Review Article

用于生物医学的多糖和蛋白质水凝胶的电沉积

卷 27, 期 16, 2020

页: [2610 - 2630] 页: 21

弟呕挨: 10.2174/0929867326666191212163955

价格: $65

摘要

在过去的几十年里,多糖和蛋白质水凝胶得到了广泛的关注,并在各个工程领域得到了广泛的应用。多糖和蛋白质水凝胶具有良好的生物降解性、生物相容性、无毒性和刺激反应性等特性,已被用于满足不同的生物医学应用。采用化学交联、光交联、接枝聚合、疏水相互作用、聚电解质络合和电沉积等方法制备多糖和蛋白质水凝胶。电沉积是制备不同多糖和蛋白质水凝胶的简便方法,具有时空可控性。综述了近年来电沉积不同多糖和蛋白质水凝胶的研究进展。讨论了电化学方法中pH诱导组装、Ca2+交联、金属离子诱导组装、氧化诱导组装的策略。综述了电沉积法制备的具有多种功能的纯、二元和三元混合多糖和蛋白质水凝胶。此外,我们还综述了这些水凝胶在药物传递、组织工程和伤口敷料等方面的应用。

关键词: 电沉积,水凝胶,壳聚糖,蚕丝,生物医学,蛋白质水凝胶,多糖水凝胶。

[1]
Balakrishnan, B.; Banerjee, R. Biopolymer-based hydrogels for cartilage tissue engineering. Chem. Rev., 2011, 111(8), 4453-4474.
[http://dx.doi.org/10.1021/cr100123h] [PMID: 21417222]
[2]
Matricardi, P.; Di Meo, C.; Coviello, T.; Hennink, W.E.; Alhaique, F. Interpenetrating Polymer Networks polysaccharide hydrogels for drug delivery and tissue engineering. Adv. Drug Deliv. Rev., 2013, 65(9), 1172-1187.
[http://dx.doi.org/10.1016/j.addr.2013.04.002] [PMID: 23603210]
[3]
Gong, C.; Qi, T.; Wei, X.; Qu, Y.; Wu, Q.; Luo, F.; Qian, Z. Thermosensitive polymeric hydrogels as drug delivery systems. Curr. Med. Chem., 2013, 20(1), 79-94.
[http://dx.doi.org/10.2174/0929867311302010009] [PMID: 23092130]
[4]
Van Vlierberghe, S.; Dubruel, P.; Schacht, E. Biopolymer-based hydrogels as scaffolds for tissue engineering applications: a review. Biomacromolecules, 2011, 12(5), 1387-1408.
[http://dx.doi.org/10.1021/bm200083n] [PMID: 21388145]
[5]
Kapoor, S.; Kundu, S.C. Silk protein-based hydrogels: Promising advanced materials for biomedical applications. Acta Biomater., 2016, 31, 17-32.
[http://dx.doi.org/10.1016/j.actbio.2015.11.034] [PMID: 26602821]
[6]
Hamedi, H.; Moradi, S.; Hudson, S.M.; Tonelli, A.E. Chitosan based hydrogels and their applications for drug delivery in wound dressings: A review. Carbohydr. Polym., 2018, 199, 445-460.
[http://dx.doi.org/10.1016/j.carbpol.2018.06.114] [PMID: 30143150]
[7]
Kim, E.; Xiong, Y.; Cheng, Y.; Wu, H.C.; Liu, Y.; Morrow, B.H.; Ben Yoav, H.; Ghodssi, R.; Rubloff, G.W.; Shen, J.N.; Bentley, W.E.; Shi, X.W.; Payne, G.F. Chitosan to connect biology to electronics: fabricating the bio-device interface and communicating across this interface. Polymers (Basel), 2015, 7(1), 1-46.
[http://dx.doi.org/10.3390/polym7010001]
[8]
Maerten, C.; Jierry, L.; Schaaf, P.; Boulmedais, F. Review of electrochemically triggered macromolecular film buildup processes and their biomedical applications. ACS Appl. Mater. Interfaces, 2017, 9(34), 28117-28138.
[http://dx.doi.org/10.1021/acsami.7b06319] [PMID: 28762716]
[9]
Seuss, S.; Boccaccini, A.R. Electrophoretic deposition of biological macromolecules, drugs, and cells. Biomacromolecules, 2013, 14(10), 3355-3369.
[http://dx.doi.org/10.1021/bm401021b] [PMID: 24001091]
[10]
Boccaccini, A.R.; Dickerson, J.H. Electrophoretic deposition: fundamentals and applications. J. Phys. Chem. B, 2013, 117(6), 1501.
[http://dx.doi.org/10.1021/jp211212y] [PMID: 23406342]
[11]
Wang, H.; Qian, J.; Ding, F. Recent advances in engineered chitosan-based nanogels for biomedical applications. J. Mater. Chem. B Mater. Biol. Med., 2017, 5(34), 6986-7007.
[http://dx.doi.org/10.1039/C7TB01624G]
[12]
Ding, F.; Deng, H.; Du, Y.; Shi, X.; Wang, Q. Emerging chitin and chitosan nanofibrous materials for biomedical applications. Nanoscale, 2014, 6(16), 9477-9493.
[http://dx.doi.org/10.1039/C4NR02814G] [PMID: 25000536]
[13]
Wu, L.Q.; Gadre, A.P.; Yi, H.M.; Kastantin, M.J.; Rubloff, G.W.; Bentley, W.E.; Payne, G.F.; Ghodssi, R. Voltage-dependent assembly of the polysaccharide chitosan onto an electrode surface. Langmuir, 2002, 18(22), 8620-8625.
[http://dx.doi.org/10.1021/la020381p]
[14]
Strand, S.P.; Tømmeraas, K.; Vårum, K.M.; Østgaard, K. Electrophoretic light scattering studies of chitosans with different degrees of N-acetylation. Biomacromolecules, 2001, 2(4), 1310-1314.
[http://dx.doi.org/10.1021/bm015598x] [PMID: 11777408]
[15]
Fernandes, R.; Wu, L.Q.; Chen, T.H.; Yi, H.M.; Rubloff, G.W.; Ghodssi, R.; Bentley, W.E.; Payne, G.F. Electrochemically induced deposition of a polysaccharide hydrogel onto a patterned surface. Langmuir, 2003, 19(10), 4058-4062.
[http://dx.doi.org/10.1021/la027052h]
[16]
Altomare, L.; Draghi, L.; Chiesa, R.; De Nardo, L. Morphology tuning of chitosan films via electrochemical deposition. Mater. Lett., 2012, 78, 18-21.
[http://dx.doi.org/10.1016/j.matlet.2012.03.035]
[17]
Liu, Y.; Zhang, B.; Gray, K.M.; Cheng, Y.; Kim, E.; Rubloff, G.W.; Bentley, W.E.; Wang, Q.; Payne, G.F. Electrodeposition of a weak polyelectrolyte hydrogel: remarkable effects of salt on kinetics, structure and properties. Soft Matter, 2013, 9(9), 2703-2710.
[http://dx.doi.org/10.1039/c3sm27581g]
[18]
Cheng, Y.; Luo, X.; Betz, J.; Buckhout-White, S.; Bekdash, O.; Payne, G.F.; Bentley, W.E.; Rubloff, G.W. In situ quantitative visualization and characterization of chitosan electrodeposition with paired sidewall electrodes. Soft Matter, 2010, 6(14), 3177-3183.
[http://dx.doi.org/10.1039/c0sm00124d]
[19]
Zhitomirsky, I.; Hashambhoy, A. Chitosan-mediated electrosynthesis of organic-inorganic nanocomposites. J. Mater. Process. Technol., 2007, 191(1-3), 68-72.
[http://dx.doi.org/10.1016/j.jmatprotec.2007.03.043]
[20]
Simchi, A.; Pishbin, F.; Boccaccini, A.R. Electrophoretic deposition of chitosan. Mater. Lett., 2009, 63(26), 2253-2256.
[http://dx.doi.org/10.1016/j.matlet.2009.07.046]
[21]
Inoue, S.; Tanaka, K.; Arisaka, F.; Kimura, S.; Ohtomo, K.; Mizuno, S. Silk fibroin of Bombyx mori is secreted, assembling a high molecular mass elementary unit consisting of H-chain, L-chain, and P25, with a 6:6:1 molar ratio. J. Biol. Chem., 2000, 275(51), 40517-40528.
[http://dx.doi.org/10.1074/jbc.M006897200] [PMID: 10986287]
[22]
Zhou, C.Z.; Confalonieri, F.; Jacquet, M.; Perasso, R.; Li, Z.G.; Janin, J. Silk fibroin: structural implications of a remarkable amino acid sequence. Proteins, 2001, 44(2), 119-122.
[http://dx.doi.org/10.1002/prot.1078] [PMID: 11391774]
[23]
Zhuang, J.; Lin, S.; Dong, L.; Cheng, K.; Weng, W. Magnetically assisted electrodeposition of aligned collagen coatings. ACS Biomater. Sci. Eng., 2018, 4(5), 1528-1535.
[http://dx.doi.org/10.1021/acsbiomaterials.7b01038]
[24]
Tozar, A.; Karahan, I.H. A comprehensive study on electrophoretic deposition of a novel type of collagen and hexagonal boron nitride reinforced hydroxyapatite/chitosan biocomposite coating. Appl. Surf. Sci., 2018, 452, 322-336.
[http://dx.doi.org/10.1016/j.apsusc.2018.04.241]
[25]
Ma, R.; Epand, R.F.; Zhitomirsky, I. Electrodeposition of hyaluronic acid and hyaluronic acid-bovine serum albumin films from aqueous solutions. Colloids Surf. B Biointerfaces, 2010, 77(2), 279-285.
[http://dx.doi.org/10.1016/j.colsurfb.2010.02.002] [PMID: 20188528]
[26]
Cheng, Y.; Luo, X.L.; Betz, J.; Payne, G.F.; Bentley, W.E.; Rubloff, G.W. Mechanism of anodic electrodeposition of calcium alginate. Soft Matter, 2011, 7(12), 5677-5684.
[http://dx.doi.org/10.1039/c1sm05210a]
[27]
Liu, X.; Liu, H.; Qu, X.; Lei, M.; Zhang, C.; Hong, H.; Payne, G.F.; Liu, C. Electrical signals triggered controllable formation of calcium-alginate film for wound treatment. J. Mater. Sci. Mater. Med., 2017, 28(10), 146.
[http://dx.doi.org/10.1007/s10856-017-5956-x] [PMID: 28823088]
[28]
Lee, K.Y.; Mooney, D.J. Alginate: properties and biomedical applications. Prog. Polym. Sci., 2012, 37(1), 106-126.
[http://dx.doi.org/10.1016/j.progpolymsci.2011.06.003] [PMID: 22125349]
[29]
Braccini, I.; Pérez, S. Molecular basis of C(2+)-induced gelation in alginates and pectins: the egg-box model revisited. Biomacromolecules, 2001, 2(4), 1089-1096.
[http://dx.doi.org/10.1021/bm010008g] [PMID: 11777378]
[30]
Cheng, Y.; Tsao, C.Y.; Wu, H.C.; Luo, X.; Terrell, J.L.; Betz, J.; Payne, G.F.; Bentley, W.E.; Rubloff, G.W. Electroaddressing functionalized polysaccharides as model biofilms for interrogating cell signaling. Adv. Funct. Mater., 2012, 22(3), 519-528.
[http://dx.doi.org/10.1002/adfm.201101963]
[31]
Betz, J.F.; Cheng, Y.; Tsao, C.Y.; Zargar, A.; Wu, H.C.; Luo, X.; Payne, G.F.; Bentley, W.E.; Rubloff, G.W. Optically clear alginate hydrogels for spatially controlled cell entrapment and culture at microfluidic electrode surfaces. Lab Chip, 2013, 13(10), 1854-1858.
[http://dx.doi.org/10.1039/c3lc50079a] [PMID: 23559159]
[32]
Huang, S.H.; Chu, H.T.; Liou, Y.M.; Huang, K.S. Light-addressable electrodeposition of magnetically-guided cells encapsulated in alginate hydrogels for three-dimensional cell patterning. Micromachines (Basel), 2014, 5(4), 1173-1187.
[http://dx.doi.org/10.3390/mi5041173]
[33]
Shang, W.; Liu, Y.; Wan, W.; Hu, C.; Liu, Z.; Wong, C.T.; Fukuda, T.; Shen, Y. Hybrid 3D printing and electrodeposition approach for controllable 3D alginate hydrogel formation. Hybrid 3D printing and electrodeposition approach for controllable 3D alginate hydrogel formation., 2017, 9(2), 025-032.
[http://dx.doi.org/10.1088/1758-5090/aa6ed8] [PMID: 28436920]
[34]
Taira, N.; Ino, K.; Robert, J.; Shiku, H. Electrochemical printing of calcium alginate/gelatin hydrogel. Electrochim. Acta, 2018, 281, 429-436.
[http://dx.doi.org/10.1016/j.electacta.2018.05.124]
[35]
Ding, F.; Qian, X.; Zhang, Q.; Wu, H.; Liu, Y.; Xiao, L.; Deng, H.; Du, Y.; Shi, X. Electrochemically induced reversible formation of carboxymethyl chitin hydrogel and tunable protein release. New J. Chem., 2015, 39(2), 1253-1259.
[http://dx.doi.org/10.1039/C4NJ01704H]
[36]
Jin, Z.; Güven, G.; Bocharova, V.; Halámek, J.; Tokarev, I.; Minko, S.; Melman, A.; Mandler, D.; Katz, E. Electrochemically controlled drug-mimicking protein release from iron-alginate thin-films associated with an electrode. ACS Appl. Mater. Interfaces, 2012, 4(1), 466-475.
[http://dx.doi.org/10.1021/am201578m] [PMID: 22200073]
[37]
Geng, Z.; Wang, X.; Guo, X.; Zhang, Z.; Chen, Y.; Wang, Y. Electrodeposition of chitosan based on coordination with metal ions in situ-generated by electrochemical oxidation. J. Mater. Chem. B Mater. Biol. Med., 2016, 4(19), 3331-3338.
[http://dx.doi.org/10.1039/C6TB00336B]
[38]
Ding, F.; Shi, X.; Jiang, Z.; Liu, L.; Cai, J.; Li, Z.; Chen, S.; Du, Y. Electrochemically stimulated drug release from dual stimuli responsive chitin hydrogel. J. Mater. Chem. B Mater. Biol. Med., 2013, 1(12), 1729-1737.
[http://dx.doi.org/10.1039/c3tb00517h]
[39]
Gray, K.M.; Liba, B.D.; Wang, Y.; Cheng, Y.; Rubloff, G.W.; Bentley, W.E.; Montembault, A.; Royaud, I.; David, L.; Payne, G.F. Electrodeposition of a biopolymeric hydrogel: potential for one-step protein electroaddressing. Biomacromolecules, 2012, 13(4), 1181-1189.
[http://dx.doi.org/10.1021/bm3001155] [PMID: 22414205]
[40]
Cheng, Y.; Gray, K.M.; David, L.; Royaud, I.; Payne, G.F.; Rubloff, G.W. Characterization of the cathodic electrodeposition of semicrystalline chitosan hydrogel. Mater. Lett., 2012, 87, 97-100.
[http://dx.doi.org/10.1016/j.matlet.2012.07.075]
[41]
Zhang, X.; He, J. Hydrogen-bonding-supported self-healing antifogging thin films. Sci. Rep., 2015, 5, 9227.
[http://dx.doi.org/10.1038/srep09227] [PMID: 25784188]
[42]
Heydarian, S.; Ranjbar, Z.; Rastegar, S. Electrophoretic deposition behavior of chitosan biopolymer as a function of solvent type. Polym. Plast. Technol. Eng., 2015, 54(11), 1193-1200.
[http://dx.doi.org/10.1080/03602559.2014.1003226]
[43]
Gebhardt, F.; Seuss, S.; Turhan, M.C.; Hornberger, H.; Virtanen, S.; Boccaccini, A.R. Characterization of electrophoretic chitosan coatings on stainless steel. Mater. Lett., 2012, 66(1), 302-304.
[http://dx.doi.org/10.1016/j.matlet.2011.08.088]
[44]
Wang, Y.J.; Lo, T.Y.; Wu, C.H.; Liu, D.M. Electrophoretic coating of amphiphilic chitosan colloids on regulating cellular behaviour. J.R. Soc. Interface, 2013, 10(86), , 0411.
[http://dx.doi.org/10.1098/rsif.2013.0411]
[45]
Sorkhi, L.; Farrokhi Rad, M.; Shahrabi, T. Electrophoretic deposition of chitosan in different alcohols. J. Coat. Technol. Res., 2014, 11(5), 739-746.
[http://dx.doi.org/10.1007/s11998-014-9578-7]
[46]
Yang, C.C.; Lin, C.C.; Liao, J.W.; Yen, S.K. Vancomycin-chitosan composite deposited on post porous hydroxyapatite coated Ti6Al4V implant for drug controlled release. Mater. Sci. Eng. C, 2013, 33(4), 2203-2212.
[http://dx.doi.org/10.1016/j.msec.2013.01.038] [PMID: 23498249]
[47]
Shi, X.; Wu, H.; Li, Y.; Wei, X.; Du, Y. Electrical signals guided entrapment and controlled release of antibiotics on titanium surface. J. Biomed. Mater. Res. A, 2013, 101(5), 1373-1378.
[http://dx.doi.org/10.1002/jbm.a.34432] [PMID: 23077102]
[48]
Wu, L.Q.; Yi, H.M.; Li, S.; Rubloff, G.W.; Bentley, W.E.; Ghodssi, R.; Payne, G.F. Spatially selective deposition of a reactive polysaccharide layer onto a patterned template. Langmuir, 2003, 19(3), 519-524.
[http://dx.doi.org/10.1021/la026518t]
[49]
Bai, Y.H.; Xu, J.J.; Chen, H.Y. Selective sensing of cysteine on manganese dioxide nanowires and chitosan modified glassy carbon electrodes. Biosens. Bioelectron., 2009, 24(10), 2985-2990.
[http://dx.doi.org/10.1016/j.bios.2009.03.008] [PMID: 19345085]
[50]
Thinakaran, S.; Loordhuswamy, A.M.; Viswanathan, N.; Rengaswami, G.D.V. Electro-induced coating of chitosan on centrifugal spun matrix - a hybrid composite for biomedical applications. Polym. Plast. Technol. Eng., 2013, 52(10), 991-996.
[http://dx.doi.org/10.1080/03602559.2013.763379]
[51]
Chen, L.; Liu, K.; Ye, J.R.; Shen, Q. Controlled formation of surface hydrophilicity enhanced chitosan film by layer-by-layer electro-assembly. Mater. Sci. Eng. C, 2015, 56, 518-521.
[http://dx.doi.org/10.1016/j.msec.2015.07.021] [PMID: 26249622]
[52]
Wei, X.Q.; Payne, G.F.; Shi, X.W.; Du, Y. Electrodeposition of a biopolymeric hydrogel in track-etched micropores. Soft Matter, 2013, 9(7), 2131.
[http://dx.doi.org/10.1039/c2sm26898a]
[53]
Yan, K.; Ding, F.; Bentley, W.E.; Deng, H.; Du, Y.; Payne, G.F.; Shi, X.W. Coding for hydrogel organization through signal guided self-assembly. Soft Matter, 2014, 10(3), 465-469.
[http://dx.doi.org/10.1039/C3SM52405A] [PMID: 24652449]
[54]
Fusco, S.; Chatzipirpiridis, G.; Sivaraman, K.M.; Ergeneman, O.; Nelson, B.J.; Pané, S. Chitosan electrodeposition for microrobotic drug delivery. Adv. Healthc. Mater., 2013, 2(7), 1037-1044.
[http://dx.doi.org/10.1002/adhm.201200409] [PMID: 23355508]
[55]
Zhao, Y.; Liu, H.; Wang, Z.; Zhang, Q.; Li, Y.; Tian, W.; Tong, Z.; Wang, Y.; Huselstein, C.; Shi, X.; Chen, Y. Electrodeposition to construct mechanically robust chitosan-based multi-channel conduits. Colloids Surf. B Biointerfaces, 2018, 163, 412-418.
[http://dx.doi.org/10.1016/j.colsurfb.2018.01.002] [PMID: 29408165]
[56]
Shi, X.W.; Tsao, C.Y.; Yang, X.H.; Liu, Y.; Dykstra, P.; Rubloff, G.W.; Ghodssi, R.; Bentley, W.E.; Payne, G.F. Electroaddressing of cell populations by co-deposition with calcium alginate hydrogels. Adv. Funct. Mater., 2009, 19(13), 2074-2080.
[http://dx.doi.org/10.1002/adfm.200900026]
[57]
Cheng, Y.; Luo, X.; Tsao, C.Y.; Wu, H.C.; Betz, J.; Payne, G.F.; Bentley, W.E.; Rubloff, G.W. Biocompatible multi-address 3D cell assembly in microfluidic devices using spatially programmable gel formation. Lab Chip, 2011, 11(14), 2316-2318.
[http://dx.doi.org/10.1039/c1lc20306a] [PMID: 21629950]
[58]
Ozawa, F.; Ino, K.; Takahashi, Y.; Shiku, H.; Matsue, T. Electrodeposition of alginate gels for construction of vascular-like structures. J. Biosci. Bioeng., 2013, 115(4), 459-461.
[http://dx.doi.org/10.1016/j.jbiosc.2012.10.014] [PMID: 23219023]
[59]
Kojic, N.; Panzer, M.J.; Leisk, G.G.; Raja, W.K.; Kojic, M.; Kaplan, D.L. Ion electrodiffusion governs silk electrogelation. Soft Matter, 2012, 8(26), 2897-2905.
[http://dx.doi.org/10.1039/c2sm25783a] [PMID: 22822409]
[60]
Rammensee, S.; Slotta, U.; Scheibel, T.; Bausch, A.R. Assembly mechanism of recombinant spider silk proteins. Proc. Natl. Acad. Sci. USA, 2008, 105(18), 6590-6595.
[http://dx.doi.org/10.1073/pnas.0709246105] [PMID: 18445655]
[61]
Jin, H.J.; Kaplan, D.L. Mechanism of silk processing in insects and spiders. Nature, 2003, 424(6952), 1057-1061.
[http://dx.doi.org/10.1038/nature01809] [PMID: 12944968]
[62]
Lu, Q.; Huang, Y.; Li, M.; Zuo, B.; Lu, S.; Wang, J.; Zhu, H.; Kaplan, D.L. Silk fibroin electrogelation mechanisms. Acta Biomater., 2011, 7(6), 2394-2400.
[http://dx.doi.org/10.1016/j.actbio.2011.02.032] [PMID: 21345387]
[63]
Wang, S.D.; Zhang, K.Q. Electrogelation and rapid prototyping of Bombyx mori silk fibroin. Mater. Lett., 2016, 169, 5-9.
[http://dx.doi.org/10.1016/j.matlet.2016.01.079]
[64]
Bressner, J.E.; Marelli, B.; Qin, G.; Klinker, L.E.; Zhang, Y.; Kaplan, D.L.; Omenetto, F.G. Rapid fabrication of silk films with controlled architectures via electrogelation. J. Mater. Chem. B Mater. Biol. Med., 2014, 2(31), 4983-4987.
[http://dx.doi.org/10.1039/C4TB00833B]
[65]
Lin, Y.; Xia, X.; Shang, K.; Elia, R.; Huang, W.; Cebe, P.; Leisk, G.; Omenetto, F.; Kaplan, D.L. Tuning chemical and physical cross-links in silk electrogels for morphological analysis and mechanical reinforcement. Biomacromolecules, 2013, 14(8), 2629-2635.
[http://dx.doi.org/10.1021/bm4004892] [PMID: 23859710]
[66]
Zhang, Z.; Qu, Y.; Li, X.; Zhang, S.; Wei, Q.; Shi, Y.; Chen, L. Electrophoretic deposition of tetracycline modified silk fibroin coatings for functionalization of titanium surfaces. Appl. Surf. Sci., 2014, 303, 255-262.
[http://dx.doi.org/10.1016/j.apsusc.2014.02.160]
[67]
Li, Y.; Zhitomirsky, I. Electrodeposition of biopolymer-glucose oxidase composites. Surf. Eng., 2011, 27(9), 698-704.
[http://dx.doi.org/10.1179/1743294411Y.0000000033]
[68]
Qi, P.; Wan, Y.; Zhang, D. Impedimetric biosensor based on cell-mediated bioimprinted films for bacterial detection. Biosens. Bioelectron., 2013, 39(1), 282-288.
[http://dx.doi.org/10.1016/j.bios.2012.07.078] [PMID: 22917919]
[69]
Ordikhani, F.; Tamjid, E.; Simchi, A. Characterization and antibacterial performance of electrodeposited chitosan-vancomycin composite coatings for prevention of implant-associated infections. Mater. Sci. Eng. C, 2014, 41, 240-248.
[http://dx.doi.org/10.1016/j.msec.2014.04.036] [PMID: 24907757]
[70]
Huang, Y.; Peng, G.; Chen, B.; Yong, P.; Yao, N.; Yang, L.; Pirraco, R.P.; Reis, R.L.; Chen, J. Preparation and characteristics of the sulfonated chitosan derivatives electrodeposited onto 316l stainless steel surface. J. Biomater. Sci. Polym. Ed., 2018, 29(3), 236-256.
[http://dx.doi.org/10.1080/09205063.2017.1409047] [PMID: 29171792]
[71]
Elia, R.; Michelson, C.D.; Perera, A.L.; Brunner, T.F.; Harsono, M.; Leisk, G.G.; Kugel, G.; Kaplan, D.L. Electrodeposited silk coatings for bone implants. J. Biomed. Mater. Res. B Appl. Biomater., 2015, 103(8), 1602-1609.
[http://dx.doi.org/10.1002/jbm.b.33351] [PMID: 25545462]
[72]
Kaya, S.; Boccaccini, A.R. Electrophoretic deposition of zein coatings. J. Coat. Technol. Res., 2017, 14(3), 683-689.
[http://dx.doi.org/10.1007/s11998-016-9885-2]
[73]
Peng, X.; Liu, Y.; Bentley, W.E.; Payne, G.F. Electrochemical fabrication of functional gelatin-based bioelectronic interface. Biomacromolecules, 2016, 17(2), 558-563.
[http://dx.doi.org/10.1021/acs.biomac.5b01491] [PMID: 26752426]
[74]
Ozawa, F.; Ino, K.; Arai, T.; Ramón-Azcón, J.; Takahashi, Y.; Shiku, H.; Matsue, T. Alginate gel microwell arrays using electrodeposition for three-dimensional cell culture. Lab Chip, 2013, 13(15), 3128-3135.
[http://dx.doi.org/10.1039/c3lc50455g] [PMID: 23764965]
[75]
Wang, Y.; Zhang, Z.; Wang, M.; Guo, C.; Liu, H.; Zeng, H.; Duan, X.; Zhou, Y.; Tang, Z. Direct electrodeposition of carboxymethyl cellulose based on coordination deposition method. Cellulose, 2017, 25(1), 105-115.
[http://dx.doi.org/10.1007/s10570-017-1580-7]
[76]
Qu, X.; Liu, H.; Zhang, C.; Lei, Y.; Lei, M.; Xu, M.; Jin, D.; Li, P.; Yin, M.; Payne, G.F.; Liu, C. Electrofabrication of functional materials: Chloramine-based antimicrobial film for infectious wound treatment. Acta Biomater., 2018, 73, 190-203.
[http://dx.doi.org/10.1016/j.actbio.2018.02.028] [PMID: 29505893]
[77]
Cassani, D.A.D.; Altomare, L.; De Nardo, L.; Variola, F. Physicochemical and nanomechanical investigation of electrodeposited chitosan:PEO blends. J. Mater. Chem. B Mater. Biol. Med., 2015, 3(13), 2641-2650.
[http://dx.doi.org/10.1039/C4TB02044H]
[78]
Kong, Z.; Yu, M.; Cheng, K.; Weng, W.; Wang, H.; Lin, J.; Du, P.; Han, G. Incorporation of chitosan nanospheres into thin mineralized collagen coatings for improving the antibacterial effect. Colloids Surf. B Biointerfaces, 2013, 111, 536-541.
[http://dx.doi.org/10.1016/j.colsurfb.2013.07.006] [PMID: 23893027]
[79]
Huang, D.; Ma, K.; Cai, X.; Yang, X.; Hu, Y.; Huang, P.; Wang, F.; Jiang, T.; Wang, Y. Evaluation of antibacterial, angiogenic, and osteogenic activities of green synthesized gap-bridging copper-doped nanocomposite coatings. Int. J. Nanomedicine, 2017, 12, 7483-7500.
[http://dx.doi.org/10.2147/IJN.S141272] [PMID: 29066895]
[80]
Jiang, T.; Zhang, Z.; Zhou, Y.; Liu, Y.; Wang, Z.; Tong, H.; Shen, X.; Wang, Y. Surface functionalization of titanium with chitosan/gelatin via electrophoretic deposition: characterization and cell behavior. Biomacromolecules, 2010, 11(5), 1254-1260.
[http://dx.doi.org/10.1021/bm100050d] [PMID: 20361762]
[81]
Ma, K.; Cai, X.; Zhou, Y.; Zhang, Z.; Jiang, T.; Wang, Y. Osteogenetic property of a biodegradable three-dimensional macroporous hydrogel coating on titanium implants fabricated via EPD. Biomed. Mater., 2014, 9(1), 015008
[http://dx.doi.org/10.1088/1748-6041/9/1/015008] [PMID: 24448607]
[82]
Patel, K.D.; Singh, R.K.; Lee, E.J.; Han, C.M.; Won, J.E.; Knowles, J.C.; Kim, H.W. Tailoring solubility and drug release from electrophoretic deposited chitosan-gelatin films on titanium. Surf. Coat. Tech., 2014, 242, 232-236.
[http://dx.doi.org/10.1016/j.surfcoat.2013.11.049]
[83]
Qi, H.; Chen, Q.; Ren, H.; Wu, X.; Liu, X.; Lu, T. Electrophoretic deposition of dexamethasone-loaded gelatin nanospheres/chitosan coating and its dual function in anti-inflammation and osteogenesis. Colloids Surf. B Biointerfaces, 2018, 169, 249-256.
[http://dx.doi.org/10.1016/j.colsurfb.2018.05.029] [PMID: 29783150]
[84]
Song, J.; Chen, Q.; Zhang, Y.; Diba, M.; Kolwijck, E.; Shao, J.; Jansen, J.A.; Yang, F.; Boccaccini, A.R.; Leeuwenburgh, S.C.G. Electrophoretic deposition of chitosan coatings modified with gelatin nanospheres to tune the release of antibiotics. ACS Appl. Mater. Interfaces, 2016, 8(22), 13785-13792.
[http://dx.doi.org/10.1021/acsami.6b03454] [PMID: 27167424]
[85]
Wang, F.; Huang, P.; Huang, D.; Hu, Y.; Ma, K.; Cai, X.; Jiang, T. Preparation and functionalization of acetylsalicylic acid loaded chitosan/gelatin membranes from ethanol-based suspensions via electrophoretic deposition. J. Mater. Chem. B Mater. Biol. Med., 2018, 6(15), 2304-2314.
[http://dx.doi.org/10.1039/C7TB03033A]
[86]
Zhang, Z.; Cheng, X.; Yao, Y.; Luo, J.; Tang, Q.; Wu, H.; Lin, S.; Han, C.; Wei, Q.; Chen, L. Electrophoretic deposition of chitosan/gelatin coatings with controlled porous surface topography to enhance initial osteoblast adhesive responses. J. Mater. Chem. B Mater. Biol. Med., 2016, 4(47), 7584-7595.
[http://dx.doi.org/10.1039/C6TB02122K]
[87]
Ding, F.; Nie, Z.; Deng, H.; Xiao, L.; Du, Y.; Shi, X. Antibacterial hydrogel coating by electrophoretic co-deposition of chitosan/alkynyl chitosan. Carbohydr. Polym., 2013, 98(2), 1547-1552.
[http://dx.doi.org/10.1016/j.carbpol.2013.07.042] [PMID: 24053838]
[88]
Ma, R.; Zhitomirsky, I. Electrophoretic deposition of chitosan-albumin and alginate-albumin films. Surf. Eng., 2011, 27(1), 51-56.
[http://dx.doi.org/10.1179/026708410X12506870724271]
[89]
Wang, Z.; Zhang, X.; Gu, J.; Yang, H.; Nie, J.; Ma, G. Electrodeposition of alginate/chitosan layer-by-layer composite coatings on titanium substrates. Carbohydr. Polym., 2014, 103, 38-45.
[http://dx.doi.org/10.1016/j.carbpol.2013.12.007] [PMID: 24528698]
[90]
Dange-Delbaere, C.; Buron, C.C.; Euvrard, M.; Filiatre, C. Stability and cathodic electrophoretic deposition of polystyrene particles pre-coated with chitosan-alginate multilayer. Colloids Surf. A Physicochem. Eng. Asp., 2016, 493, 1-8.
[http://dx.doi.org/10.1016/j.colsurfa.2016.01.003]
[91]
Zhang, Z.; Jiang, T.; Ma, K.; Cai, X.; Zhou, Y.; Wang, Y. Low temperature electrophoretic deposition of porous chitosan/silk fibroin composite coating for titanium biofunctionalization. J. Mater. Chem., 2011, 21(21), 7705-7713.
[http://dx.doi.org/10.1039/c0jm04164e]
[92]
Sharma, S.; Soni, V.P.; Bellare, J.R. Chitosan reinforced apatite-wollastonite coating by electrophoretic deposition on titanium implants. J. Mater. Sci. Mater. Med., 2009, 20(7), 1427-1436.
[http://dx.doi.org/10.1007/s10856-009-3712-6] [PMID: 19253015]
[93]
Park, K.H.; Kim, S.J.; Hwang, M.J.; Song, H.J.; Park, Y.J. Pulse electrodeposition of hydroxyapatite/chitosan coatings on titanium substrate for dental implant. Colloid Polym. Sci., 2017, 295(10), 1843-1849.
[http://dx.doi.org/10.1007/s00396-017-4166-x]
[94]
Sharma, S.; Patil, D.J.; Soni, V.P.; Sarkate, L.B.; Khandekar, G.S.; Bellare, J.R. Bone healing performance of electrophoretically deposited apatite-wollastonite/chitosan coating on titanium implants in rabbit tibiae. J. Tissue Eng. Regen. Med., 2009, 3(7), 501-511.
[http://dx.doi.org/10.1002/term.186] [PMID: 19621346]
[95]
Sharma, S.; Soni, V.P.; Bellare, J.R. Electrophoretic deposition of nanobiocomposites for orthopedic applications: influence of current density and coating duration. J. Mater. Sci. Mater. Med., 2009, 20(Suppl. 1), S93-S100.
[http://dx.doi.org/10.1007/s10856-008-3490-6] [PMID: 18600432]
[96]
Zhang, J.; Dai, C.S.; Wei, J.; Wen, Z.H. Study on the bonding strength between calcium phosphate/chitosan composite coatings and a Mg alloy substrate. Appl. Surf. Sci., 2012, 261, 276-286.
[http://dx.doi.org/10.1016/j.apsusc.2012.08.001]
[97]
Hahn, B.D.; Park, D.S.; Choi, J.J.; Ryu, J.; Yoon, W.H.; Choi, J.H.; Kim, H.E.; Kim, S.G. Aerosol deposition of hydroxyapatite-chitosan composite coatings on biodegradable magnesium alloy. Surf. Coat. Tech., 2011, 205(8-9), 3112-3118.
[http://dx.doi.org/10.1016/j.surfcoat.2010.11.029]
[98]
Ionita, D.; Vardaki, M.; Stan, M.S.; Dinischiotu, A.; Demetrescu, I. Enhance stability and in vitro cell response to a bioinspired coating on Zr alloy with increasing chitosan content. J. Bionics Eng., 2017, 14(3), 459-467.
[http://dx.doi.org/10.1016/S1672-6529(16)60411-0]
[99]
Jugowiec, D.; Lukaszczyk, A.; Cieniek, L.; Kowalski, K.; Rumian, L.; Pietryga, K.; Kot, M.; Pamula, E.; Moskalewicz, T. Influence of the electrophoretic deposition route on the microstructure and properties of nano-hydroxyapatite/chitosan coatings on the Ti-13Nb-13Zr alloy. Surf. Coat. Tech., 2017, 324, 64-79.
[http://dx.doi.org/10.1016/j.surfcoat.2017.05.056]
[100]
Moskalewicz, T.; Kot, M.; Seuss, S.; Kedzierska, A.; Czyrska Filemonowicz, A.; Boccaccini, A.R. Electrophoretic deposition and characterization of Ha/chitosan nanocomposite coatings on ti6al7nb alloy. Met. Mater. Int., 2015, 21(1), 96-103.
[http://dx.doi.org/10.1007/s12540-015-1011-y]
[101]
Tang, S.; Tian, B.; Guo, Y.J.; Zhu, Z.A.; Guo, Y.P. Chitosan/carbonated hydroxyapatite composite coatings: Fabrication, structure and biocompatibility. Surf. Coat. Tech., 2014, 251, 210-216.
[http://dx.doi.org/10.1016/j.surfcoat.2014.04.028]
[102]
Mahmoodi, S.; Sorkhi, L.; Farrokhi Rad, M.; Shahrabi, T. Electrophoretic deposition of hydroxyapatite-chitosan nanocomposite coatings in different alcohols. Surf. Coat. Tech., 2013, 216, 106-114.
[http://dx.doi.org/10.1016/j.surfcoat.2012.11.032]
[103]
Al-Rashidy, Z.M.; Farag, M.M.; Ghany, N.A.A.; Ibrahim, A.M.; Abdel-Fattah, W.I. Orthopaedic bioactive glass/chitosan composites coated 316L stainless steel by green electrophoretic co-deposition. Surf. Coat. Tech., 2018, 334, 479-490.
[http://dx.doi.org/10.1016/j.surfcoat.2017.11.052]
[104]
Heise, S.; Hoehlinger, M.; Torres Hernandez, Y.; Pavon Palacio, J.J.; Rodriquez Ortiz, J.A.; Wagener, V.; Virtanen, S.; Boccaccini, A.R. Electrophoretic deposition and characterization of chitosan/bioactive glass composite coatings on Mg alloy substrates. Electrochim. Acta, 2017, 232, 456-464.
[http://dx.doi.org/10.1016/j.electacta.2017.02.081]
[105]
Hoehlinger, M.; Heise, S.; Wagener, V.; Boccaccini, A.R.; Virtanen, S. Developing surface pre-treatments for electrophoretic deposition of biofunctional chitosan-bioactive glass coatings on a WE43 magnesium alloy. Appl. Surf. Sci., 2017, 405, 441-448.
[http://dx.doi.org/10.1016/j.apsusc.2017.02.049]
[106]
Hong, W.; Guo, F.; Chen, J.; Wang, X.; Zhao, X.; Xiao, P. Bioactive glass-chitosan composite coatings on PEEK: Effects of surface wettability and roughness on the interfacial fracture resistance and in vitro cell response. Appl. Surf. Sci., 2018, 440, 514-523.
[http://dx.doi.org/10.1016/j.apsusc.2018.01.183]
[107]
Jugowiec, D.; Lukaszczyk, A.; Cieniek, L.; Kot, M.; Reczynska, K.; Cholewa-Kowalska, K.; Pamula, E.; Moskalewicz, T. Electrophoretic, deposition and characterization of composite chitosan-based coatings incorporating bioglass and sol-gel glass particles on the Ti-13Nb-13Zr alloy. Surf. Coat. Tech., 2017, 319, 33-46.
[http://dx.doi.org/10.1016/j.surfcoat.2017.03.067]
[108]
Mehdipour, M.; Afshar, A. A study of the electrophoretic deposition of bioactive glass-chitosan composite coating. Ceram. Int., 2012, 38(1), 471-476.
[http://dx.doi.org/10.1016/j.ceramint.2011.07.029]
[109]
Ordikhani, F.; Simchi, A. Long-term antibiotic delivery by chitosan-based composite coatings with bone regenerative potential. Appl. Surf. Sci., 2014, 317, 56-66.
[http://dx.doi.org/10.1016/j.apsusc.2014.07.197]
[110]
Patel, K.D.; El-Fiqi, A.; Lee, H-Y.; Singh, R.K.; Kim, D-A.; Lee, H-H.; Kim, H-W. Chitosan-nanobioactive glass electrophoretic coatings with bone regenerative and drug delivering potential. J. Mater. Chem., 2012, 22(47), 24945-24956.
[http://dx.doi.org/10.1039/c2jm33830k]
[111]
Pishbin, F.; Mouriño, V.; Flor, S.; Kreppel, S.; Salih, V.; Ryan, M.P.; Boccaccini, A.R. Electrophoretic deposition of gentamicin-loaded bioactive glass/chitosan composite coatings for orthopaedic implants. ACS Appl. Mater. Interfaces, 2014, 6(11), 8796-8806.
[http://dx.doi.org/10.1021/am5014166] [PMID: 24827466]
[112]
Pishbin, F.; Simchi, A.; Ryan, M.P.; Boccaccini, A.R. A study of the electrophoretic deposition of Bioglass (R) suspensions using the Taguchi experimental design approach. J. Eur. Ceram. Soc., 2010, 30(14), 2963-2970.
[http://dx.doi.org/10.1016/j.jeurceramsoc.2010.03.004]
[113]
Pishbin, F.; Simchi, A.; Ryan, M.P.; Boccaccini, A.R. Electrophoretic deposition of chitosan/45S5 Bioglass (R) composite coatings for orthopaedic applications. Surf. Coat. Tech., 2011, 205(23-24), 5260-5268.
[http://dx.doi.org/10.1016/j.surfcoat.2011.05.026]
[114]
Seuss, S.; Lehmann, M.; Boccaccini, A.R. Alternating current electrophoretic deposition of antibacterial bioactive glass-chitosan composite coatings. Int. J. Mol. Sci., 2014, 15(7), 12231-12242.
[http://dx.doi.org/10.3390/ijms150712231] [PMID: 25007822]
[115]
Turdean, G.L.; Fort, I.C.; Simon, V. In vitro short-time stability of a bioactive glass-chitosan composite coating evaluated by using electrochemical methods. Electrochim. Acta, 2015, 182, 707-714.
[http://dx.doi.org/10.1016/j.electacta.2015.09.132]
[116]
Wagener, V.; Boccaccini, A.R.; Virtanen, S. Protein-adsorption and Ca-phosphate formation on chitosan-bioactive glass composite coatings. Appl. Surf. Sci., 2017, 416, 454-460.
[http://dx.doi.org/10.1016/j.apsusc.2017.04.051]
[117]
Zhou, J.; Cai, X.; Cheng, K.; Weng, W.; Song, C.; Du, P.; Shen, G.; Han, G. Release behaviors of drug loaded chitosan/calcium phosphate coatings on titanium. Thin Solid Films, 2011, 519(15), 4658-4662.
[http://dx.doi.org/10.1016/j.tsf.2011.01.012]
[118]
Lu, X.; Leng, Y.; Zhang, Q. Electrochemical deposition of octacalcium phosphate micro-fiber/chitosan composite coatings on titanium substrates. Surf. Coat. Tech., 2008, 202(13), 3142-3147.
[http://dx.doi.org/10.1016/j.surfcoat.2007.11.024]
[119]
Shao, Z.; Xia, J.; Zhang, Y.; Jiang, H.; Li, G. Preparation of calcium phosphate/chitosan membranes by electrochemical deposition technique. Mater. Manuf. Process., 2016, 31(1), 53-61.
[http://dx.doi.org/10.1080/10426914.2015.1037920]
[120]
Wu, C.; Wen, Z.; Dai, C.; Lu, Y.; Yang, F. Fabrication of calcium phosphate/chitosan coatings on AZ91D magnesium alloy with a novel method. Surf. Coat. Tech., 2010, 204(20), 3336-3347.
[http://dx.doi.org/10.1016/j.surfcoat.2010.03.045]
[121]
Molaei, A.; Amadeh, A.; Yari, M.; Reza Afshar, M. Structure, apatite inducing ability, and corrosion behavior of chitosan/halloysite nanotube coatings prepared by electrophoretic deposition on titanium substrate. Mater. Sci. Eng. C, 2016, 59, 740-747.
[http://dx.doi.org/10.1016/j.msec.2015.10.073] [PMID: 26652428]
[122]
Zhao, P.; Liu, Y.; Xiao, L.; Deng, H.; Du, Y.; Shi, X. Electrochemical deposition to construct a nature inspired multilayer chitosan/layered double hydroxides hybrid gel for stimuli responsive release of protein. J. Mater. Chem. B Mater. Biol. Med., 2015, 3(38), 7577-7584.
[http://dx.doi.org/10.1039/C5TB01056J]
[123]
Zhao, P.; Zhao, Y.; Xiao, L.; Deng, H.; Du, Y.; Chen, Y.; Shi, X. Electrodeposition to construct free-standing chitosan/layered double hydroxides hydro-membrane for electrically triggered protein release. Colloids Surf. B Biointerfaces, 2017, 158, 474-479.
[http://dx.doi.org/10.1016/j.colsurfb.2017.07.024] [PMID: 28735219]
[124]
Patel, M.K.; Ali, M.A.; Zafaryab, M.; Agrawal, V.V.; Rizvi, M.M.A.; Ansari, Z.A.; Ansari, S.G.; Malhotra, B.D. Biocompatible nanostructured magnesium oxide-chitosan platform for genosensing application. Biosens. Bioelectron., 2013, 45, 181-188.
[http://dx.doi.org/10.1016/j.bios.2012.12.055] [PMID: 23500361]
[125]
Kamil Reza, K.; Singh, N.; Yadav, S.K.; Singh, M.K.; Biradar, A.M. Pearl shaped highly sensitive Mn3O4 nanocomposite interface for biosensor applications. Biosens. Bioelectron., 2014, 62, 47-51.
[http://dx.doi.org/10.1016/j.bios.2014.06.013] [PMID: 24976150]
[126]
Das, M.; Dhand, C.; Sumana, G.; Srivastava, A.K.; Nagarajan, R.; Nain, L.; Iwamoto, M.; Manaka, T.; Malhotra, B.D. Electrophoretic fabrication of chitosan-zirconium-oxide nanobiocomposite platform for nucleic acid detection. Biomacromolecules, 2011, 12(3), 540-547.
[http://dx.doi.org/10.1021/bm1013074] [PMID: 21218766]
[127]
Solanki, S.; Pandey, C.M.; Soni, A.; Sumana, G.; Biradar, A.M. An amperometric bienzymatic biosensor for the triglyceride tributyrin using an indium tin oxide electrode coated with electrophoretically deposited chitosan-wrapped nanozirconia. Mikrochim. Acta, 2016, 183(1), 167-176.
[http://dx.doi.org/10.1007/s00604-015-1618-1]
[128]
Yang, S.; Zheng, Y.; Zhang, X.; Ding, S.; Li, L.; Zha, W. Molecularly imprinted electrochemical sensor based on the synergic effect of nanoporous gold and copper nanoparticles for the determination of cysteine. J. Solid State Electrochem., 2016, 20(7), 2037-2044.
[http://dx.doi.org/10.1007/s10008-016-3213-8]
[129]
Kayan, D.B.; Kocak, D. Enhanced catalytic activity of ppy-coated pencil electrode in the presence of chitosan and Au nanoparticles for hydrogen evolution reaction. J. Solid State Electrochem., 2017, 21(10), 2791-2798.
[http://dx.doi.org/10.1007/s10008-017-3605-4]
[130]
Wang, Q.; Zheng, J.; Zhang, H. A novel formaldehyde sensor containing AgPd alloy nanoparticles electrodeposited on an ionic liquid-chitosan composite film. J. Electroanal. Chem. (Lausanne Switz.), 2012, 674, 1-6.
[http://dx.doi.org/10.1016/j.jelechem.2012.02.009]
[131]
Li, P.; Zhang, X.; Xu, R.; Wang, W.; Liu, X.; Yeung, K.W.K.; Chu, P.K. Electrochemically deposited chitosan/Ag complex coatings on biomedical NiTi alloy for antibacterial application. Surf. Coat. Tech., 2013, 232, 370-375.
[http://dx.doi.org/10.1016/j.surfcoat.2013.05.037]
[132]
Karbowniczek, J.; Cordero-Arias, L.; Virtanen, S.; Misra, S.K.; Valsami-Jones, E.; Tuchscherr, L.; Rutkowski, B.; Górecki, K.; Bała, P.; Czyrska-Filemonowicz, A.; Boccaccini, A.R. Electrophoretic deposition of organic/inorganic composite coatings containing ZnO nanoparticles exhibiting antibacterial properties. Mater. Sci. Eng. C, 2017, 77, 780-789.
[http://dx.doi.org/10.1016/j.msec.2017.03.180] [PMID: 28532093]
[133]
Cordero-Arias, L.; Cabanas-Polo, S.; Gao, H.; Gilabert, J.; Sanchez, E.; Roether, J.A.; Schubert, D.W.; Virtanen, S.; Boccaccini, A.R. Electrophoretic deposition of nanostructured-TiO2/chitosan composite coatings on stainless steel. RSC Advances, 2013, 3(28), 11247-11254.
[http://dx.doi.org/10.1039/c3ra40535d]
[134]
Singh, R.K.; Awasthi, S.; Dhayalan, A.; Ferreira, J.M.F.; Kannan, S. Deposition, structure, physical and invitro characteristics of Ag-doped β-Ca3(PO4)2/chitosan hybrid composite coatings on Titanium metal. Mater. Sci. Eng. C, 2016, 62, 692-701.
[http://dx.doi.org/10.1016/j.msec.2016.02.013] [PMID: 26952474]
[135]
Wu, Z.; Feng, W.; Feng, Y.; Liu, Q.; Xu, X.; Sekino, T.; Fujii, A.; Ozaki, M. Preparation and characterization of chitosan-grafted multiwalled carbon nanotubes and their electrochemical properties. Carbon, 2007, 45(6), 1212-1218.
[http://dx.doi.org/10.1016/j.carbon.2007.02.013]
[136]
Jia, F.L.; Gong, J.M.; Wong, K.W.; Du, R.X. Simple co-electrodeposition of functionalized multi-walled carbon nanotubes/chitosan composite coating on mainspring for enhanced modulus of elasticity. Nanotechnology, 2009, 20(1), 015701
[http://dx.doi.org/10.1088/0957-4484/20/1/015701] [PMID: 19417260]
[137]
Nawrotek, K.; Tylman, M.; Decherchi, P.; Marqueste, T.; Rudnicka, K.; Gatkowska, J.; Wieczorek, M. Assessment of degradation and biocompatibility of electrodeposited chitosan and chitosan-carbon nanotube tubular implants. J. Biomed. Mater. Res. A, 2016, 104(11), 2701-2711.
[http://dx.doi.org/10.1002/jbm.a.35812] [PMID: 27325550]
[138]
Annamalai, S.K.; Palani, B.; Pillai, K.C. Highly stable and redox active nano copper species stabilized functionalized-multiwalled carbon nanotube/chitosan modified electrode for efficient hydrogen peroxide detection. Colloids Surf. A Physicochem. Eng. Asp., 2012, 395, 207-216.
[http://dx.doi.org/10.1016/j.colsurfa.2011.12.032]
[139]
Ozhukil Kollath, V.; Chen, Q.; Mullens, S.; Luyten, J.; Traina, K.; Boccaccini, A.R.; Cloots, R. Electrophoretic deposition of hydroxyapatite and hydroxyapatite-alginate on rapid prototyped 3D Ti6Al4V scaffolds. J. Mater. Sci., 2015, 51(5), 2338-2346.
[http://dx.doi.org/10.1007/s10853-015-9543-6]
[140]
Chen, Q.; de Larraya, U.P.; Garmendia, N.; Lasheras-Zubiate, M.; Cordero-Arias, L.; Virtanen, S.; Boccaccini, A.R. Electrophoretic deposition of cellulose nanocrystals (CNs) and CNs/alginate nanocomposite coatings and free standing membranes. Colloids Surf. B Biointerfaces, 2014, 118, 41-48.
[http://dx.doi.org/10.1016/j.colsurfb.2014.03.022] [PMID: 24727117]
[141]
Yang, X.; Kim, E.; Liu, Y.; Shi, X.W.; Rubloff, G.W.; Ghodssi, R.; Bentley, W.E.; Pancer, Z.; Payne, G.F. In-film bioprocessing and immunoanalysis with electroaddressable stimuli-responsive polysaccharides. Adv. Funct. Mater., 2010, 20(10), 1645-1652.
[http://dx.doi.org/10.1002/adfm.200902092]
[142]
Sun, F.; Zhitomirsky, I. Electrodeposition of hyaluronic acid and composite films. Surf. Eng., 2009, 25(8), 621-627.
[http://dx.doi.org/10.1179/026708408X343573]
[143]
Molaei, A.; Yari, M.; Afshar, M.R. Modification of electrophoretic deposition of chitosan-bioactive glass-hydroxyapatite nanocomposite coatings for orthopedic applications by changing voltage and deposition time. Ceram. Int., 2015, 41(10), 14537-14544.
[http://dx.doi.org/10.1016/j.ceramint.2015.07.170]
[144]
Molaei, A.; Yari, M.; Afshar, M.R. Investigation of halloysite nanotube content on electrophoretic deposition (EPD) of chitosan-bioglass-hydroxyapatite-halloysite nanotube nanocomposites films in surface engineering. Appl. Clay Sci., 2017, 135, 75-81.
[http://dx.doi.org/10.1016/j.clay.2016.09.008]
[145]
Pang, X.; Casagrande, T.; Zhitomirsky, I. Electrophoretic deposition of hydroxyapatite-CaSiO3-chitosan composite coatings. J. Colloid Interface Sci., 2009, 330(2), 323-329.
[http://dx.doi.org/10.1016/j.jcis.2008.10.070] [PMID: 19012892]
[146]
Shi, Y.Y.; Li, M.; Liu, Q.; Jia, Z.J.; Xu, X.C.; Cheng, Y.; Zheng, Y.F. Electrophoretic deposition of graphene oxide reinforced chitosan-hydroxyapatite nanocomposite coatings on Ti substrate. J. Mater. Sci. Mater. Med., 2016, 27(3), 48.
[http://dx.doi.org/10.1007/s10856-015-5634-9] [PMID: 26758895]
[147]
Suo, L.; Jiang, N.; Wang, Y.; Wang, P.; Chen, J.; Pei, X.; Wang, J.; Wan, Q. The enhancement of osseointegration using a graphene oxide/chitosan/hydroxyapatite composite coating on titanium fabricated by electrophoretic deposition. J. Biomed. Mater. Res. B Appl. Biomater., 2019, 107(3), 635-645.
[PMID: 29802685]
[148]
Farrokhi-Rad, M.; Shahrabi, T.; Mahmoodi, S.; Khanmohammadi, S. Electrophoretic deposition of hydroxyapatite-chitosan-CNTs nanocomposite coatings. Ceram. Int., 2017, 43(5), 4663-4669.
[http://dx.doi.org/10.1016/j.ceramint.2016.12.139]
[149]
Pang, X.; Zhitomirsky, I. Electrodeposition of hydroxyapatite-silver-chitosan nanocomposite coatings. Surf. Coat. Tech., 2008, 202(16), 3815-3821.
[http://dx.doi.org/10.1016/j.surfcoat.2008.01.022]
[150]
Sun, F.; Pang, X.; Zhitomirsky, I. Electrophoretic deposition of composite hydroxyapatite-chitosan-heparin coatings. J. Mater. Process. Technol., 2009, 209(3), 1597-1606.
[http://dx.doi.org/10.1016/j.jmatprotec.2008.04.007]
[151]
Sun, B.; Zhang, M.; Shen, J.; He, Z.; Fatehi, P.; Ni, Y. Applications of cellulose-based materials in sustained drug delivery systems. Curr. Med. Chem., 2019, 26(14), 2485-2501.
[http://dx.doi.org/10.2174/0929867324666170705143308] [PMID: 28685683]
[152]
Ding, F.; Fu, J.; Tao, C.; Yu, Y.; He, X.; Gao, Y.; Zhang, Y. Recent advances of chitosan and its derivatives in biomedical applications. Curr. Med. Chem., 2019, 26, 1-22.
[http://dx.doi.org/10.2174/0929867326666190405151538] [PMID: 30961477]
[153]
Dilnawaz, F. Polymeric biomaterial and lipid based nanoparticles for oral drug delivery. Curr. Med. Chem., 2017, 24(22), 2423-2438.
[http://dx.doi.org/10.2174/0929867323666161028160004] [PMID: 27804879]
[154]
Zhang, L.; Peng, X.; Zhong, L.; Chua, W.; Xiang, Z.; Sun, R. Lignocellulosic biomass derived functional materials: synthesis and applications in biomedical engineering. Curr. Med. Chem., 2019, 26(14), 2456-2474.
[http://dx.doi.org/10.2174/0929867324666170918122125] [PMID: 28925867]
[155]
Cao, J.; Li, X.; Tian, H. Metal-Organic Framework (MOF)-based drug delivery. Curr. Med. Chem., 2019, 26, 1-21.
[http://dx.doi.org/10.2174/0929867326666190618152518] [PMID: 31215374]
[156]
Oshiro-Junior, J.A.; Alves, R.C.; Hanck-Silva, G.; Sato, M.R.; Rodero, C.; Eloy, J.O.; Chorilli, M. Stimuli-responsive drug delivery nanocarriers in the treatment of breast cancer. Curr. Med. Chem., 2018, 25, 1-19.
[http://dx.doi.org/10.2174/0929867325666181009120610] [PMID: 30306849]
[157]
Dutra, G.V.S.; Neto, W.S.; Dutra, J.P.S.; Machado, F. Implantable medical devices and tissue engineering: An overview of manufacturing processes and the use of polymeric matrices for manufacturing and coating their surfaces. Curr. Med. Chem., 2018, 25, 1-8.
[http://dx.doi.org/10.2174/0929867325666180914110119] [PMID: 30215330]
[158]
Chen, Q.; Li, W.; Yao, Q.; Liang, R.; Pérez-Garcia, R.; Munoz, J.; Boccaccini, A.R. Multilayered drug delivery coatings composed of daidzein-loaded PHBV microspheres embedded in a biodegradable polymer matrix by electrophoretic deposition. J. Mater. Chem. B Mater. Biol. Med., 2016, 4(29), 5035-5045.
[http://dx.doi.org/10.1039/C6TB00113K]
[159]
Chen, Q.; Li, W.; Goudouri, O.M.; Ding, Y.; Cabanas-Polo, S.; Boccaccini, A.R. Electrophoretic deposition of antibiotic loaded PHBV microsphere-alginate composite coating with controlled delivery potential. Colloids Surf. B Biointerfaces, 2015, 130, 199-206.
[http://dx.doi.org/10.1016/j.colsurfb.2015.04.009] [PMID: 25921640]
[160]
Ma, K.; Huang, D.; Cai, J.; Cai, X.; Gong, L.; Huang, P.; Wang, Y.; Jiang, T. Surface functionalization with strontium-containing nanocomposite coatings via EPD. Colloids Surf. B Biointerfaces, 2016, 146, 97-106.
[http://dx.doi.org/10.1016/j.colsurfb.2016.05.036] [PMID: 27262259]
[161]
Ma, K.; Gong, L.; Cai, X.; Huang, P.; Cai, J.; Huang, D.; Jiang, T. A green single-step procedure to synthesize Ag-containing nanocomposite coatings with low cytotoxicity and efficient antibacterial properties. Int. J. Nanomedicine, 2017, 12, 3665-3679.
[http://dx.doi.org/10.2147/IJN.S130857] [PMID: 28553106]
[162]
Guo, X.; Xu, D.; Zhao, Y.; Gao, H.; Shi, X.; Cai, J.; Deng, H.; Chen, Y.; Du, Y. Electroassembly of chitin nanoparticles to construct freestanding hydrogels and high porous aerogels for wound healing. ACS Appl. Mater. Interfaces, 2019, 11(38), 34766-34776.
[http://dx.doi.org/10.1021/acsami.9b13063] [PMID: 31429547]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy