, 78(1), 206-214.
[http://dx.doi.org/10.1253/circj.CJ-13-0488] [PMID: 24200872]
[63]
Radecke, C.E.; Warrick, A.E.; Singh, G.D.; Rogers, J.H.; Simon, S.I.; Armstrong, E.J. Coronary artery endothelial cells and microparticles increase expression of VCAM-1 in myocardial infarction. Thromb. Haemost., 2015, 113(3), 605-616.
[http://dx.doi.org/10.1160/TH14-02-0151] [PMID: 25413339]
[64]
Abbas, M.; Jesel, L.; Auger, C.; Amoura, L.; Messas, N.; Manin, G.; Rumig, C.; León-González, A.J.; Ribeiro, T.P.; Silva, G.C.; Abou-Merhi, R.; Hamade, E.; Hecker, M.; Georg, Y.; Chakfe, N.; Ohlmann, P.; Schini-Kerth, V.B.; Toti, F.; Morel, O. Endothelial microparticles from acute coronary syndrome patients induce premature coronary artery endothelial cell aging and thrombogenicity: role of the Ang II/AT1 receptor/NADPH oxidase-mediated activation of MAPKs and PI3-kinase pathways. Circulation, 2017, 135(3), 280-296.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.116.017513] [PMID: 27821539]
[65]
Bernal-Mizrachi, L.; Jy, W.; Fierro, C.; Macdonough, R.; Velazques, H.A.; Purow, J.; Jimenez, J.J.; Horstman, L.L.; Ferreira, A.; de Marchena, E.; Ahn, Y.S. Endothelial microparticles correlate with high-risk angiographic lesions in acute coronary syndromes. Int. J. Cardiol., 2004, 97(3), 439-446.
[http://dx.doi.org/10.1016/j.ijcard.2003.10.029] [PMID: 15561331]
[66]
Empana, J.P.; Boulanger, C.M.; Tafflet, M.; Renard, J.M.; Leroyer, A.S.; Varenne, O.; Prugger, C.; Silvain, J.; Tedgui, A.; Cariou, A.; Montalescot, G.; Jouven, X.; Spaulding, C. Microparticles and sudden cardiac death due to coronary occlusion. The TIDE (thrombus and inflammation in sudden death) study. Eur. Heart J. Acute Cardiovasc. Care, 2015, 4(1), 28-36.
[http://dx.doi.org/10.1177/2048872614538404] [PMID: 24912925]
[67]
Jung, C.; Sörensson, P.; Saleh, N.; Arheden, H.; Rydén, L.; Pernow, J. Circulating endothelial and platelet derived microparticles reflect the size of myocardium at risk in patients with ST-elevation myocardial infarction. Atherosclerosis, 2012, 221(1), 226-231.
[http://dx.doi.org/10.1016/j.atherosclerosis.2011.12.025] [PMID: 22245039]
[68]
Faille, D.; Frere, C.; Cuisset, T.; Quilici, J.; Moro, P.J.; Morange, P.E.; Bonnet, J.L.; Alessi, M.C. CD11b+ leukocyte microparticles are associated with high-risk angiographic lesions and recurrent cardiovascular events in acute coronary syndromes. J. Thromb. Haemost., 2011, 9(9), 1870-1873.
[http://dx.doi.org/10.1111/j.1538-7836.2011.04418.x] [PMID: 21707910]
[69]
Morel, O.; Hugel, B.; Jesel, L.; Lanza, F.; Douchet, M.P.; Zupan, M.; Chauvin, M.; Cazenave, J.P.; Freyssinet, J.M.; Toti, F. Sustained elevated amounts of circulating procoagulant membrane microparticles and soluble GPV after acute myocardial infarction in diabetes mellitus. Thromb. Haemost., 2004, 91(2), 345-353.
[http://dx.doi.org/10.1160/TH03-05-0294] [PMID: 14961163]
[70]
Steppich, B.A.; Braun, S.L.; Stein, A.; Demetz, G.; Groha, P.; Schömig, A.; von Beckerath, N.; Kastrati, A.; Ott, I. Plasma TF activity predicts cardiovascular mortality in patients with acute myocardial infarction. Thromb. J., 2009, 7, 11.
[http://dx.doi.org/10.1186/1477-9560-7-11] [PMID: 19570241]
[71]
Sinning, J.M.; Losch, J.; Walenta, K.; Böhm, M.; Nickenig, G.; Werner, N. Circulating CD31+/Annexin V+ microparticles correlate with cardiovascular outcomes. Eur. Heart J., 2011, 32(16), 2034-2041.
[http://dx.doi.org/10.1093/eurheartj/ehq478] [PMID: 21186238]
[72]
Chiva-Blanch, G.; Bratseth, V.; Ritschel, V.; Andersen, G.O.; Halvorsen, S.; Eritsland, J.; Arnesen, H.; Badimon, L.; Seljeflot, I. Monocyte-derived circulating microparticles (CD14+, CD14+/CD11b+ and CD14+/CD142+) are related to long-term prognosis for cardiovascular mortality in STEMI patients. Int. J. Cardiol., 2017, 227, 876-881.
[http://dx.doi.org/10.1016/j.ijcard.2016.11.302] [PMID: 27915085]
[73]
Wolf, P. The nature and significance of platelet products in human plasma. Br. J. Haematol., 1967, 13(3), 269-288.
[http://dx.doi.org/10.1111/j.1365-2141.1967.tb08741.x] [PMID: 6025241]
[74]
Chargaff, E.; West, R. The biological significance of the thromboplastic protein of blood. J. Biol. Chem., 1946, 166(1), 189-197.
[PMID: 20273687]
[75]
Williams, M.S.; Rogers, H.L.; Wang, N.Y.; Ziegelstein, R.C. Do platelet-derived microparticles play a role in depression, inflammation, and acute coronary syndrome? Psychosomatics, 2014, 55(3), 252-260.
[http://dx.doi.org/10.1016/j.psym.2013.09.004] [PMID: 24374086]
[76]
Kafian, S.; Mobarrez, F.; Wallén, H.; Samad, B. Association between platelet reactivity and circulating platelet-derived microvesicles in patients with acute coronary syndrome. Platelets, 2015, 26(5), 467-473.
[http://dx.doi.org/10.3109/09537104.2014.940304] [PMID: 25025694]
[77]
Berezin, A.E.; Kremzer, A.; Berezina, T.; Martovitskaya, Y. The signature of circulating microparticles in heart failure patients with metabolic syndrome. J Circ Biomark, 2016, 51849454416663659
[http://dx.doi.org/10.1177/1849454416663659] [PMID: 28936261]
[78]
Montoro-García, S.; Shantsila, E.; Wrigley, B.J.; Tapp, L.D.; Abellán Alemán, J.; Lip, G.Y. Small-size microparticles as indicators of acute decompensated state in ischemic heart failure. Rev. Esp. Cardiol. (Engl. Ed.), 2015, 68(11), 951-958.
[http://dx.doi.org/10.1016/j.rec.2014.11.016] [PMID: 25819989]
[79]
Fatih Ozlu, M.; Sen, N.; Fatih Karakas, M.; Turak, O.; Ozcan, F.; Kanat, S.; Aras, D.; Topaloglu, S.; Cagli, K.; Timur Selcuk, M. Erythrocyte sedimentation rate in acute myocardial infarction as a predictor of poor prognosis and impaired reperfusion. Med Glas (Zenica), 2012, 9(2), 189-197.
[PMID: 22926349]
[80]
İlhan, E.; Güvenç, T.S.; Altay, S.; Çağdaş, M.; Çalik, A.N.; Karaca, M.; Güzelburç, Ö.; Karaca, G.; Biteker, M.; Tayyareci, G. Predictive value of red cell distribution width in intrahospital mortality and postintervention thrombolysis in myocardial infarction flow in patients with acute anterior myocardial infarction. Coron. Artery Dis., 2012, 23(7), 450-454.
[http://dx.doi.org/10.1097/MCA.0b013e3283587897] [PMID: 22936020]
[81]
Karabulut, A.; Uyarel, H.; Uzunlar, B.; Çakmak, M. Elevated red cell distribution width level predicts worse postinterventional thrombolysis in myocardial infarction flow reflecting abnormal reperfusion in acute myocardial infarction treated with a primary coronary intervention. Coron. Artery Dis., 2012, 23(1), 68-72.
[http://dx.doi.org/10.1097/MCA.0b013e32834f1188] [PMID: 22167053]
[82]
Duran, M.; Uysal, O.K.; Günebakmaz, O.; Yılmaz, Y.; Akın, F.; Baran, O.; Inanç, M.T.; Eryol, N.K.; Ergin, A.; Oğuzhan, A.; Kaya, M.G. Increased red cell distribution width level is associated with absence of coronary collateral vessels in patients with acute coronary syndromes. Turk Kardiyol. Dern. Ars., 2013, 41(5), 399-405.
[http://dx.doi.org/10.5543/tkda.2013.86244] [PMID: 23917005]
[83]
Gonçalves, S.; Ferreira Santos, J.; Amador, P.; Rassi, L.; Rodrigues, A.R.; Seixo, F.; Neves Soares, L. [Impact of red blood cell distribution width on risk for bleeding events in patients with non-ST elevation acute coronary syndromes]. Rev. Port. Cardiol., 2013, 32(1), 27-33.
[http://dx.doi.org/10.1016/j.repc.2012.05.018] [PMID: 23201111]
[84]
Bekler, A.; Gazi, E.; Tenekecioglu, E.; Karaagac, K.; Altun, B.; Temiz, A.; Barutçu, A.; Peker, T.; Aslan, B.; Yılmaz, M. Assessment of the relationship between red cell distribution width and fragmented QRS in patients with non-ST elevated acute coronary syndrome. Med. Sci. Monit., 2014, 20, 413-419.
[http://dx.doi.org/10.12659/MSM.890151] [PMID: 24621882]
[85]
Xie, R.; Jia, D.; Gao, C.; Zhou, J.; Sui, H.; Wei, X.; Zhang, T.; Han, Y.; Shi, J.; Bai, Y. Homocysteine induces procoagulant activity of red blood cells via phosphatidylserine exposure and microparticles generation. Amino Acids, 2014, 46(8), 1997-2004.
[http://dx.doi.org/10.1007/s00726-014-1755-6] [PMID: 24817414]
[86]
Liu, M.; Wang, Y.L.; Shang, M.; Wang, Y.; Zhang, Q.; Wang, S.X.; Wei, S.; Zhang, K.; Liu, C.; Wu, Y.N.; Liu, M.L.; Song, J.Q.; Liu, Y.X. Flow cytometric analysis of circulating microvesicles derived from myocardial Ischemic preconditioning and cardioprotection of Ischemia/reperfusion Injury in rats. Zhongguo Ying Yong Sheng Li Xue Za Zhi, 2015, 31(6), 524-531.
[PMID: 27215020]
[87]
Levin, G.; Sukhareva, E.; Lavrentieva, A. Impact of microparticles derived from erythrocytes on fibrinolysis. J. Thromb. Thrombolysis, 2016, 41(3), 452-458.
[http://dx.doi.org/10.1007/s11239-015-1299-y] [PMID: 26590996]
[88]
Giannopoulos, G.; Vrachatis, D.A.; Oudatzis, G.; Paterakis, G.; Angelidis, C.; Koutivas, A.; Sianos, G.; Cleman, M.W.; Filippatos, G.; Lekakis, J.; Deftereos, S. Circulating erythrocyte microparticles and the biochemical extent of myocardial injury in ST elevation myocardial infarction. Cardiology, 2017, 136(1), 15-20.
[http://dx.doi.org/10.1159/000447625] [PMID: 27552820]
[89]
Cimmino, G.; D’Amico, C.; Vaccaro, V.; D’Anna, M.; Golino, P. The missing link between atherosclerosis, inflammation and thrombosis: is it tissue factor? Expert Rev. Cardiovasc. Ther., 2011, 9(4), 517-523.
[http://dx.doi.org/10.1586/erc.11.40] [PMID: 21517734]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy