Generic placeholder image

Current Bioactive Compounds

Editor-in-Chief

ISSN (Print): 1573-4072
ISSN (Online): 1875-6646

Research Article

Chemical Composition and In vitro Antidiabetic Effects of Olea europaea Linn. (Olive)

Author(s): Javed Ahamad*, Subasini Uthirapathy, Muath S.M. Ameen, Esra T. Anwer, Faiq H.S. Hussain and Showkat R. Mir

Volume 16, Issue 8, 2020

Page: [1157 - 1163] Pages: 7

DOI: 10.2174/1573407215666191210124636

Price: $65

Abstract

Background: Olive oil and fruits are essential components of Mediterranean diets. The olive tree is a prevalent plant species and one of the important cultivated crops of the Mediterranean region. The present study aimed to evaluate the effectiveness of olive in achieving glucose homeostasis through the inhibition of carbohydrate metabolizing enzymes using in vitro models and also determine the chemical composition of olive oil by GC/MS.

Methods: The chemical composition of olive oil was determined by GC/MS and its antidiabetic activity was assessed through inhibition α-amylase and α-glucosidase enzymes in in vitro models.

Results: The olive oil analysis by GC/MS yielded 41 constituents amounting to 98.21% of total oil composition. Oleic acid, 3-(octadecyloxy) propyl ester (19.34%), arachidonic acid (11.25%), oleic acid (6.07%), Docosahexaenoic Acid (DHA) (9.50%), pentadecanoic acid (5.53%), palmitic acid (3.86%), and linoleic acid (3.13%) were the major components of olive oil. Olive oil and extract produce dosedependent inhibition of α-amylase and α-glucosidase enzymes. The IC50 values for olive oil, olive extract, and acarbose were found as 210.50±4.76, 121.8±3.18, and 91.04±2.16 μg/mL, respectively, against the α-amylase enzyme. The IC50 values for olive oil, extract, and acarbose were found as 204.3±3.41, 165.04±5.27 and 116.5±2.17 μg/mL, respectively, against the α-glucosidase enzyme.

Conclusion: The result of this study concluded that olive oil has oleic acid and its ester derivatives as major constituents. The study findings also confirm the traditional claim of olive use in the treatment of diabetes mellitus.

Keywords: Olea europaea, Olive, GC/MS, α-amylase, α-glucosidase, diabetes mellitus.

Graphical Abstract

[1]
Abaza, L.; Taamalli, A.; Nsir, H.; Zarrouk, M. Olive Tree (Olea europeae L.) Leaves: Importance and advances in the analysis of phenolic compounds. Antioxidants, 2015, 4(4), 682-698.
[http://dx.doi.org/10.3390/antiox4040682] [PMID: 26783953]
[2]
Kaniewski, D.; Van Campo, E.; Boiy, T.; Terral, J.F.; Khadari, B.; Besnard, G. Primary domestication and early uses of the emblematic olive tree: Palaeobotanical, historical and molecular evidence from the Middle East. Biol. Rev. Camb. Philos. Soc., 2012, 87(4), 885-899.
[http://dx.doi.org/10.1111/j.1469-185X.2012.00229.x] [PMID: 22512893]
[3]
Mootoosamy, A.; Fawzi Mahomoodally, M. Ethnomedicinal application of native remedies used against diabetes and related complications in Mauritius. J. Ethnopharmacol., 2014, 151(1), 413-444.
[http://dx.doi.org/10.1016/j.jep.2013.10.069] [PMID: 24231070]
[4]
Hadrich, F.; Bouallagui, Z.; Junkyu, H.; Isoda, H.; Sayadi, S. The α-glucosidase and α-amylase enzyme inhibitory of hydroxytyrosol and oleuropein. J. Oleo Sci., 2015, 64(8), 835-843.
[http://dx.doi.org/10.5650/jos.ess15026] [PMID: 26235001]
[5]
Al-Azzawie, H.F.; Alhamdani, M.S. Hypoglycemic and antioxidant effect of oleuropein in alloxan-diabetic rabbits. Life Sci., 2006, 78(12), 1371-1377.
[http://dx.doi.org/10.1016/j.lfs.2005.07.029] [PMID: 16236331]
[6]
Hadrich, F.; Garcia, M.; Maalej, A.; Moldes, M.; Isoda, H.; Feve, B.; Sayadi, S. Oleuropein activated AMPK and induced insulin sensitivity in C2C12 muscle cells. Life Sci., 2016, 151, 167-173.
[http://dx.doi.org/10.1016/j.lfs.2016.02.027] [PMID: 26872981]
[7]
Andreadou, I.; Sigala, F.; Iliodromitis, E.K.; Papaefthimiou, M.; Sigalas, C.; Aligiannis, N.; Savvari, P.; Gorgoulis, V.; Papalabros, E.; Kremastinos, D.T. Acute doxorubicin cardiotoxicity is successfully treated with the phytochemical oleuropein through suppression of oxidative and nitrosative stress. J. Mol. Cell. Cardiol., 2007, 42(3), 549-558.
[http://dx.doi.org/10.1016/j.yjmcc.2006.11.016] [PMID: 17223128]
[8]
Janahmadi, Z.; Nekooeian, A.A.; Moaref, A.R.; Emamghoreishi, M. Oleuropein offers cardioprotection in rats with acute myocardial infarction. Cardiovasc. Toxicol., 2015, 15(1), 61-68.
[http://dx.doi.org/10.1007/s12012-014-9271-1] [PMID: 25119867]
[9]
Hadrich, F.; Mahmoudi, A.; Bouallagui, Z.; Feki, I.; Isoda, H.; Feve, B.; Sayadi, S. Evaluation of hypocholesterolemic effect of oleuropein in cholesterol-fed rats. Chem. Biol. Interact., 2016, 252, 54-60.
[http://dx.doi.org/10.1016/j.cbi.2016.03.026] [PMID: 27019295]
[10]
Andreadou, I.; Iliodromitis, E.K.; Mikros, E.; Constantinou, M.; Agalias, A.; Magiatis, P.; Skaltsounis, A.L.; Kamber, E.; Tsantili-Kakoulidou, A.; Kremastinos, D.T. The olive constituent oleuropein exhibits anti-ischemic, antioxidative, and hypolipidemic effects in anesthetized rabbits. J. Nutr., 2006, 136(8), 2213-2219.
[http://dx.doi.org/10.1093/jn/136.8.2213] [PMID: 16857843]
[11]
Yoon, S.K. Oleuropein as an Antioxidant And Liver Protect. In: The Liver Oxidative Stress and Dietary .Antioxidants; Vinood B. Patel, Rajkumar Rajendram and Victor R. Preedy Eds.;; Elsevier Science B. V: Amsterdam, 2018; pp. 323-335.
[http://dx.doi.org/10.1016/B978-0-12-803951-9.00027-6]
[12]
De Marino, S.; Festa, C.; Zollo, F.; Nini, A.; Antenucci, L.; Raimo, G.; Iorizzi, M. Antioxidant activity and chemical components as potential anticancer agents in the olive leaf (Olea europaea L. cv Leccino.) decoction. Anticancer. Agents Med. Chem., 2014, 14(10), 1376-1385.
[http://dx.doi.org/10.2174/1871520614666140804153936] [PMID: 25102361]
[13]
Barbaro, B.; Toietta, G.; Maggio, R.; Arciello, M.; Tarocchi, M.; Galli, A.; Balsano, C. Effects of the olive-derived polyphenol oleuropein on human health. Int. J. Mol. Sci., 2014, 15(10), 18508-18524.
[http://dx.doi.org/10.3390/ijms151018508] [PMID: 25318054]
[14]
Al-Attar, A.M.; Alsalmi, F.A. Effect of Olea europaea leaves extract on streptozotocin induced diabetes in male albino rats. Saudi J. Biol. Sci., 2019, 26(1), 118-128.
[http://dx.doi.org/10.1016/j.sjbs.2017.03.002] [PMID: 30622415]
[15]
Ríos, J.L.; Francini, F.; Schinella, G.R. Natural products for the treatment of type 2 diabetes mellitus. Planta Med., 2015, 81(12-13), 975-994.
[http://dx.doi.org/10.1055/s-0035-1546131] [PMID: 26132858]
[16]
Lin, P.J.; Kent, D.M.; Winn, A.; Cohen, J.T.; Neumann, P.J. Multiple chronic conditions in type 2 diabetes mellitus: Prevalence and consequences. Am. J. Manag. Care, 2015, 21(1), e23-e34.
[PMID: 25880265]
[17]
Subramanian, R.; Asmawi, M.Z.; Sadikun, A. In vitro α-glucosidase and α-amylase enzyme inhibitory effects of Andrographis paniculata extract and andrographolide. Acta Biochim. Pol., 2008, 55(2), 391-398.
[http://dx.doi.org/10.18388/abp.2008_3087] [PMID: 18511986]
[18]
Scheen, A.J. Is there a role for α-glucosidase inhibitors in the prevention of type 2 diabetes mellitus? Drugs, 2003, 63(10), 933-951.
[http://dx.doi.org/10.2165/00003495-200363100-00002] [PMID: 12699398]
[19]
Alkefai, N.H.; Ahamad, J.; Amin, S.; Mir, S.R. Arylated gymnemic acids from Gymnema sylvestre R.Br. as potential α-glucosidase inhibitors. Phytochem. Lett., 2018, 25, 196-202.
[http://dx.doi.org/10.1016/j.phytol.2018.04.021]
[20]
Fabricant, D.S.; Farnsworth, N.R. The value of plants used in traditional medicine for drug discovery. Environ. Health Perspect., 2001, 109(1)(Suppl. 1), 69-75.
[PMID: 11250806]
[21]
Mollica, A.; Zengin, G.; Locatelli, M.; Stefanucci, A.; Macedonio, G.; Bellagamba, G. An assessment of the nutraceutical potential of Juglans regia L. leaf powder in diabetic rats. Food Chem. Toxicol., 2017, 107(B), 554-564.
[22]
Uysal, A.; Ozer, O.Y.; Zengin, G.; Stefanucci, A.; Mollica, A.; Picot-Allain, C.M.N.; Mahomoodally, M.F. Multifunctional approaches to provide potential pharmacophores for the pharmacy shelf: Heracleum sphondylium L. subsp. ternatum (Velen.). Brummitt. Comput. Biol. Chem., 2019, 78, 64-73.
[http://dx.doi.org/10.1016/j.compbiolchem.2018.11.018] [PMID: 30500554]
[23]
Ahamad, J.; Naquvi, K.J.; Mir, S.R.; Ali, M. Review on role of natural alpha-glucosidase inhibitors for management of diabetes mellitus. Int. J. Biomed. Res., 2011, 6, 374-380.
[24]
Official Method of Analysis (A.O.A.C.). Associated of Official Analytical Chemists, 18th ed; Gaithersburg, MD, USA, 2007.
[25]
Adams, R.P. Adams, Robert P. Adams, Robert P. Identification Of Essential Oil Components By Gas Chromatography/Mass Spectrometry, 4th ed; Carol Stream, IL: Allured Publishing Corporation, 2007.
[26]
Ali, M. Techniques in Terpenoid Identification; New Delhi: Birla Publications, 2002.
[27]
Kaskoos, R.A.; Amin, S.; Ali, M.; Mir, S.R. Chemical composition of fixed oil of Olea europaea drupes from Iraq. Res. J. Med. Plant, 2009, 3(4), 146-150.
[http://dx.doi.org/10.3923/rjmp.2009.146.150]
[28]
Yang, Y.; Ferro, M.D.; Cavaco, I.; Liang, Y. Detection and identification of extra virgin olive oil adulteration by GC-MS combined with chemometrics. J. Agric. Food Chem., 2013, 61(15), 3693-3702.
[http://dx.doi.org/10.1021/jf4000538] [PMID: 23528132]
[29]
Ahamad, J.; Hasan, N.; Amin, S.; Mir, S.R. Swertiamarin contributes to glucose homeostasis via inhibition of carbohydrate metabolizing enzymes. J. Nat. Rem., 2016, 16(4), 125-130.
[http://dx.doi.org/10.18311/jnr/2016/7634]
[30]
Dong, H.Q.; Li, M.; Zhu, F.; Liu, F.L.; Huang, J.B. Inhibitory potential of trilobatin from Lithocarpus polystachyus Rehd against α-glucosidase and α-amylase linked to type 2 diabetes. Food Chem., 2012, 130, 261-266.
[http://dx.doi.org/10.1016/j.foodchem.2011.07.030]
[31]
Hassan, N.; Ahamad, J.; Amin, S.; Mir, S.R. Rapid preparative isolation of erythrocentaurin from Enicostemma littorale by medium pressure liquid chromatography, its estimation by a validated HPTLC densitometric method and α-amylase inhibitory activity. J. Sep. Sci., 2015, 38(4), 592-598.
[http://dx.doi.org/10.1002/jssc.201401030] [PMID: 25504557]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy