Abstract
Background: The magnetic nanocomposites are very important as a reusable sorbents for the extraction of Cd(II) and other toxic metals from water samples.
Methods: The Ag/MgO@Fe3O4 nanocomposite was synthesized by the coprecipitation method and characterized by the XRD, EDX, SEM, UV-vis spectroscopy and FTIR. This nanocomposite was used to extract Cd(II) from water samples prior to its quantitative analysis with FAAS. Different variables, i.e. pH, temperature, amount of nanosorbent, adsorption/desorption and dilution were optimized.
Results: The method was successfully applied to determine Cd(II) in real water samples with excellent recoveries (98%). The present method has lower detection (0.29) and quantification limit (0.97 ng mL-1).
Conclusion: The Ag/MgO@Fe3O4 nanocomposite based magnetic extraction is a simple, fast, reproducible, less expansive and efficient technique for the Cd(II) extraction in water samples. The developed sorbent can be recycled and reused (20 times).
Keywords: Ag/MgO@Fe3O4 nanocomposites, Cd(II), flame atomic absorption spectrometry (FAAS), magnetic sorbent, solidphase extraction, water samples.
Graphical Abstract
[http://dx.doi.org/10.1081/AL-100104924]
[http://dx.doi.org/10.1016/j.talanta.2011.11.025] [PMID: 22265534]
[http://dx.doi.org/10.1016/j.aca.2005.03.045]
[http://dx.doi.org/10.1039/B403389B]
[http://dx.doi.org/10.1007/s00216-011-5158-1] [PMID: 21674162]
[http://dx.doi.org/10.1016/j.talanta.2007.03.046] [PMID: 19073028]
[http://dx.doi.org/10.1016/j.sab.2007.12.010]
[http://dx.doi.org/10.1002/jms.1705] [PMID: 19950110]
[http://dx.doi.org/10.1016/j.crci.2005.01.001]
[http://dx.doi.org/10.1016/S0304-8853(98)00566-6]
[http://dx.doi.org/10.1007/s00604-016-1766-y]
[http://dx.doi.org/10.1080/10643389.2010.520234]
[http://dx.doi.org/10.1007/s00604-017-2166-7]
[http://dx.doi.org/10.1016/S0168-3659(00)00339-4] [PMID: 11166403]
[http://dx.doi.org/10.1016/j.jconrel.2004.03.023] [PMID: 15196756]
[http://dx.doi.org/10.3109/03639049809108571] [PMID: 9876569]
[http://dx.doi.org/10.1016/j.arabjc.2014.05.030]
[http://dx.doi.org/10.1038/srep14052] [PMID: 26374611]
[http://dx.doi.org/10.1016/j.matdes.2017.09.034]
[http://dx.doi.org/10.1021/acs.jpcc.6b02377]
[http://dx.doi.org/10.1016/j.physb.2018.11.004]
[http://dx.doi.org/10.1016/j.apcata.2014.08.043]
[http://dx.doi.org/10.1016/j.talanta.2016.03.070] [PMID: 27154669]
[http://dx.doi.org/10.1002/elan.201700054]
[http://dx.doi.org/10.1039/c2ta01045c]
[http://dx.doi.org/10.1016/j.talanta.2012.03.066] [PMID: 22841051]
[http://dx.doi.org/10.1007/s00604-015-1603-8]
[http://dx.doi.org/10.1007/s00604-016-1896-2]
[http://dx.doi.org/10.1007/s00604-016-1805-8]
[http://dx.doi.org/10.1007/s00604-017-2166-7]
[http://dx.doi.org/10.1007/s00604-013-0952-4]
[http://dx.doi.org/10.1007/s00604-018-3094-x] [PMID: 30478646]
[http://dx.doi.org/10.1007/s00604-011-0659-3]
[http://dx.doi.org/10.1016/j.ces.2015.03.008]
[http://dx.doi.org/10.1039/C4RA03971H]