Generic placeholder image

Current Protein & Peptide Science

Editor-in-Chief

ISSN (Print): 1389-2037
ISSN (Online): 1875-5550

Review Article

Consequences of Dicarbonyl Stress on Skeletal Muscle Proteins in Type 2 Diabetes

Author(s): Khurshid Ahmad, Sibhghatulla Shaikh, Eun Ju Lee, Yong-Ho Lee* and Inho Choi*

Volume 21, Issue 9, 2020

Page: [878 - 889] Pages: 12

DOI: 10.2174/1389203720666191119100759

Price: $65

Abstract

Skeletal muscle is the largest organ in the body and constitutes almost 40% of body mass. It is also the primary site of insulin-mediated glucose uptake, and skeletal muscle insulin resistance, that is, diminished response to insulin, is characteristic of Type 2 diabetes (T2DM). One of the foremost reasons posited to explain the etiology of T2DM involves the modification of proteins by dicarbonyl stress due to an unbalanced metabolism and accumulations of dicarbonyl metabolites. The elevated concentration of dicarbonyl metabolites (i.e., glyoxal, methylglyoxal, 3-deoxyglucosone) leads to DNA and protein modifications, causing cell/tissue dysfunctions in several metabolic diseases such as T2DM and other age-associated diseases. In this review, we recapitulated reported effects of dicarbonyl stress on skeletal muscle and associated extracellular proteins with emphasis on the impact of T2DM on skeletal muscle and provided a brief introduction to the prevention/inhibition of dicarbonyl stress.

Keywords: Skeletal muscle, insulin resistance, diabetes, reactive dicarbonyl and glycolytic intermediates, dicarbonyl stress, T2DM.

Graphical Abstract

[1]
Abdul-Ghani, M.A.; DeFronzo, R.A. Pathogenesis of insulin resistance in skeletal muscle. J. Biomed. Biotechnol., 2010, 2010476279
[http://dx.doi.org/10.1155/2010/476279] [PMID: 20445742]
[2]
Wu, H.; Ballantyne, C.M. Skeletal muscle inflammation and insulin resistance in obesity. J. Clin. Invest., 2017, 127(1), 43-54.
[http://dx.doi.org/10.1172/JCI88880] [PMID: 28045398]
[3]
DeFronzo, R.A.; Ferrannini, E.; Groop, L.; Henry, R.R.; Herman, W.H.; Holst, J.J.; Hu, F.B.; Kahn, C.R.; Raz, I.; Shulman, G.I.; Simonson, D.C.; Testa, M.A.; Weiss, R. Type 2 diabetes mellitus. Nat. Rev. Dis. Primers, 2015, 1, 15019.
[http://dx.doi.org/10.1038/nrdp.2015.19] [PMID: 27189025]
[4]
Goldstein, B.J. Insulin resistance as the core defect in type 2 diabetes mellitus. Am. J. Cardiol., 2002, 90(5A), 3G-10G.
[http://dx.doi.org/10.1016/S0002-9149(02)02553-5] [PMID: 12231073]
[5]
Taylor, R. Insulin resistance and type 2 diabetes. Diabetes, 2012, 61(4), 778-779.
[http://dx.doi.org/10.2337/db12-0073] [PMID: 22442298]
[6]
Mey, J.T.; Haus, J.M. Dicarbonyl Stress and Glyoxalase-1 in Skeletal Muscle: Implications for Insulin Resistance and Type 2 Diabetes. Front. Cardiovasc. Med., 2018, 5, 117.
[http://dx.doi.org/10.3389/fcvm.2018.00117] [PMID: 30250846]
[7]
Rabbani, N.; Thornalley, P.J. Dicarbonyl stress in cell and tissue dysfunction contributing to ageing and disease. Biochem. Biophys. Res. Commun., 2015, 458(2), 221-226.
[http://dx.doi.org/10.1016/j.bbrc.2015.01.140] [PMID: 25666945]
[8]
Nowotny, K.; Jung, T.; Höhn, A.; Weber, D.; Grune, T. Advanced glycation end products and oxidative stress in type 2 diabetes mellitus. Biomolecules, 2015, 5(1), 194-222.
[http://dx.doi.org/10.3390/biom5010194] [PMID: 25786107]
[9]
Ashraf, J.M.; Ansari, M.A.; Khan, H.M.; Alzohairy, M.A.; Choi, I. Green synthesis of silver nanoparticles and characterization of their inhibitory effects on AGEs formation using biophysical techniques. Sci. Rep., 2016, 6, 20414.
[http://dx.doi.org/10.1038/srep20414] [PMID: 26829907]
[10]
Baig, M.H.; Jan, A.T.; Rabbani, G.; Ahmad, K.; Ashraf, J.M.; Kim, T.; Min, H.S.; Lee, Y.H.; Cho, W.K.; Ma, J.Y.; Lee, E.J.; Choi, I. Methylglyoxal and Advanced Glycation End products: Insight of the regulatory machinery affecting the myogenic program and of its modulation by natural compounds. Sci. Rep., 2017, 7(1), 5916.
[http://dx.doi.org/10.1038/s41598-017-06067-5] [PMID: 28725008]
[11]
Mey, J.T.; Blackburn, B.K.; Miranda, E.R.; Chaves, A.B.; Briller, J.; Bonini, M.G.; Haus, J.M. Dicarbonyl stress and glyoxalase enzyme system regulation in human skeletal muscle. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2018, 314(2), R181-R190.
[http://dx.doi.org/10.1152/ajpregu.00159.2017] [PMID: 29046313]
[12]
Fournet, M.; Bonté, F.; Desmoulière, A. Glycation Damage: A Possible Hub for Major Pathophysiological Disorders and Aging. Aging Dis., 2018, 9(5), 880-900.
[http://dx.doi.org/10.14336/AD.2017.1121] [PMID: 30271665]
[13]
Petersen, K.F.; Dufour, S.; Savage, D.B.; Bilz, S.; Solomon, G.; Yonemitsu, S.; Cline, G.W.; Befroy, D.; Zemany, L.; Kahn, B.B.; Papademetris, X.; Rothman, D.L.; Shulman, G.I. The role of skeletal muscle insulin resistance in the pathogenesis of the metabolic syndrome. Proc. Natl. Acad. Sci. USA, 2007, 104(31), 12587-12594.
[http://dx.doi.org/10.1073/pnas.0705408104] [PMID: 17640906]
[14]
Petersen, K.F.; Shulman, G.I. Pathogenesis of skeletal muscle insulin resistance in type 2 diabetes mellitus. Am. J. Cardiol., 2002, 90(5A), 11G-18G.
[http://dx.doi.org/10.1016/S0002-9149(02)02554-7] [PMID: 12231074]
[15]
Lorenzo, M.; Fernández-Veledo, S.; Vila-Bedmar, R.; Garcia-Guerra, L.; De Alvaro, C.; Nieto-Vazquez, I. Insulin resistance induced by tumor necrosis factor-alpha in myocytes and brown adipocytes. J. Anim. Sci., 2008, 86(14)(Suppl.), E94-E104.
[http://dx.doi.org/10.2527/jas.2007-0462] [PMID: 17940160]
[16]
Bouzakri, K.; Koistinen, H.A.; Zierath, J.R. Molecular mechanisms of skeletal muscle insulin resistance in type 2 diabetes. Curr. Diabetes Rev., 2005, 1(2), 167-174.
[http://dx.doi.org/10.2174/1573399054022785] [PMID: 18220592]
[17]
DeFronzo, R.A.; Tripathy, D. Skeletal muscle insulin resistance is the primary defect in type 2 diabetes. Diabetes Care, 2009, 32(Suppl. 2), S157-S163.
[http://dx.doi.org/10.2337/dc09-S302] [PMID: 19875544]
[18]
Czech, M.P. Insulin action and resistance in obesity and type 2 diabetes. Nat. Med., 2017, 23(7), 804-814.
[http://dx.doi.org/10.1038/nm.4350] [PMID: 28697184]
[19]
Di Meo, S.; Iossa, S.; Venditti, P. Skeletal muscle insulin resistance: role of mitochondria and other ROS sources. J. Endocrinol., 2017, 233(1), R15-R42.
[http://dx.doi.org/10.1530/JOE-16-0598] [PMID: 28232636]
[20]
Petersen, K.F.; Oral, E.A.; Dufour, S.; Befroy, D.; Ariyan, C.; Yu, C.; Cline, G.W.; DePaoli, A.M.; Taylor, S.I.; Gorden, P.; Shulman, G.I. Leptin reverses insulin resistance and hepatic steatosis in patients with severe lipodystrophy. J. Clin. Invest., 2002, 109(10), 1345-1350.
[http://dx.doi.org/10.1172/JCI0215001] [PMID: 12021250]
[21]
Warram, J.H.; Martin, B.C.; Krolewski, A.S.; Soeldner, J.S.; Kahn, C.R. Slow glucose removal rate and hyperinsulinemia precede the development of type II diabetes in the offspring of diabetic parents. Ann. Intern. Med., 1990, 113(12), 909-915.
[http://dx.doi.org/10.7326/0003-4819-113-12-909] [PMID: 2240915]
[22]
Zierath, J.R.; Houseknecht, K.L.; Gnudi, L.; Kahn, B.B. High-fat feeding impairs insulin-stimulated GLUT4 recruitment via an early insulin-signaling defect. Diabetes, 1997, 46(2), 215-223.
[http://dx.doi.org/10.2337/diab.46.2.215] [PMID: 9000697]
[23]
Tremblay, F.; Lavigne, C.; Jacques, H.; Marette, A. Defective insulin-induced GLUT4 translocation in skeletal muscle of high fat-fed rats is associated with alterations in both Akt/protein kinase B and atypical protein kinase C (zeta/lambda) activities. Diabetes, 2001, 50(8), 1901-1910.
[http://dx.doi.org/10.2337/diabetes.50.8.1901] [PMID: 11473054]
[24]
Boden, G.; Lebed, B.; Schatz, M.; Homko, C.; Lemieux, S. Effects of acute changes of plasma free fatty acids on intramyocellular fat content and insulin resistance in healthy subjects. Diabetes, 2001, 50(7), 1612-1617.
[http://dx.doi.org/10.2337/diabetes.50.7.1612] [PMID: 11423483]
[25]
Belfort, R.; Mandarino, L.; Kashyap, S.; Wirfel, K.; Pratipanawatr, T.; Berria, R.; Defronzo, R.A.; Cusi, K. Dose-response effect of elevated plasma free fatty acid on insulin signaling. Diabetes, 2005, 54(6), 1640-1648.
[http://dx.doi.org/10.2337/diabetes.54.6.1640] [PMID: 15919784]
[26]
Goodpaster, B.H.; Theriault, R.; Watkins, S.C.; Kelley, D.E. Intramuscular lipid content is increased in obesity and decreased by weight loss. Metabolism, 2000, 49(4), 467-472.
[http://dx.doi.org/10.1016/S0026-0495(00)80010-4] [PMID: 10778870]
[27]
Kelley, D.E.; Goodpaster, B.; Wing, R.R.; Simoneau, J.A. Skeletal muscle fatty acid metabolism in association with insulin resistance, obesity, and weight loss. Am. J. Physiol., 1999, 277(6), E1130-E1141.
[PMID: 10600804]
[28]
Befroy, D.E.; Petersen, K.F.; Dufour, S.; Mason, G.F.; de Graaf, R.A.; Rothman, D.L.; Shulman, G.I. Impaired mitochondrial substrate oxidation in muscle of insulin-resistant offspring of type 2 diabetic patients. Diabetes, 2007, 56(5), 1376-1381.
[http://dx.doi.org/10.2337/db06-0783] [PMID: 17287462]
[29]
Jana, B.A.; Chintamaneni, P.K.; Krishnamurthy, P.T.; Wadhwani, A.; Mohankumar, S.K. Cytosolic lipid excess-induced mitochondrial dysfunction is the cause or effect of high fat diet-induced skeletal muscle insulin resistance: a molecular insight. Mol. Biol. Rep., 2019, 46(1), 957-963.
[http://dx.doi.org/10.1007/s11033-018-4551-7] [PMID: 30535784]
[30]
Fisher-Wellman, K.H.; Weber, T.M.; Cathey, B.L.; Brophy, P.M.; Gilliam, L.A.; Kane, C.L.; Maples, J.M.; Gavin, T.P.; Houmard, J.A.; Neufer, P.D. Mitochondrial respiratory capacity and content are normal in young insulin-resistant obese humans. Diabetes, 2014, 63(1), 132-141.
[http://dx.doi.org/10.2337/db13-0940] [PMID: 23974920]
[31]
Pinto-Junior, D.C.; Silva, K.S.; Michalani, M.L.; Yonamine, C.Y.; Esteves, J.V.; Fabre, N.T.; Thieme, K.; Catanozi, S.; Okamoto, M.M.; Seraphim, P.M.; Corrêa-Giannella, M.L.; Passarelli, M.; Machado, U.F. Advanced glycation end products-induced insulin resistance involves repression of skeletal muscle GLUT4 expression. Sci. Rep., 2018, 8(1), 8109.
[http://dx.doi.org/10.1038/s41598-018-26482-6] [PMID: 29802324]
[32]
McLellan, A.C.; Thornalley, P.J.; Benn, J.; Sonksen, P.H. Glyoxalase system in clinical diabetes mellitus and correlation with diabetic complications. Clin. Sci. (Lond.), 1994, 87(1), 21-29.
[http://dx.doi.org/10.1042/cs0870021] [PMID: 8062515]
[33]
Ahmed, N.; Thornalley, P.J.; Dawczynski, J.; Franke, S.; Strobel, J.; Stein, G.; Haik, G.M. Methylglyoxal-derived hydroimidazolone advanced glycation end-products of human lens proteins. Invest. Ophthalmol. Vis. Sci., 2003, 44(12), 5287-5292.
[http://dx.doi.org/10.1167/iovs.03-0573] [PMID: 14638728]
[34]
Brings, S.; Fleming, T.; Freichel, M.; Muckenthaler, M.U.; Herzig, S.; Nawroth, P.P. Dicarbonyls and Advanced Glycation End-Products in the Development of Diabetic Complications and Targets for Intervention. Int. J. Mol. Sci., 2017, 18(5)E984
[http://dx.doi.org/10.3390/ijms18050984] [PMID: 28475116]
[35]
Thornalley, P.J.; Rabbani, N. Assay of methylglyoxal and glyoxal and control of peroxidase interference. Biochem. Soc. Trans., 2014, 42(2), 504-510.
[http://dx.doi.org/10.1042/BST20140009] [PMID: 24646269]
[36]
Davis, H.M.; Essex, A.L.; Valdez, S.; Deosthale, P.J.; Aref, M.W.; Allen, M.R.; Bonetto, A.; Plotkin, L.I. Short-term pharmacologic RAGE inhibition differentially affects bone and skeletal muscle in middle-aged mice. Bone, 2019, 124, 89-102.
[http://dx.doi.org/10.1016/j.bone.2019.04.012] [PMID: 31028960]
[37]
van Bussel, B.C.; van de Poll, M.C.; Schalkwijk, C.G.; Bergmans, D.C. Increased dicarbonyl stress as a novel mechanism of multi- organ failure in critical illness. Int. J. Mol. Sci., 2017, 18(2)E346
[http://dx.doi.org/10.3390/ijms18020346] [PMID: 28178202]
[38]
Rabbani, N.; Thornalley, P.J. Dicarbonyl proteome and genome damage in metabolic and vascular disease. Biochem. Soc. Trans., 2014, 42(2), 425-432.
[http://dx.doi.org/10.1042/BST20140018] [PMID: 24646255]
[39]
Singh, V.P.; Bali, A.; Singh, N.; Jaggi, A.S. Advanced glycation end products and diabetic complications. Korean J. Physiol. Pharmacol., 2014, 18(1), 1-14.
[http://dx.doi.org/10.4196/kjpp.2014.18.1.1] [PMID: 24634591]
[40]
Murata-Kamiya, N.; Kamiya, H.; Kaji, H.; Kasai, H. Methylglyoxal induces G:C to C:G and G:C to T:A transversions in the supF gene on a shuttle vector plasmid replicated in mammalian cells. Mutat. Res., 2000, 468(2), 173-182.
[http://dx.doi.org/10.1016/S1383-5718(00)00044-9] [PMID: 10882894]
[41]
Handy, D.E.; Loscalzo, J. Redox regulation of mitochondrial function. Antioxid. Redox Signal., 2012, 16(11), 1323-1367.
[http://dx.doi.org/10.1089/ars.2011.4123] [PMID: 22146081]
[42]
Thornalley, P. Clinical significance of glycation. Clin. Lab., 1999, 45, 263-273.
[43]
Kalapos, M.P. The tandem of free radicals and methylglyoxal. Chem. Biol. Interact., 2008, 171(3), 251-271.
[http://dx.doi.org/10.1016/j.cbi.2007.11.009] [PMID: 18164697]
[44]
Wu, L. The pro-oxidant role of methylglyoxal in mesenteric artery smooth muscle cells. Can. J. Physiol. Pharmacol., 2005, 83(1), 63-68.
[http://dx.doi.org/10.1139/y04-112] [PMID: 15759051]
[45]
Chaudhuri, J.; Bains, Y.; Guha, S.; Kahn, A.; Hall, D.; Bose, N.; Gugliucci, A.; Kapahi, P. The role of advanced glycation end products in aging and metabolic diseases: Bridging association and causality. Cell Metab., 2018, 28(3), 337-352.
[http://dx.doi.org/10.1016/j.cmet.2018.08.014] [PMID: 30184484]
[46]
Du, J.; Suzuki, H.; Nagase, F.; Akhand, A.A.; Yokoyama, T.; Miyata, T.; Kurokawa, K.; Nakashima, I. Methylglyoxal induces apoptosis in Jurkat leukemia T cells by activating c-Jun N-terminal kinase. J. Cell. Biochem., 2000, 77(2), 333-344.
[http://dx.doi.org/10.1002/(SICI)1097-4644(20000501)77:2<333:AID-JCB15>3.0.CO;2-Q] [PMID: 10723098]
[47]
Ahmad, S. Moinuddin; Dixit, K.; Shahab, U.; Alam, K.; Ali, A. Genotoxicity and immunogenicity of DNA-advanced glycation end products formed by methylglyoxal and lysine in presence of Cu2+. Biochem. Biophys. Res. Commun., 2011, 407(3), 568-574.
[http://dx.doi.org/10.1016/j.bbrc.2011.03.064] [PMID: 21420380]
[48]
Degen, J.; Hellwig, M.; Henle, T. 1,2-dicarbonyl compounds in commonly consumed foods. J. Agric. Food Chem., 2012, 60(28), 7071-7079.
[http://dx.doi.org/10.1021/jf301306g] [PMID: 22724891]
[49]
Mavric, E.; Wittmann, S.; Barth, G.; Henle, T. Identification and quantification of methylglyoxal as the dominant antibacterial constituent of Manuka (Leptospermum scoparium) honeys from New Zealand. Mol. Nutr. Food Res., 2008, 52(4), 483-489.
[http://dx.doi.org/10.1002/mnfr.200700282] [PMID: 18210383]
[50]
Degen, J.; Vogel, M.; Richter, D.; Hellwig, M.; Henle, T. Metabolic transit of dietary methylglyoxal. J. Agric. Food Chem., 2013, 61(43), 10253-10260.
[http://dx.doi.org/10.1021/jf304946p] [PMID: 23451712]
[51]
Degen, J.; Beyer, H.; Heymann, B.; Hellwig, M.; Henle, T. Dietary influence on urinary excretion of 3-deoxyglucosone and its metabolite 3-deoxyfructose. J. Agric. Food Chem., 2014, 62(11), 2449-2456.
[http://dx.doi.org/10.1021/jf405546q] [PMID: 24579887]
[52]
Beisswenger, B.G.; Delucia, E.M.; Lapoint, N.; Sanford, R.J.; Beisswenger, P.J. Ketosis leads to increased methylglyoxal production on the Atkins diet. Ann. N. Y. Acad. Sci., 2005, 1043, 201-210.
[http://dx.doi.org/10.1196/annals.1333.025] [PMID: 16037240]
[53]
Reichard, G.A., Jr; Skutches, C.L.; Hoeldtke, R.D.; Owen, O.E. Acetone metabolism in humans during diabetic ketoacidosis. Diabetes, 1986, 35(6), 668-674.
[http://dx.doi.org/10.2337/diab.35.6.668] [PMID: 3086164]
[54]
Beisswenger, P.J.; Howell, S.K.; O’Dell, R.M.; Wood, M.E.; Touchette, A.D.; Szwergold, B.S. alpha-Dicarbonyls increase in the postprandial period and reflect the degree of hyperglycemia. Diabetes Care, 2001, 24(4), 726-732.
[http://dx.doi.org/10.2337/diacare.24.4.726] [PMID: 11315838]
[55]
Nicolay, J.P.; Schneider, J.; Niemoeller, O.M.; Artunc, F.; Portero-Otin, M.; Haik, G., Jr; Thornalley, P.J.; Schleicher, E.; Wieder, T.; Lang, F. Stimulation of suicidal erythrocyte death by methylglyoxal. Cell. Physiol. Biochem., 2006, 18(4-5), 223-232.
[http://dx.doi.org/10.1159/000097669] [PMID: 17167227]
[56]
Chang, T.; Wu, L. Methylglyoxal, oxidative stress, and hypertension. Can. J. Physiol. Pharmacol., 2006, 84(12), 1229-1238.
[http://dx.doi.org/10.1139/y06-077] [PMID: 17487230]
[57]
Ray, M.; Ray, S. L-Threonine dehydrogenase from goat liver. Feedback inhibition by methylglyoxal. J. Biol. Chem., 1985, 260(10), 5913-5918.
[PMID: 3888978]
[58]
Tressel, T.; Thompson, R.; Zieske, L.R.; Menendez, M.I.; Davis, L. Interaction between L-threonine dehydrogenase and aminoacetone synthetase and mechanism of aminoacetone production. J. Biol. Chem., 1986, 261(35), 16428-16437.
[PMID: 3536927]
[59]
Green, M.L.; Elliott, W.H. The enzymic formation of aminoacetone from threonine and its further metabolism. Biochem. J., 1964, 92(3), 537-549.
[PMID: 4284408]
[60]
Oh, M.S.; Uribarri, J.; Alveranga, D.; Lazar, I.; Bazilinski, N.; Carroll, H.J. Metabolic utilization and renal handling of D-lactate in men. Metabolism, 1985, 34(7), 621-625.
[http://dx.doi.org/10.1016/0026-0495(85)90088-5] [PMID: 4010522]
[61]
Ewaschuk, J.B.; Naylor, J.M.; Zello, G.A. D-lactate in human and ruminant metabolism. J. Nutr., 2005, 135(7), 1619-1625.
[http://dx.doi.org/10.1093/jn/135.7.1619] [PMID: 15987839]
[62]
Abordo, E.A.; Minhas, H.S.; Thornalley, P.J. Accumulation of alpha-oxoaldehydes during oxidative stress: a role in cytotoxicity. Biochem. Pharmacol., 1999, 58(4), 641-648.
[http://dx.doi.org/10.1016/S0006-2952(99)00132-X] [PMID: 10413301]
[63]
Kielhorn, J.; Pohlenz-Michel, C.; Schmidt, S.; Magelsdorf, I. Glyoxal. Concise International Chemical Assessment Document 57; World Health Organization: Geneva, Switzerland, 2004.
[64]
Lange, J.N.; Wood, K.D.; Knight, J.; Assimos, D.G.; Holmes, R.P. Glyoxal formation and its role in endogenous oxalate synthesis. Adv. Urol., 2012, 2012819202
[http://dx.doi.org/10.1155/2012/819202] [PMID: 22567004]
[65]
Wells-Knecht, K.J.; Zyzak, D.V.; Litchfield, J.E.; Thorpe, S.R.; Baynes, J.W. Mechanism of autoxidative glycosylation: identification of glyoxal and arabinose as intermediates in the autoxidative modification of proteins by glucose. Biochemistry, 1995, 34(11), 3702-3709.
[http://dx.doi.org/10.1021/bi00011a027] [PMID: 7893666]
[66]
Lee, K.W.; Simpson, G.; Ortwerth, B. A systematic approach to evaluate the modification of lens proteins by glycation-induced crosslinking. Biochim. Biophys. Acta, 1999, 1453(1), 141-151.
[http://dx.doi.org/10.1016/S0925-4439(98)00097-0] [PMID: 9989254]
[67]
Well-Knecht, K.; Brinkmann, E.; Baynes, J. Structural characterization of an imidazolium salt formed from glyoxal and N-hippuryllysine. J. Org. Chem., 1995, 60, 6246-6247.
[http://dx.doi.org/10.1021/jo00125a001]
[68]
Park, Y.S.; Koh, Y.H.; Takahashi, M.; Miyamoto, Y.; Suzuki, K.; Dohmae, N.; Takio, K.; Honke, K.; Taniguchi, N. Identification of the binding site of methylglyoxal on glutathione peroxidase: methylglyoxal inhibits glutathione peroxidase activity via binding to glutathione binding sites Arg 184 and 185. Free Radic. Res., 2003, 37(2), 205-211.
[http://dx.doi.org/10.1080/1071576021000041005] [PMID: 12653209]
[69]
Kang, J.H. Modification and inactivation of human Cu,Zn-superoxide dismutase by methylglyoxal. Mol. Cells, 2003, 15(2), 194-199.
[PMID: 12803482]
[70]
Shangari, N.; Bruce, W.R.; Poon, R.; O’Brien, P.J. Toxicity of glyoxals--role of oxidative stress, metabolic detoxification and thiamine deficiency. Biochem. Soc. Trans., 2003, 31(Pt 6), 1390-1393.
[http://dx.doi.org/10.1042/bst0311390] [PMID: 14641070]
[71]
Anderson, G.H. Much ado about high-fructose corn syrup in beverages: the meat of the matter. Am. J. Clin. Nutr., 2007, 86(6), 1577-1578.
[http://dx.doi.org/10.1093/ajcn/86.5.1577] [PMID: 18065571]
[72]
Shangari, N.; Chan, T.S.; Popovic, M.; O’Brien, P.J. Glyoxal markedly compromises hepatocyte resistance to hydrogen peroxide. Biochem. Pharmacol., 2006, 71(11), 1610-1618.
[http://dx.doi.org/10.1016/j.bcp.2006.02.016] [PMID: 16574077]
[73]
Yang, K.; Qiang, D.; Delaney, S.; Mehta, R.; Bruce, W.R.; O’Brien, P.J. Differences in glyoxal and methylglyoxal metabolism determine cellular susceptibility to protein carbonylation and cytotoxicity. Chem. Biol. Interact., 2011, 191(1-3), 322-329.
[http://dx.doi.org/10.1016/j.cbi.2011.02.012] [PMID: 21334317]
[74]
Knels, L.; Worm, M.; Wendel, M.; Roehlecke, C.; Kniep, E.; Funk, R.H. Effects of advanced glycation end products-inductor glyoxal and hydrogen peroxide as oxidative stress factors on rat retinal organ cultures and neuroprotection by UK-14,304. J. Neurochem., 2008, 106(4), 1876-1887.
[http://dx.doi.org/10.1111/j.1471-4159.2008.05540.x] [PMID: 18624919]
[75]
Liu, G.D.; Xu, C.; Feng, L.; Wang, F. The augmentation of O-GlcNAcylation reduces glyoxal-induced cell injury by attenuating oxidative stress in human retinal microvascular endothelial cells. Int. J. Mol. Med., 2015, 36(4), 1019-1027.
[http://dx.doi.org/10.3892/ijmm.2015.2319] [PMID: 26311324]
[76]
Gurel, Z.; Sieg, K.M.; Shallow, K.D.; Sorenson, C.M.; Sheibani, N. Retinal O-linked N-acetylglucosamine protein modifications: implications for postnatal retinal vascularization and the pathogenesis of diabetic retinopathy. Mol. Vis., 2013, 19, 1047-1059.
[PMID: 23734074]
[77]
Xu, C.; Liu, G.; Liu, X.; Wang, F. O-GlcNAcylation under hypoxic conditions and its effects on the blood-retinal barrier in diabetic retinopathy. Int. J. Mol. Med., 2014, 33(3), 624-632.
[http://dx.doi.org/10.3892/ijmm.2013.1597] [PMID: 24366041]
[78]
Hart, G.W. Dynamic O-linked glycosylation of nuclear and cytoskeletal proteins. Annu. Rev. Biochem., 1997, 66, 315-335.
[http://dx.doi.org/10.1146/annurev.biochem.66.1.315] [PMID: 9242909]
[79]
Sejersen, H.; Rattan, S.I. Glyoxal-induced premature senescence in human fibroblasts. Ann. N. Y. Acad. Sci., 2007, 1100, 518-523.
[http://dx.doi.org/10.1196/annals.1395.057] [PMID: 17460217]
[80]
Pagano, G.; Degan, P.; d’Ischia, M.; Kelly, F.J.; Pallardó, F.V.; Zatterale, A.; Anak, S.S.; Akisik, E.E.; Beneduce, G.; Calzone, R.; De Nicola, E.; Dunster, C.; Lloret, A.; Manini, P.; Nobili, B.; Saviano, A.; Vuttariello, E.; Warnau, M. Gender- and age-related distinctions for the in vivo prooxidant state in Fanconi anaemia patients. Carcinogenesis, 2004, 25(10), 1899-1909.
[http://dx.doi.org/10.1093/carcin/bgh194] [PMID: 15192013]
[81]
Pagano, G.; Zatterale, A.; Degan, P.; d’Ischia, M.; Kelly, F.J.; Pallardó, F.V.; Calzone, R.; Castello, G.; Dunster, C.; Giudice, A.; Kilinç, Y.; Lloret, A.; Manini, P.; Masella, R.; Vuttariello, E.; Warnau, M. In vivo prooxidant state in Werner syndrome (WS): results from three WS patients and two WS heterozygotes. Free Radic. Res., 2005, 39(5), 529-533.
[http://dx.doi.org/10.1080/10715760500092683] [PMID: 16036329]
[82]
Akhand, A.A.; Kato, M.; Suzuki, H.; Liu, W.; Du, J.; Hamaguchi, M.; Miyata, T.; Kurokawa, K.; Nakashima, I. Carbonyl compounds cross-link cellular proteins and activate protein-tyrosine kinase p60c-Src. J. Cell. Biochem., 1999, 72(1), 1-7.
[http://dx.doi.org/10.1002/(SICI)1097-4644(19990101)72:1<1:AID-JCB1>3.0.CO;2-Y] [PMID: 10025661]
[83]
Chen, X-M.; Kitts, D.D. Identification and quantification of α-dicarbonyl compounds produced in different sugar-amino acid Maillard reaction model systems. Food Res. Int., 2011, 44(9), 2775-2782.
[http://dx.doi.org/10.1016/j.foodres.2011.06.002]
[84]
Niwa, T. 3-Deoxyglucosone: metabolism, analysis, biological activity, and clinical implication. J. Chromatogr. B Biomed. Sci. Appl., 1999, 731(1), 23-36.
[http://dx.doi.org/10.1016/S0378-4347(99)00113-9] [PMID: 10491986]
[85]
Henle, T.; Miyata, T. Advanced glycation end products in uremia. Adv. Ren. Replace. Ther., 2003, 10(4), 321-331.
[http://dx.doi.org/10.1053/j.arrt.2003.08.006] [PMID: 14681861]
[86]
Niwa, T.; Tsukushi, S. 3-deoxyglucosone and AGEs in uremic complications: inactivation of glutathione peroxidase by 3-deoxyglucosone. Kidney Int. Suppl., 2001, 78, S37-S41.
[http://dx.doi.org/10.1046/j.1523-1755.2001.59780037.x] [PMID: 11168980]
[87]
Chuyen, N.V. Toxicity of the AGEs generated from the Maillard reaction: on the relationship of food-AGEs and biological-AGEs. Mol. Nutr. Food Res., 2006, 50(12), 1140-1149.
[http://dx.doi.org/10.1002/mnfr.200600144] [PMID: 17131455]
[88]
Zhang, L.; Song, X.; Zhou, L.; Liang, G.; Xu, H.; Wang, F.; Huang, F.; Jiang, G. Accumulation of intestinal tissue 3-deoxyglucosone attenuated GLP-1 secretion and its insulinotropic effect in rats. Diabetol. Metab. Syndr., 2016, 8, 78.
[http://dx.doi.org/10.1186/s13098-016-0194-9] [PMID: 27956941]
[89]
Kiho, T.; Asahi, T.; Usui, S.; Matsunaga, T.; Ukai, S. Effect of 3-deoxyglucosone on the activities of enzymes responsible for glucose metabolism in mouse liver. Biol. Pharm. Bull., 1996, 19(8), 1106-1108.
[http://dx.doi.org/10.1248/bpb.19.1106] [PMID: 8874829]
[90]
Ashraf, J.M.; Ahmad, S.; Rabbani, G.; Jan, A.T.; Lee, E.J.; Khan, R.H.; Choi, I. Physicochemical analysis of structural alteration and advanced glycation end products generation during glycation of H2A histone by 3-deoxyglucosone. IUBMB Life, 2014, 66(10), 686-693.
[http://dx.doi.org/10.1002/iub.1318] [PMID: 25380060]
[91]
Ashraf, J.M.; Rabbani, G.; Ahmad, S.; Hasan, Q.; Khan, R.H.; Alam, K.; Choi, I. Glycation of H1 histone by 3-deoxyglucosone: Effects on protein structure and generation of different advanced glycation end products. PLoS One, 2015, 10(6)e0130630
[http://dx.doi.org/10.1371/journal.pone.0130630] [PMID: 26121680]
[92]
Hasuike, Y.; Nakanishi, T.; Otaki, Y.; Nanami, M.; Tanimoto, T.; Taniguchi, N.; Takamitsu, Y. Plasma 3-deoxyglucosone elevation in chronic renal failure is associated with increased aldose reductase in erythrocytes. Am. J. Kidney Dis., 2002, 40(3), 464-471.
[http://dx.doi.org/10.1053/ajkd.2002.34884] [PMID: 12200796]
[93]
Loughlin, D.T.; Artlett, C.M. 3-Deoxyglucosone-collagen alters human dermal fibroblast migration and adhesion: implications for impaired wound healing in patients with diabetes. Wound Repair Regen., 2009, 17(5), 739-749.
[http://dx.doi.org/10.1111/j.1524-475X.2009.00532.x] [PMID: 19769726]
[94]
Kikuchi, S.; Shinpo, K.; Moriwaka, F.; Makita, Z.; Miyata, T.; Tashiro, K. Neurotoxicity of methylglyoxal and 3-deoxyglucosone on cultured cortical neurons: synergism between glycation and oxidative stress, possibly involved in neurodegenerative diseases. J. Neurosci. Res., 1999, 57(2), 280-289.
[http://dx.doi.org/10.1002/(SICI)1097-4547(19990715)57:2<280:AID-JNR14>3.0.CO;2-U] [PMID: 10398306]
[95]
Bélanger, M.; Yang, J.; Petit, J.M.; Laroche, T.; Magistretti, P.J.; Allaman, I. Role of the glyoxalase system in astrocyte-mediated neuroprotection. J. Neurosci., 2011, 31(50), 18338-18352.
[http://dx.doi.org/10.1523/JNEUROSCI.1249-11.2011] [PMID: 22171037]
[96]
Mailankot, M.; Padmanabha, S.; Pasupuleti, N.; Major, D.; Howell, S.; Nagaraj, R.H. Glyoxalase I activity and immunoreactivity in the aging human lens. Biogerontology, 2009, 10(6), 711-720.
[http://dx.doi.org/10.1007/s10522-009-9218-2] [PMID: 19238574]
[97]
Fleming, T.H.; Theilen, T.M.; Masania, J.; Wunderle, M.; Karimi, J.; Vittas, S.; Bernauer, R.; Bierhaus, A.; Rabbani, N.; Thornalley, P.J.; Kroll, J.; Tyedmers, J.; Nawrotzki, R.; Herzig, S.; Brownlee, M.; Nawroth, P.P. Aging-dependent reduction in glyoxalase 1 delays wound healing. Gerontology, 2013, 59(5), 427-437.
[http://dx.doi.org/10.1159/000351628] [PMID: 23797271]
[98]
Xue, M.; Weickert, M.O.; Qureshi, S.; Kandala, N.B.; Anwar, A.; Waldron, M.; Shafie, A.; Messenger, D.; Fowler, M.; Jenkins, G.; Rabbani, N.; Thornalley, P.J. Improved Glycemic Control and Vascular Function in Overweight and Obese Subjects by Glyoxalase 1 Inducer Formulation. Diabetes, 2016, 65(8), 2282-2294.
[http://dx.doi.org/10.2337/db16-0153] [PMID: 27207552]
[99]
Yao, D.; Brownlee, M. Hyperglycemia-induced reactive oxygen species increase expression of the receptor for advanced glycation end products (RAGE) and RAGE ligands. Diabetes, 2010, 59(1), 249-255.
[http://dx.doi.org/10.2337/db09-0801] [PMID: 19833897]
[100]
Bierhaus, A.; Fleming, T.; Stoyanov, S.; Leffler, A.; Babes, A.; Neacsu, C.; Sauer, S.K.; Eberhardt, M.; Schnölzer, M.; Lasitschka, F.; Neuhuber, W.L.; Kichko, T.I.; Konrade, I.; Elvert, R.; Mier, W.; Pirags, V.; Lukic, I.K.; Morcos, M.; Dehmer, T.; Rabbani, N.; Thornalley, P.J.; Edelstein, D.; Nau, C.; Forbes, J.; Humpert, P.M.; Schwaninger, M.; Ziegler, D.; Stern, D.M.; Cooper, M.E.; Haberkorn, U.; Brownlee, M.; Reeh, P.W.; Nawroth, P.P. Methylglyoxal modification of Nav1.8 facilitates nociceptive neuron firing and causes hyperalgesia in diabetic neuropathy. Nat. Med., 2012, 18(6), 926-933.
[http://dx.doi.org/10.1038/nm.2750] [PMID: 22581285]
[101]
Hanssen, N.M.; Wouters, K.; Huijberts, M.S.; Gijbels, M.J.; Sluimer, J.C.; Scheijen, J.L.; Heeneman, S.; Biessen, E.A.; Daemen, M.J.; Brownlee, M.; de Kleijn, D.P.; Stehouwer, C.D.; Pasterkamp, G.; Schalkwijk, C.G. Higher levels of advanced glycation endproducts in human carotid atherosclerotic plaques are associated with a rupture-prone phenotype. Eur. Heart J., 2014, 35(17), 1137-1146.
[http://dx.doi.org/10.1093/eurheartj/eht402] [PMID: 24126878]
[102]
Arai, M.; Yuzawa, H.; Nohara, I.; Ohnishi, T.; Obata, N.; Iwayama, Y.; Haga, S.; Toyota, T.; Ujike, H.; Arai, M.; Ichikawa, T.; Nishida, A.; Tanaka, Y.; Furukawa, A.; Aikawa, Y.; Kuroda, O.; Niizato, K.; Izawa, R.; Nakamura, K.; Mori, N.; Matsuzawa, D.; Hashimoto, K.; Iyo, M.; Sora, I.; Matsushita, M.; Okazaki, Y.; Yoshikawa, T.; Miyata, T.; Itokawa, M. Enhanced carbonyl stress in a subpopulation of schizophrenia. Arch. Gen. Psychiatry, 2010, 67(6), 589-597.
[http://dx.doi.org/10.1001/archgenpsychiatry.2010.62] [PMID: 20530008]
[103]
Shamsi, F.A.; Sharkey, E.; Creighton, D.; Nagaraj, R.H. Maillard reactions in lens proteins: methylglyoxal-mediated modifications in the rat lens. Exp. Eye Res., 2000, 70(3), 369-380.
[http://dx.doi.org/10.1006/exer.1999.0800] [PMID: 10712823]
[104]
Reber, F.; Kasper, M.; Siegner, A.; Kniep, E.; Seigel, G.; Funk, R.H. Alteration of the intracellular pH and apoptosis induction in a retinal cell line by the AGE-inducing agent glyoxal. Graefes Arch. Clin. Exp. Ophthalmol., 2002, 240(12), 1022-1032.
[http://dx.doi.org/10.1007/s00417-002-0588-2] [PMID: 12483325]
[105]
Vander Jagt, D.L.; Robinson, B.; Taylor, K.K.; Hunsaker, L.A. Reduction of trioses by NADPH-dependent aldo-keto reductases. Aldose reductase, methylglyoxal, and diabetic complications. J. Biol. Chem., 1992, 267(7), 4364-4369.
[PMID: 1537826]
[106]
Shinoda, T.; Hayase, F.; Kato, H. Suppression of cell-cycle progression during the S phase of rat fibroblasts by 3-deoxyglucosone, a Maillard reaction intermediate. Biosci. Biotechnol. Biochem., 1994, 58(12), 2215-2219.
[http://dx.doi.org/10.1271/bbb.58.2215]
[107]
Okado, A.; Kawasaki, Y.; Hasuike, Y.; Takahashi, M.; Teshima, T.; Fujii, J.; Taniguchi, N. Induction of apoptotic cell death by methylglyoxal and 3-deoxyglucosone in macrophage-derived cell lines. Biochem. Biophys. Res. Commun., 1996, 225(1), 219-224.
[http://dx.doi.org/10.1006/bbrc.1996.1157] [PMID: 8769121]
[108]
Vander Jagt, D.L.; Hunsaker, L.A.; Vander Jagt, T.J.; Gomez, M.S.; Gonzales, D.M.; Deck, L.M.; Royer, R.E. Inactivation of glutathione reductase by 4-hydroxynonenal and other endogenous aldehydes. Biochem. Pharmacol., 1997, 53(8), 1133-1140.
[http://dx.doi.org/10.1016/S0006-2952(97)00090-7] [PMID: 9175718]
[109]
Gautieri, A.; Passini, F.S.; Silván, U.; Guizar-Sicairos, M.; Carimati, G.; Volpi, P.; Moretti, M.; Schoenhuber, H.; Redaelli, A.; Berli, M.; Snedeker, J.G. Advanced glycation end-products: Mechanics of aged collagen from molecule to tissue. Matrix Biol., 2017, 59, 95-108.
[http://dx.doi.org/10.1016/j.matbio.2016.09.001] [PMID: 27616134]
[110]
Martinez-Huenchullan, S.; McLennan, S.V.; Verhoeven, A.; Twigg, S.M.; Tam, C.S. The emerging role of skeletal muscle extracellular matrix remodelling in obesity and exercise. Obes. Rev., 2017, 18(7), 776-790.
[http://dx.doi.org/10.1111/obr.12548] [PMID: 28474421]
[111]
Ahmad, K.; Lee, E.J.; Moon, J.S.; Park, S.Y.; Choi, I. Multifaceted interweaving between extracellular matrix, insulin resistance, and skeletal muscle. Cells, 2018, 7(10)E148
[http://dx.doi.org/10.3390/cells7100148] [PMID: 30249008]
[112]
Ahmad, S.; Akhter, F.; Shahab, U.; Rafi, Z.; Khan, M.S.; Nabi, R.; Khan, M.S.; Ahmad, K.; Ashraf, J.M. Moinuddin, Do all roads lead to the Rome? The glycation perspective! Semin. Cancer Biol., 2018, 49, 9-19.
[http://dx.doi.org/10.1016/j.semcancer.2017.10.012] [PMID: 29113952]
[113]
Pincu, Y.; Linden, M.A.; Zou, K.; Baynard, T.; Boppart, M.D. The effects of high fat diet and moderate exercise on TGFβ1 and collagen deposition in mouse skeletal muscle. Cytokine, 2015, 73(1), 23-29.
[http://dx.doi.org/10.1016/j.cyto.2015.01.013] [PMID: 25689619]
[114]
Tam, C.S.; Power, J.E.; Markovic, T.P.; Yee, C.; Morsch, M.; McLennan, S.V.; Twigg, S.M. The effects of high-fat feeding on physical function and skeletal muscle extracellular matrix. Nutr. Diabetes, 2015, 5e187
[http://dx.doi.org/10.1038/nutd.2015.39] [PMID: 26657013]
[115]
Lee, E.J.; Jan, A.T.; Baig, M.H.; Ahmad, K.; Malik, A.; Rabbani, G.; Kim, T.; Lee, I.K.; Lee, Y.H.; Park, S.Y.; Choi, I. Fibromodulin and regulation of the intricate balance between myoblast differentiation to myocytes or adipocyte-like cells. FASEB J., 2018, 32(2), 768-781.
[http://dx.doi.org/10.1096/fj.201700665R] [PMID: 28974563]
[116]
Yadav, S.K.; Singla-Pareek, S.L.; Ray, M.; Reddy, M.K.; Sopory, S.K. Methylglyoxal levels in plants under salinity stress are dependent on glyoxalase I and glutathione. Biochem. Biophys. Res. Commun., 2005, 337(1), 61-67.
[http://dx.doi.org/10.1016/j.bbrc.2005.08.263] [PMID: 16176800]
[117]
Stratmann, B.; Goldstein, B.; Thornalley, P.J.; Rabbani, N.; Tschoepe, D. Intracellular accumulation of Methylglyoxal by glyoxalase 1 knock down alters collagen homoeostasis in L6 myoblasts. Int. J. Mol. Sci., 2017, 18(3)E480
[http://dx.doi.org/10.3390/ijms18030480] [PMID: 28241483]
[118]
Xue, M.; Rabbani, N.; Thornalley, P.J. Measurement of glyoxalase gene expression. Biochem. Soc. Trans., 2014, 42(2), 495-499.
[http://dx.doi.org/10.1042/BST20140026] [PMID: 24646267]
[119]
Moraru, A.; Wiederstein, J.; Pfaff, D.; Fleming, T.; Miller, A.K.; Nawroth, P.; Teleman, A.A. Elevated levels of the reactive metabolite methylglyoxal recapitulate progression of type 2 diabetes. Cell Metab., 2018, 27(4), 926-934. e928
[120]
Allen, R.E.; Lo, T.W.; Thornalley, P.J. A simplified method for the purification of human red blood cell glyoxalase. I. Characteristics, immunoblotting, and inhibitor studies. J. Protein Chem., 1993, 12(2), 111-119.
[http://dx.doi.org/10.1007/BF01026032] [PMID: 8489699]
[121]
Rabbani, N.; Thornalley, P.J. The critical role of methylglyoxal and glyoxalase 1 in diabetic nephropathy. Diabetes, 2014, 63(1), 50-52.
[http://dx.doi.org/10.2337/db13-1606] [PMID: 24357696]
[122]
Thornalley, P.J.; Battah, S.; Ahmed, N.; Karachalias, N.; Agalou, S.; Babaei-Jadidi, R.; Dawnay, A. Quantitative screening of advanced glycation endproducts in cellular and extracellular proteins by tandem mass spectrometry. Biochem. J., 2003, 375(Pt 3), 581-592.
[http://dx.doi.org/10.1042/bj20030763] [PMID: 12885296]
[123]
Rabbani, N.; Thornalley, P.J. Methylglyoxal, glyoxalase 1 and the dicarbonyl proteome. Amino Acids, 2012, 42(4), 1133-1142.
[http://dx.doi.org/10.1007/s00726-010-0783-0] [PMID: 20963454]
[124]
Xue, M.; Rabbani, N.; Thornalley, P.J. Glyoxalase in ageing. Semin. Cell Dev. Biol., 2011, 22(3), 293-301.
[http://dx.doi.org/10.1016/j.semcdb.2011.02.013] [PMID: 21320620]
[125]
Morcos, M.; Du, X.; Pfisterer, F.; Hutter, H.; Sayed, A.A.; Thornalley, P.; Ahmed, N.; Baynes, J.; Thorpe, S.; Kukudov, G.; Schlotterer, A.; Bozorgmehr, F.; El Baki, R.A.; Stern, D.; Moehrlen, F.; Ibrahim, Y.; Oikonomou, D.; Hamann, A.; Becker, C.; Zeier, M.; Schwenger, V.; Miftari, N.; Humpert, P.; Hammes, H.P.; Buechler, M.; Bierhaus, A.; Brownlee, M.; Nawroth, P.P. Glyoxalase-1 prevents mitochondrial protein modification and enhances lifespan in Caenorhabditis elegans. Aging Cell, 2008, 7(2), 260-269.
[http://dx.doi.org/10.1111/j.1474-9726.2008.00371.x] [PMID: 18221415]
[126]
Calabrese, V.; Guagliano, E.; Sapienza, M.; Panebianco, M.; Calafato, S.; Puleo, E.; Pennisi, G.; Mancuso, C.; Butterfield, D.A.; Stella, A.G. Redox regulation of cellular stress response in aging and neurodegenerative disorders: role of vitagenes. Neurochem. Res., 2007, 32(4-5), 757-773.
[http://dx.doi.org/10.1007/s11064-006-9203-y] [PMID: 17191135]
[127]
Kuhla, B.; Lüth, H.J.; Haferburg, D.; Boeck, K.; Arendt, T.; Münch, G. Methylglyoxal, glyoxal, and their detoxification in Alzheimer’s disease. Ann. N. Y. Acad. Sci., 2005, 1043, 211-216.
[http://dx.doi.org/10.1196/annals.1333.026] [PMID: 16037241]
[128]
Baba, S.P.; Barski, O.A.; Ahmed, Y.; O’Toole, T.E.; Conklin, D.J.; Bhatnagar, A.; Srivastava, S. Reductive metabolism of AGE precursors: a metabolic route for preventing AGE accumulation in cardiovascular tissue. Diabetes, 2009, 58(11), 2486-2497.
[http://dx.doi.org/10.2337/db09-0375] [PMID: 19651811]
[129]
Vander Jagt, D.L.; Hunsaker, L.A. Methylglyoxal metabolism and diabetic complications: roles of aldose reductase, glyoxalase-I, betaine aldehyde dehydrogenase and 2-oxoaldehyde dehydrogenase. Chem. Biol. Interact., 2003, 143-144, 341-351.
[http://dx.doi.org/10.1016/S0009-2797(02)00212-0] [PMID: 12604221]
[130]
Collard, F.; Vertommen, D.; Fortpied, J.; Duester, G.; Van Schaftingen, E. Identification of 3-deoxyglucosone dehydrogenase as aldehyde dehydrogenase 1A1 (retinaldehyde dehydrogenase 1). Biochimie, 2007, 89(3), 369-373.
[http://dx.doi.org/10.1016/j.biochi.2006.11.005] [PMID: 17175089]
[131]
Hipkiss, A.R.; Chana, H. Carnosine protects proteins against methylglyoxal-mediated modifications. Biochem. Biophys. Res. Commun., 1998, 248(1), 28-32.
[http://dx.doi.org/10.1006/bbrc.1998.8806] [PMID: 9675080]
[132]
Vander Jagt, D.L.; Hassebrook, R.K.; Hunsaker, L.A.; Brown, W.M.; Royer, R.E. Metabolism of the 2-oxoaldehyde methylglyoxal by aldose reductase and by glyoxalase-I: roles for glutathione in both enzymes and implications for diabetic complications. Chem. Biol. Interact., 2001, 130-132(1-3), 549-562.
[http://dx.doi.org/10.1016/S0009-2797(00)00298-2] [PMID: 11306074]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy