Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Research Article

Ecofriendly Ethyl Cellulose Microsponges of Citronella Oil: Preparation, Characterization and Evaluation of Cytotoxicity and Larvicidal assay

Author(s): Ruchi Sharma, Nitish Kumar, Sompal P. Singh, Sunil Kumar and Rekha Rao*

Volume 21, Issue 4, 2020

Page: [341 - 351] Pages: 11

DOI: 10.2174/1389201020666191120124314

Price: $65

Abstract

Background: Citronella Oil (CO) was used by the Indian army as mosquito repellant to repel mosquitoes at the beginning of the 20th century and later in 1948, it was registered in the USA for commercial purposes. Due to its ecofriendly nature, CO possesses immense potential as a mosquito repellent.

Methods: Citronella oil is a valuable alternative to synthetic mosquito repellents commonly used nowadays. However, its volatile nature, poor stability in air and high temperature restrict its application. Its direct application on skin may lead to skin irritation. To surmount the above-mentioned issues, the present research aims to develop Microsponge (MS), a novel dosage form for enhancing the utility and safety of CO. Quasi emulsion solvent diffusion method was chosen for crafting MS using ethyl cellulose with various drug-polymer ratios and characterized. In vitro cytotoxicity evaluation was also carried out to check the dermal safety of COMS.

Results: The present results revealed that the size of all prepared formulation lies in the micro range (20 ± 3 to 41 ± 4 μm), with good payload (42.09± 3.24 to 67.08± 6.43%). The results of FE-SEM depicted that MS were spherical in shape with porous nature. Cytotoxicity results indicated that COMS were safe on skin cells, when compared to pure CO. The optimized MS were also assessed for larvicidal assay against larvae of Anopheles culicifacies.

Conclusion: The CO micro-formulations were found to possess enhanced stability of this oil. Entrapment of CO in MS resulted in a better vehicle system in terms of safety, stability and handling benefits of this oil.

Keywords: Larvicidal activity, Anopheles culicifacies, quasi emulsion solvent diffusion technique, dermal cytotoxicity, cardiovascular, allergic reaction.

« Previous
Graphical Abstract

[1]
El-Sheikh, T.M.; Al-Fifi, Z.I.; Alabboud, M.A. Larvicidal and repellent effect of some Tribulus terrestris L. (Zygophyllaceae) extracts against the dengue fever mosquito, Aedes aegypti (Diptera: Culicidae). J. Saudi Chem. Soc., 2016, 20(1), 13-19.
[http://dx.doi.org/10.1016/j.jscs.2012.05.009]
[2]
Debboun, M.; Strickman, D. Insect repellents and associated personal protection for a reduction in human disease. Med. Vet. Entomol., 2013, 27(1), 1-9.
[http://dx.doi.org/10.1111/j.1365-2915.2012.01020.x] [PMID: 22624654]
[3]
Qiu, H.; McCall, J.W.; Jun, H.W. Formulation of topical insect repellent N, N-Diethyl-m-Toluamide (DEET): Vehicle effects on DEET in vitro skin permeation. Int. J. Pharm., 1998, 163(1-2), 167-176.
[http://dx.doi.org/10.1016/S0378-5173(97)00379-7]
[4]
Coleman, R.E.; Robert, L.L.; Roberts, L.W.; Glass, J.A.; Seeley, D.C.; Laughinghouse, A.; Perkins, P.V.; Wirtz, R.A. Laboratory evaluation of repellents against four anopheline mosquitoes (Diptera: Culicidae) and two phlebotomine sand flies (Diptera: Psychodidae). J. Med. Entomol., 1993, 30(3), 499-502.
[http://dx.doi.org/10.1093/jmedent/30.3.499] [PMID: 8510108]
[5]
Katz, T.M.; Miller, J.H.; Hebert, A.A. Insect repellents: historical perspectives and new developments. J. Am. Acad. Dermatol., 2008, 58(5), 865-871.
[http://dx.doi.org/10.1016/j.jaad.2007.10.005] [PMID: 18272250]
[6]
Diaz, J.H. Chemical and plant-based insect repellents: Efficacy, safety, and toxicity. Wilderness Environ. Med., 2016, 27(1), 153-163.
[http://dx.doi.org/10.1016/j.wem.2015.11.007] [PMID: 26827259]
[7]
Wadhwa, G.; Kumar, S.; Chhabra, L.; Mahant, S.; Rao, R. Essential oil-cyclodextrin complexes: An updated review. J. Incl. Phenom. Macrocycl. Chem., 2017, 89(1-2), 39-58.
[http://dx.doi.org/10.1007/s10847-017-0744-2]
[8]
Wadhwa, G.; Kumar, S.; Mittal, V.; Rao, R. Encapsulation of babchi essential oil into microsponges: Physicochemical properties, cytotoxic evaluation and anti-microbial activity. Yao Wu Shi Pin Fen Xi, 2019, 27(1), 60-70.
[http://dx.doi.org/10.1016/j.jfda.2018.07.006] [PMID: 30648595]
[9]
Mahant, S.; Kumar, S.; Nanda, S.; Rao, R. Microsponge for dermatological applications: Perspectives and challenges. Asian J. Pharm. Sci, 2019. In press
[10]
Wijesekera, R.O.; Jayewardene, A.L.; Fonseka, B.D. Varietal differences in the constituents of citronella oil. Phytochemistry, 1973, 12(11), 2697-2704.
[http://dx.doi.org/10.1016/0031-9422(73)85083-6]
[11]
Sharma, R.; Rao, R.; Kumar, S.; Mahant, S.; Khatkar, S. Therapeutic potential of citronella essential oil: A review. Curr. Drug Discov. Technol., 2019, 16(4), 330-339.
[http://dx.doi.org/10.2174/1570163815666180718095041] [PMID: 30019646]
[12]
Cheng, S-S.; Liu, J-Y.; Tsai, K-H.; Chen, W-J.; Chang, S-T. Chemical composition and mosquito larvicidal activity of essential oils from leaves of different Cinnamomum osmophloeum provenances. J. Agric. Food Chem., 2004, 52(14), 4395-4400.
[http://dx.doi.org/10.1021/jf0497152] [PMID: 15237942]
[13]
Nerio, L.S.; Olivero-Verbel, J.; Stashenko, E. Repellent activity of essential oils: A review. Bioresour. Technol., 2010, 101(1), 372-378.
[http://dx.doi.org/10.1016/j.biortech.2009.07.048] [PMID: 19729299]
[14]
Lertsatitthanakorn, P.; Taweechaisupapong, S.; Aromdee, C.; Khunkitti, W. In vitro bioactivities of essential oils used for acne control. Int. J. Aromather, 2006, 16(1), 43-49.
[http://dx.doi.org/10.1016/j.ijat.2006.01.006]
[15]
Sakulku, U.; Nuchuchua, O.; Uawongyart, N.; Puttipipatkhachorn, S.; Soottitantawat, A.; Ruktanonchai, U. Characterization and mosquito repellent activity of citronella oil nanoemulsion. Int. J. Pharm., 2009, 372(1-2), 105-111.
[http://dx.doi.org/10.1016/j.ijpharm.2008.12.029] [PMID: 19162149]
[16]
Solomon, B.; Sahle, F.F.; Gebre-Mariam, T.; Asres, K.; Neubert, R.H.H. Microencapsulation of citronella oil for mosquito-repellent application: Formulation and in vitro permeation studies. Eur. J. Pharm. Biopharm., 2012, 80(1), 61-66.
[http://dx.doi.org/10.1016/j.ejpb.2011.08.003] [PMID: 21924356]
[17]
Songkro, S.; Hayook, N.; Jaisawang, J.; Maneenuan, D.; Chuchome, T.; Kaewnopparat, N. investigation of inclusion complexes of citronella oil, citronellal and citronellol with β-cyclodextrin for mosquito repellent. J. Incl. Phenom. Macrocycl. Chem., 2012, 72(3-4), 339-355.
[http://dx.doi.org/10.1007/s10847-011-9985-7]
[18]
Yadav, P.; Nanda, S. Development and evaluation of some microsponge loaded medicated topical formulations of acyclovir. Int. J. Pharm. Sci. Res., 2014, 5(4), 1395-1410.
[19]
Yadav, E.; Rao, R.; Kumar, S.; Mahant, S.; Prakriti, V. microsponge based gel of tea tree oil for dermatological microbial infections. Nat. Prod. J., 2018, 8, 1-12.
[http://dx.doi.org/10.2174/2210315508666180605080426]
[20]
Sinha, P.; Srivastava, S.; Mishra, N.; Singh, D.K.; Luqman, S.; Chanda, D.; Yadav, N.P. Development, optimization, and characterization of a novel tea tree oil nanogel using response surface methodology. Drug Dev. Ind. Pharm., 2016, 42(9), 1434-1445.
[http://dx.doi.org/10.3109/03639045.2016.1141931] [PMID: 26821208]
[21]
Kumar, S.; Trotta, F.; Rao, R. Pooja. Encapsulation of babchi oil in cyclodextrin-based nanosponges: Physicochemical characterization, photodegradation, and in vitro cytotoxicity studies. Pharmaceutics, 2018, 10(4), 169.
[http://dx.doi.org/10.3390/pharmaceutics10040169] [PMID: 30261580]
[22]
Aldawsari, H.M.; Badr-Eldin, S.M.; Labib, G.S.; El-Kamel, A.H. Design and formulation of a topical hydrogel integrating lemongrass-loaded nanosponges with an enhanced antifungal effect: In vitro/in vivo evaluation. Int. J. Nanomedicine, 2015, 10, 893-902.
[PMID: 25673986]
[23]
Ankrum, J.A.; Miranda, O.R.; Ng, K.S.; Sarkar, D.; Xu, C.; Karp, J.M. Engineering cells with intracellular agent-loaded microparticles to control cell phenotype. Nat. Protoc., 2014, 9(2), 233-245.
[http://dx.doi.org/10.1038/nprot.2014.002] [PMID: 24407352]
[24]
Schürer, N.; Köhne, A.; Schliep, V.; Barlag, K.; Goerz, G. Lipid composition and synthesis of HaCaT cells, an immortalized human keratinocyte line, in comparison with normal human adult keratinocytes. Exp. Dermatol., 1993, 2(4), 179-185.
[http://dx.doi.org/10.1111/j.1600-0625.1993.tb00030.x] [PMID: 8162337]
[25]
Dua, V.K.; Kumar, A.; Pandey, A.C.; Kumar, S. Insecticidal and genotoxic activity of Psoralea corylifolia Linn. (Fabaceae) against Culex quinquefasciatus Say, 1823. Parasit. Vectors, 2013, 6(1), 30.
[http://dx.doi.org/10.1186/1756-3305-6-30] [PMID: 23379981]
[26]
Osmani, R.A.; Aloorkar, N.H.; Kulkarni, A.S.; Kulkarni, P.K.; Hani, U.; Thirumaleshwar, S.; Bhosale, R.R. Novel cream containing microsponges of anti-acne agent: Formulation development and evaluation. Curr. Drug Deliv., 2015, 12(5), 504-516.
[http://dx.doi.org/10.2174/1567201812666150212122421] [PMID: 25675339]
[27]
Kumar, P.M.; Ghosh, A. Development and evaluation of silver sulfadiazine loaded microsponge based gel for partial thickness (second degree) burn wounds. Eur. J. Pharm. Sci., 2017, 96, 243-254.
[http://dx.doi.org/10.1016/j.ejps.2016.09.038] [PMID: 27697504]
[28]
Mansur, H.S.; Sadahira, C.M.; Souza, A.N.; Mansur, A.A. FTIR spectroscopy characterization of poly (vinyl alcohol) hydrogel with different hydrolysis degree and chemically crosslinked with glutaraldehyde. Mater. Sci. Eng. C, 2008, 28(4), 539-548.
[http://dx.doi.org/10.1016/j.msec.2007.10.088]
[29]
Amrutiya, N.; Bajaj, A.; Madan, M. Development of microsponges for topical delivery of mupirocin. AAPS PharmSciTech, 2009, 10(2), 402-409.
[http://dx.doi.org/10.1208/s12249-009-9220-7] [PMID: 19381834]
[30]
Hong, Y.; Gao, C.; Shi, Y.; Shen, J. Preparation of porous polylactide microspheres by emulsion-solvent evaporation based on solution induced phase separation. Polym. Adv. Technol., 2005, 16(8), 622-627.
[http://dx.doi.org/10.1002/pat.629]
[31]
Srivastava, R.; Kumar, D.; Pathak, K. Colonic luminal surface retention of meloxicam microsponges delivered by erosion based colon-targeted matrix tablet. Int. J. Pharm., 2012, 427(2), 153-162.
[http://dx.doi.org/10.1016/j.ijpharm.2012.01.036] [PMID: 22306039]
[32]
Kumari, A.; Jain, A.; Hurkat, P.; Verma, A.; Jain, S.K. Microsponges: A Pioneering tool for biomedical applications. Crit. Rev. Ther. Drug. Carr. Syst., 2016, 33(1)
[http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.v33.i1.40]
[33]
Jelvehgari, M.; Siahi-Shadbad, M.R.; Azarmi, S.; Martin, G.P.; Nokhodchi, A. The microsponge delivery system of benzoyl peroxide: Preparation, characterization and release studies. Int. J. Pharm., 2006, 308(1-2), 124-132.
[http://dx.doi.org/10.1016/j.ijpharm.2005.11.001] [PMID: 16359833]
[34]
Arya, P.; Pathak, K. Assessing the viability of microsponges as gastro retentive drug delivery system of curcumin: Optimization and pharmacokinetics. Int. J. Pharm., 2014, 460(1-2), 1-12.
[http://dx.doi.org/10.1016/j.ijpharm.2013.10.045] [PMID: 24184218]
[35]
Nokhodchi, A.; Jelvehgari, M.; Siahi, M.R.; Mozafari, M.R. Factors affecting the morphology of benzoyl peroxide microsponges. Micron, 2007, 38(8), 834-840.
[http://dx.doi.org/10.1016/j.micron.2007.06.012] [PMID: 17692528]
[36]
Kumar, P.M.; Ghosh, A. Development and evaluation of metronidazole loaded microsponge based gel for superficial surgical wound infections. J. Drug Deliv. Sci. Technol., 2015, 30, 15-29.
[http://dx.doi.org/10.1016/j.jddst.2015.09.006]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy