Research Article

基于布尔矩阵的层次扩展用于LncRNA疾病关联预测

卷 20, 期 6, 2020

页: [452 - 460] 页: 9

弟呕挨: 10.2174/1566524019666191119104212

价格: $65

摘要

背景:大量的实验研究表明,长的非编码RNA(LncRNA)在各种复杂的人类疾病的发生和发展过程中起着至关重要的作用。但是,目前只有一小部分LncRNA与疾病的关联已通过实验验证。基于计算模型自动预测LncRNA与疾病的关联可以节省湿实验室实验的巨额成本。 方法和结果:为了建立有效的计算模型以整合各种异质生物学数据以鉴定潜在疾病-LncRNA,我们提出了基于布尔矩阵的LncRNA-疾病关联预测模型(HEBLDA)的层次扩展。 HEBLDA根据来自各种关系源的布尔矩阵的属性发现内在的层次相关性。然后,HEBLDA通过融合权重将这些层次关联的矩阵进行集成。最后,HEBLDA使用分层关联矩阵通过分层扩展来重建LncRNA-疾病关联矩阵。没有已知的关联数据,HEBLDA能够治疗潜在的疾病或LncRNA。在5倍交叉验证实验中,HEBLDA在接收器工作特性曲线(AUC)下获得了0.8913的面积,从而改进了以前的经典方法。此外,案例研究表明,HEBLDA可以准确预测几种LncRNA的候选疾病。 结论:基于其发现各种数据源更丰富的关联结构的能力,我们可以预期HEBLDA是一种潜在的方法,可以在广阔的领域获得更全面的关联预测。

关键词: LncRNA,疾病,关联预测,布尔矩阵,分层扩展,关联矩阵。

[1]
Gupta RA, Shah N, Wang KC, et al. Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature 2010; 464(7291): 1071-6.
[http://dx.doi.org/10.1038/nature08975] [PMID: 20393566]
[2]
Peng WX, Koirala P, Mo YY. LncRNA-mediated regulation of cell signaling in cancer. Oncogene 2017; 36(41): 5661-7.
[http://dx.doi.org/10.1038/onc.2017.184] [PMID: 28604750]
[3]
Fan Y, Shen B, Tan M, et al. Long non-coding RNA UCA1 increases chemoresistance of bladder cancer cells by regulating Wnt signaling. FEBS J 2014; 281(7): 1750-8.
[http://dx.doi.org/10.1111/febs.12737] [PMID: 24495014]
[4]
Bu D, Yu K, Sun S, et al. NONCODE v3.0: integrative annotation of long noncoding RNAs. Nucleic Acids Res 2012; 40(Database issue): D210-5.
[http://dx.doi.org/10.1093/nar/gkr1175] [PMID: 22135294]
[5]
Volders PJ, Helsens K, Wang X, et al. LNCipedia: a database for annotated human lncRNA transcript sequences and structures. Nucleic Acids Res 2013; 41(Database issue): D246-51.
[http://dx.doi.org/10.1093/nar/gks915] [PMID: 23042674]
[6]
Amaral PP, Clark MB, Gascoigne DK, et al. lncRNAdb: a reference database for long noncoding RNAs. Nucleic Acids Res 2010; 39: D146-51.
[7]
Spizzo R, Almeida MI, Colombatti A, Calin GA. Long non-coding RNAs and cancer: a new frontier of translational research. Oncogene 2012; 31(43): 4577-87.
[http://dx.doi.org/10.1038/onc.2011.621] [PMID: 22266873]
[8]
Wang LW, Jiao F, Cui JJ, et al. Long Non-Coding RNA: An Emerging Paradigm of Pancreatic Cancer. Curr Mol Med 2016; 16(8): 702-9.
[PMID: 27573194]
[9]
Chen X, Yan CC, Zhang X, You ZH. Long non-coding RNAs and complex diseases: from experimental results to computational models. Brief Bioinform 2017; 18(4): 558-76.
[PMID: 27345524]
[10]
Chen X, Yan GY. Novel human lncRNA-disease association inference based on lncRNA expression profiles. Bioinformatics 2013; 29(20): 2617-24.
[http://dx.doi.org/10.1093/bioinformatics/btt426] [PMID: 24002109]
[11]
Sun J, Shi H, Wang Z, et al. Inferring novel lncRNA-disease associations based on a random walk model of a lncRNA functional similarity network. Mol Biosyst 2014; 10(8): 2074-81.
[http://dx.doi.org/10.1039/C3MB70608G] [PMID: 24850297]
[12]
Ping P, Wang L, Kuang L, Ye S, Iqbal MFB, Pei T. A novel method for lncRNA-disease association prediction based on an lncRNA-disease association network. IEEE/ACM Trans Comput Biol Bioinformatics 2019; 16(2): 688-93.
[http://dx.doi.org/10.1109/TCBB.2018.2827373] [PMID: 29993639]
[13]
Zhou M, Wang X, Li J, et al. Prioritizing candidate disease-related long non-coding RNAs by walking on the heterogeneous lncRNA and disease network. Mol Biosyst 2015; 11(3): 760-9.
[http://dx.doi.org/10.1039/C4MB00511B] [PMID: 25502053]
[14]
Lu C, Yang M, Luo F, et al. Prediction of lncRNA-disease associations based on inductive matrix completion. Bioinformatics 2018; 34(19): 3357-64.
[http://dx.doi.org/10.1093/bioinformatics/bty327] [PMID: 29718113]
[15]
Zhao T, Xu J, Liu L, et al. Identification of cancer-related lncRNAs through integrating genome, regulome and transcriptome features. Mol Biosyst 2015; 11(1): 126-36.
[http://dx.doi.org/10.1039/C4MB00478G] [PMID: 25354589]
[16]
Chen X, You ZH, Yan GY, Gong DW. IRWRLDA: improved random walk with restart for lncRNA-disease association prediction. Oncotarget 2016; 7(36): 57919-31.
[http://dx.doi.org/10.18632/oncotarget.11141] [PMID: 27517318]
[17]
Chen X. KATZLDA: KATZ measure for the lncRNA-disease association prediction. Sci Rep 2015; 5: 16840.
[http://dx.doi.org/10.1038/srep16840] [PMID: 26577439]
[18]
Lan W, Li M, Zhao K, et al. LDAP: a web server for lncRNA-disease association prediction. Bioinformatics 2017; 33(3): 458-60.
[PMID: 28172495]
[19]
Fu G, Wang J, Domeniconi C, Yu G. Matrix factorization-based data fusion for the prediction of lncRNA-disease associations. Bioinformatics 2018; 34(9): 1529-37.
[http://dx.doi.org/10.1093/bioinformatics/btx794] [PMID: 29228285]
[20]
Sun Y, Ye S, Sun Y, et al. Improved algorithms for exact and approximate boolean matrix decomposition. IEEE International Conference on Data Science and Advanced Analytics (DSAA). 1-10.
[http://dx.doi.org/10.1109/DSAA.2015.7344813]
[21]
Lin Liu, Lin Tang, Tang Mingjing, Wei Zhou. The framework of protein function prediction based on boolean matrix decomposition. J Comput Res Develop 2019; 56(5): 1020-1033.
[22]
Osicka P, Trnecka M. Boolean Matrix Decomposition by Formal Concept Sampling. Proceedings of the 2017 ACM on Conference on Information and Knowledge Management.
[http://dx.doi.org/10.1145/3132847.3133054]
[23]
Chen G, Wang Z, Wang D, et al. LncRNADisease: a database for long-non-coding RNA-associated diseases. Nucleic Acids Res 2013; 41(Database issue): D983-6.
[PMID: 23175614]
[24]
Li JH, Liu S, Zhou H, Qu LH, Yang JH. starBase v2.0: decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA interaction networks from large-scale CLIP-Seq data. Nucleic Acids Res 2014; 42(Database issue): D92-7.
[http://dx.doi.org/10.1093/nar/gkt1248] [PMID: 24297251]
[25]
Jiang Q, Wang J, Wu X, et al. LncRNA2Target: a database for differentially expressed genes after lncRNA knockdown or overexpression. Nucleic Acids Res 2015; 43(Database issue): D193-6.
[http://dx.doi.org/10.1093/nar/gku1173] [PMID: 25399422]
[26]
Ning S, Zhang J, Wang P, et al. Lnc2Cancer: a manually curated database of experimentally supported lncRNAs associated with various human cancers. Nucleic Acids Res 2016; 44(D1): D980-5.
[http://dx.doi.org/10.1093/nar/gkv1094] [PMID: 26481356]
[27]
Wang H, Huang H, Ding C, Nie F. Predicting protein-protein interactions from multimodal biological data sources via nonnegative matrix tri-factorization. J Comput Biol 2013; 20(4): 344-58.
[http://dx.doi.org/10.1089/cmb.2012.0273] [PMID: 23509857]
[28]
Zhang M, Wu WB, Wang ZW, Wang XH. lncRNA NEAT1 is closely related with progression of breast cancer via promoting proliferation and EMT. Eur Rev Med Pharmacol Sci 2017; 21(5): 1020-6.
[PMID: 28338194]
[29]
Ning L, Li Z, Wei D, Chen H, Yang C. LncRNA, NEAT1 is a prognosis biomarker and regulates cancer progression via epithelial-mesenchymal transition in clear cell renal cell carcinoma. Cancer Biomark 2017; 19(1): 75-83.
[http://dx.doi.org/10.3233/CBM-160376] [PMID: 28269753]
[30]
Dong L, Ni J, Hu W, Yu C, Li H. Upregulation of long non-coding RNA PlncRNA-1 promotes metastasis and induces epithelial-mesenchymal transition in hepatocellular carcinoma. Cell Physiol Biochem 2016; 38(2): 836-46.
[http://dx.doi.org/10.1159/000443038] [PMID: 26906068]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy