Generic placeholder image

International Journal of Sensors, Wireless Communications and Control

Editor-in-Chief

ISSN (Print): 2210-3279
ISSN (Online): 2210-3287

Research Article

Automated Diagnostic Hybrid Lesion Detection System for Diabetic Retinopathy Abnormalities

Author(s): Charu Bhardwaj, Shruti Jain* and Meenakshi Sood

Volume 10, Issue 4, 2020

Page: [494 - 507] Pages: 14

DOI: 10.2174/2210327909666191126092411

Price: $65

Abstract

Background: Early diagnosis, monitoring disease progression, and timely treatment of Diabetic Retinopathy (DR) abnormalities can efficiently prevent visual loss. A prediction system for the early intervention and prevention of eye diseases is important. The contrast of raw fundus image is also a hindrance in effective manual lesion detection technique.

Methods: In this research paper, an automated lesion detection diagnostic scheme has been proposed for early detection of retinal abnormalities of red and yellow pathological lesions. The algorithm of the proposed Hybrid Lesion Detection (HLD) includes retinal image pre-processing, blood vessel extraction, optical disc localization and detection stages for detecting the presence of diabetic retinopathy lesions. Automated diagnostic systems assist the ophthalmologists practice manual lesion detection techniques which are tedious and time-consuming. Detailed statistical analysis is performed on the extracted shape, intensity and GLCM features and the optimal features are selected to classify DR abnormalities. Exhaustive statistical investigation of the proposed approach using visual and empirical analysis resulted in 31 significant features.

Results: The results show that the HLD approach achieved good classification results in terms of three statistical indices: accuracy, 98.9%; sensitivity, 97.8%; and specificity, 100% with significantly less complexity.

Conclusion: The proposed technique with optimal features demonstrates improvement in accuracy as compared to state of the art techniques using the same database.

Keywords: Diabetic retinopathy, microaneurysms, haemorrhages, exudates, hybrid lesion detection, neural network paradigm.

Graphical Abstract

[1]
Fleming AD, Philip S, Goatman KA, Olson JA, Sharp PF. Automated microaneurysm detection using local contrast normalization and local vessel detection. IEEE Trans Med Imaging 2006; 25(9): 1223-32.
[http://dx.doi.org/10.1109/TMI.2006.879953 ] [PMID: 16967807]
[2]
Habib MM, Welikala RA, Hoppe A, Owen CG, Rudnicka AR, Barman SA. Detection of microaneurysms in retinal images using an ensemble classifier. Informat Med Unlock 2017; 9: 44-57.
[http://dx.doi.org/10.1016/j.imu.2017.05.006]
[3]
Akram M, Usman AT, Shoab AK, Shafaat AB. Microaneurysm detection for early diagnosis of diabetic retinopathy In Electronics Computer and Computation (ICECCO) 2013 International Conference on Electronics, Computer and Computation (ICECCO) Ankara, Turkey 2013.
[4]
Dai L, Fang R, Li H, et al. Clinical report guided retinal microaneurysm detection with multi-sieving deep learning. IEEE Trans Med Imaging 2018; 37(5): 1149-61.
[http://dx.doi.org/10.1109/TMI.2018.2794988 ] [PMID: 29727278]
[5]
Niemeijer M, van Ginneken B, Staal J, Suttorp-Schulten MS, Abràmoff MD. Automatic detection of red lesions in digital color fundus photographs. IEEE Trans Med Imaging 2005; 24(5): 584-92.
[http://dx.doi.org/10.1109/TMI.2005.843738 ] [PMID: 15889546]
[6]
Quellec G, Russell SR, Abràmoff MD. Optimal filter framework for automated, instantaneous detection of lesions in retinal images. IEEE Trans Med Imaging 2011; 30(2): 523-33.
[http://dx.doi.org/10.1109/TMI.2010.2089383 ] [PMID: 21292586]
[7]
Rocha A, Carvalho T, Jelinek HF, Goldenstein S, Wainer J. Points of interest and visual dictionaries for automatic retinal lesion detection. IEEE Trans Biomed Eng 2012; 59(8): 2244-53.
[http://dx.doi.org/10.1109/TBME.2012.2201717 ] [PMID: 22665502]
[8]
Partovi M, Rasta SH, Javadzadeh A. Automatic detection of retinal exudates in fundus images of diabetic retinopathy patients. J Anal Res Clin Med 2016; 4(2): 104-9.
[http://dx.doi.org/10.15171/jarcm.2016.017]
[9]
Hanđsková V, Pavlovičova J, Oravec M, Blaško R. Diabetic retinopathy screening by bright lesions extraction from fundus images. J Electr Eng 2013; 64(5): 311-6.
[http://dx.doi.org/10.2478/jee-2013-0045]
[10]
Kar SS, Maity SP. Automatic detection of retinal lesions for screening of diabetic retinopathy. IEEE Trans Biomed Eng 2018; 65(3): 608-18.
[http://dx.doi.org/10.1109/TBME.2017.2707578 ] [PMID: 28541892]
[11]
Sadek I, Elawady M, Abd ERS. Automatic classification of bright retinal lesions via deep network features. arXiv preprint arXiv:170702022, 2017.
[12]
Priya R, Aruna P. Diagnosis of diabetic retinopathy using machine learning techniques. ICTACT J Soft Comput 2013; 3(4): 563-75.
[13]
Paing MP, Choomchuay S, Rapeeporn YMD. Detection of lesions and classification of diabetic retinopathy using fundus images. 2016 9th Biomedical Engineering International Conference (BMEiCON). Laung Prabang, Laos 2016.
[http://dx.doi.org/10.1109/BMEiCON.2016.7859642 ]
[14]
Yalçin N, Alver S, Uluhatun N. Classification of retinal images with deep learning for early detection of diabetic retinopathy disease. In: 2018 26th Signal Processing and Communications Applications Conference (SIU). Izmir, Turkey 2018.
[http://dx.doi.org/10.1109/SIU.2018.8404369 ]
[15]
Saha R, Chowdhury AR, Banerjee S, Chatterjee T. Detection of retinal abnormalities using machine learning methodologies. Neural Netw World 2018; 28(5): 457-71.
[http://dx.doi.org/10.14311/NNW.2018.28.025]
[16]
Hoover A, Kouznetsova V, Goldbaum M. Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response. IEEE Trans Med Imaging 2000; 19(3): 203-10.
[http://dx.doi.org/10.1109/42.845178 ] [PMID: 10875704]
[17]
Kauppi T, Kalesnykiene V, Kamarainen JK, et al. The DIARETDB1 diabetic retinopathy database and evaluation protocol. Proceedings of British Machine Vision Conference.
[18]
Giancardo L, Meriaudeau F, Karnowski TP, et al. Exudate-based diabetic macular edema detection in fundus images using publicly available datasets. Med Image Anal 2012; 16(1): 216-26.
[http://dx.doi.org/10.1016/j.media.2011.07.004 ] [PMID: 21865074]
[19]
Sharma S, Jain S, Bhusri S. Two class classification of breast lesions using statistical and transform domain features. J Glob Pharma Technol 2017; 9(7): 18-24.
[20]
Sood M. Performance analysis of classifiers for seizure diagnosis for single channel EEG data. Biomed Pharmacol J 2017; 10(2): 795-803.
[http://dx.doi.org/10.13005/bpj/1170]
[21]
Sood M, Bhooshan SV. Automatic processing of EEG signals for seizure detection using soft computing techniques. International Conference on Recent Advances and Innovations in Engineering (ICRAIE-2014) Jaipur, India 2014.
[22]
García M, Sánchez CI, Lopez MI, Diez A, Hornero R. Automatic detection of red lesions in retinal images using a multilayer perceptron neural network. 2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Vancouver, BC, Canada, 2008.
[http://dx.doi.org/10.1109/IEMBS.2008.4650441 ]
[23]
Bhardwaj C, Jain S, Sood M. Automated optical disc segmentation and blood vessel extraction for fundus images using ophthalmic image processing. International Conference on Advanced Informatics for Computing Research Springer Singapore 2018.
[24]
Akyol K, Şen B, Bayır Ş. Automatic detection of optic disc in retinal image by using keypoint detection, texture analysis, and visual dictionary techniques. Comput Math Methods Med 2016; 20166814791
[http://dx.doi.org/10.1155/2016/6814791 ] [PMID: 27110272]
[25]
Bhardwaj C, Jain S, Sood M. Appraisal of pre-processing technique for automated detection of diabetic retinopathy. Fifth International Conference on Parallel, Distributed and Grid Computing (PDGC) Solan Himachal Pradesh, India 2018.
[http://dx.doi.org/10.1109/PDGC.2018.8745964 ]
[26]
Niemeijer M, Staal J, van Ginneken B, Loog M, Abramoff MD. Comparative study of retinal vessel segmentation methods on a new publicly available database.Medical Imaging 2004. Image Processing International Society for Optics and Photonics 2004.
[http://dx.doi.org/10.1117/12.535349]
[27]
Orlando JI, Prokofyeva E, Del Fresno M, Blaschko MB. An ensemble deep learning based approach for red lesion detection in fundus images. Comput Methods Programs Biomed 2018; 153: 115-27.
[http://dx.doi.org/10.1016/j.cmpb.2017.10.017 ] [PMID: 29157445]
[28]
Orlando JI, van Keer K, Barbosa BJ, Manterola HL, Blaschko MB, Clausse A. Proliferative diabetic retinopathy characterization based on fractal features: Evaluation on a publicly available dataset. Med Phys 2017; 44(12): 6425-34.
[http://dx.doi.org/10.1002/mp.12627 ] [PMID: 29044550]
[29]
Nayak J, Bhat PS, Acharya R, Lim CM, Kagathi M. Automated identification of diabetic retinopathy stages using digital fundus images. J Med Syst 2008; 32(2): 107-15.
[http://dx.doi.org/10.1007/s10916-007-9113-9 ] [PMID: 18461814]
[30]
Niemeijer M, Abramoff MD, van Ginneken B. Information fusion for diabetic retinopathy CAD in digital color fundus photographs. IEEE Trans Med Imaging 2009; 28(5): 775-85.
[http://dx.doi.org/10.1109/TMI.2008.2012029 ] [PMID: 19150786]
[31]
Akram UM, Khan SA. Automated detection of dark and bright lesions in retinal images for early detection of diabetic retinopathy. J Med Syst 2012; 36(5): 3151-62.
[http://dx.doi.org/10.1007/s10916-011-9802-2 ] [PMID: 22090037]
[32]
Ragab S, Abdel-Nasser M, Moreno A, Puig D. Improving the performance of diabetic retinopathy computer-aided diagnosis systems using an ensemble of texture analysis methods. In: Recent Advances in Artificial Intelligence Research and Development, 2017.
[33]
Gao Z, Jie L, Guo J, Chen Y, Zhang Y, Jie Z. Diagnosis of Diabetic Retinopathy Using Deep Neural Networks IEEE Access 2019; 7: 3360-70.
[http://dx.doi.org/10.1109/ACCESS.2018.2888639 ]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy