摘要
背景:药物重新定位是指发现现有药物的新适应症,可以提高药物研发的效率。 方法:在这项工作中,提出了一种基于综合多重相似性度量的药物重新定位方法,称为DR_IMSM。整体相似度度量的过程包含三个步骤。首先,可以基于已知的药物-疾病关联,成对的药物和成对的疾病的共享实体信息构建异构网络。其次,深度学习方法DeepWalk用于捕获药物和疾病的拓扑相似性。第三,进一步进行相似度整合和调整过程,分别获得更全面的药物和疾病相似度度量。 结果:在此基础上,在构建的异构网络中实施了双向随机行走算法,以对每种药物的疾病进行排名。与其他方法相比,提出的DR_IMSM可以在黄金标准数据集的AUC方面实现出色的性能。案例研究进一步证实了DR_IMSM的实际意义。
关键词: 药物重新定位,异构网络,相似性度量,逻辑功能,深度漫游,双随机步行。
[1]
Li J, Zheng S, Chen B, Butte AJ, Swamidass SJ, Lu Z. A survey of current trends in computational drug repositioning. Brief Bioinform 2016; 17(1): 2-12.
[http://dx.doi.org/10.1093/bib/bbv020] [PMID: 25832646]
[http://dx.doi.org/10.1093/bib/bbv020] [PMID: 25832646]
[2]
Grabowski H. Are the economics of pharmaceutical research and development changing?: productivity, patents and political pressures. Pharmacoeconomics 2004; 22(2)(Suppl. 2): 15-24.
[http://dx.doi.org/10.2165/00019053-200422002-00003] [PMID: 15660474]
[http://dx.doi.org/10.2165/00019053-200422002-00003] [PMID: 15660474]
[3]
Hurle MR, Yang L, Xie Q, Rajpal DK, Sanseau P, Agarwal P. Computational drug repositioning: from data to therapeutics. Clin Pharmacol Ther 2013; 93(4): 335-41.
[http://dx.doi.org/10.1038/clpt.2013.1] [PMID: 23443757]
[http://dx.doi.org/10.1038/clpt.2013.1] [PMID: 23443757]
[4]
Ashburn TT, Thor KB. Drug repositioning: identifying and developing new uses for existing drugs. Nat Rev Drug Discov 2004; 3(8): 673-83.
[http://dx.doi.org/10.1038/nrd1468] [PMID: 15286734]
[http://dx.doi.org/10.1038/nrd1468] [PMID: 15286734]
[5]
Andronis C, Sharma A, Virvilis V, Deftereos S, Persidis A. Literature mining, ontologies and information visualization for drug repurposing. Brief Bioinform 2011; 12(4): 357-68.
[http://dx.doi.org/10.1093/bib/bbr005] [PMID: 21712342]
[http://dx.doi.org/10.1093/bib/bbr005] [PMID: 21712342]
[6]
Napolitano F, Zhao Y, Moreira VM, et al. Drug repositioning: a machine-learning approach through data integration. J Cheminform 2013; 5(1): 30.
[http://dx.doi.org/10.1186/1758-2946-5-30] [PMID: 23800010]
[http://dx.doi.org/10.1186/1758-2946-5-30] [PMID: 23800010]
[7]
Martínez V, Navarro C, Cano C, Fajardo W, Blanco A. DrugNet: network-based drug-disease prioritization by integrating heterogeneous data. Artif Intell Med 2015; 63(1): 41-9.
[http://dx.doi.org/10.1016/j.artmed.2014.11.003] [PMID: 25704113]
[http://dx.doi.org/10.1016/j.artmed.2014.11.003] [PMID: 25704113]
[8]
Chen H, Zhang H, Zhang Z, Cao Y, Tang W. Network-based inference methods for drug repositioning. Comput Math Methods Med 2015; 2015130620
[http://dx.doi.org/10.1155/2015/130620] [PMID: 25969690]
[http://dx.doi.org/10.1155/2015/130620] [PMID: 25969690]
[9]
Luo H, Wang J, Li M, et al. Drug repositioning based on comprehensive similarity measures and Bi-Random walk algorithm. Bioinformatics 2016; 32(17): 2664-71.
[http://dx.doi.org/10.1093/bioinformatics/btw228] [PMID: 27153662]
[http://dx.doi.org/10.1093/bioinformatics/btw228] [PMID: 27153662]
[10]
Zhang J, Li C, Lin Y, et al. Computational drug repositioning using collaborative filtering via multi-source fusion. Expert Syst Appl 2017; 84: 281-9.
[http://dx.doi.org/10.1016/j.eswa.2017.05.004]
[http://dx.doi.org/10.1016/j.eswa.2017.05.004]
[11]
Luo H, Wang J, Li M, et al. Computational drug repositioning with random walk on a heterogeneous network. IEEE/ACM Trans Comput Biol Bioinformatics 2018; 16(6): 1890-900.
[http://dx.doi.org/10.1109/TCBB.2018.2832078] [PMID: 29994051]
[http://dx.doi.org/10.1109/TCBB.2018.2832078] [PMID: 29994051]
[12]
Gottlieb A, Stein GY, Ruppin E, Sharan R. PREDICT: a method for inferring novel drug indications with application to personalized medicine. Mol Syst Biol 2011; 7(1): 496.
[http://dx.doi.org/10.1038/msb.2011.26] [PMID: 21654673]
[http://dx.doi.org/10.1038/msb.2011.26] [PMID: 21654673]
[13]
Wishart DS, Knox C, Guo AC, et al. A comprehensive resource for in silico drug discovery and exploration. Nucleic Acids Res 2006; 34(1): D668-72.
[14]
Hamosh A, Scott AF, Amberger J, Bocchini C, Valle D, McKusick VA. Online Mendelian Inheritance in Man (OMIM), a knowledgebase of human genes and genetic disorders. Nucleic Acids Res 2002; 30(1): 52-5.
[http://dx.doi.org/10.1093/nar/30.1.52] [PMID: 11752252]
[http://dx.doi.org/10.1093/nar/30.1.52] [PMID: 11752252]
[15]
Luo H, Li M, Wang S, Liu Q, Li Y, Wang J. Computational drug repositioning using low-rank matrix approximation and randomized algorithms. Bioinformatics 2018; 34(11): 1904-12.
[http://dx.doi.org/10.1093/bioinformatics/bty013] [PMID: 29365057]
[http://dx.doi.org/10.1093/bioinformatics/bty013] [PMID: 29365057]
[17]
Steinbeck C, Han Y, Kuhn S, Horlacher O, Luttmann E, Willighagen E. The chemistry development Kit (CDK): An open-source Java library for chemo-and bioinformatics. J Chem Inf Comput Sci 2003; 43(2): 493-500.
[http://dx.doi.org/10.1021/ci025584y] [PMID: 12653513]
[http://dx.doi.org/10.1021/ci025584y] [PMID: 12653513]
[18]
Tanimoto T. An Elementary mathematical theory of classification and prediction Internal IBM Technical Report 1957.
[19]
Weininger D. SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules. J Chem Inf Comput Sci 1988; 28(1): 31-6.
[http://dx.doi.org/10.1021/ci00057a005]
[http://dx.doi.org/10.1021/ci00057a005]
[20]
Liu H, Song Y, Guan J, Luo L, Zhuang Z. Inferring new indications for approved drugs via random walk on drug-disease heterogenous networks. BMC Bioinformatics 2016; 17(17)(Suppl. 17): 539.
[http://dx.doi.org/10.1186/s12859-016-1336-7] [PMID: 28155639]
[http://dx.doi.org/10.1186/s12859-016-1336-7] [PMID: 28155639]
[21]
Vanunu O, Magger O, Ruppin E, Shlomi T, Sharan R. Associating genes and protein complexes with disease via network propagation. PLOS Comput Biol 2010; 6(1)e1000641
[http://dx.doi.org/10.1371/journal.pcbi.1000641] [PMID: 20090828]
[http://dx.doi.org/10.1371/journal.pcbi.1000641] [PMID: 20090828]
[22]
van Driel MA, Bruggeman J, Vriend G, Brunner HG, Leunissen JA. A text-mining analysis of the human phenome. Eur J Hum Genet 2006; 14(5): 535-42.
[http://dx.doi.org/10.1038/sj.ejhg.5201585] [PMID: 16493445]
[http://dx.doi.org/10.1038/sj.ejhg.5201585] [PMID: 16493445]
[23]
Lipscomb CE. Medical subject headings (MeSH). Bull Med Libr Assoc 2000; 88(3): 265-6.
[PMID: 10928714]
[PMID: 10928714]
[24]
Xie M, Hwang T, Kuang R. Prioritizing disease genes by bi-random walk. InPacific-Asia Conference on Knowledge Discovery and Data Mining 2012 292-303.
[http://dx.doi.org/10.1007/978-3-642-30220-6_25]
[http://dx.doi.org/10.1007/978-3-642-30220-6_25]
[25]
Davis J, Goadrich M. The relationship between Precision-Recall and ROC curves. Proceedings of the 23rd international conference on Machine learning 2006. 233-40.
[http://dx.doi.org/10.1145/1143844.1143874]
[http://dx.doi.org/10.1145/1143844.1143874]
[26]
Wang W, Yang S, Li J. Drug target predictions based on heterogeneous graph inference. Pac Symp Biocomput 2013; 2013: 53-64.
[PMID: 23424111]
[PMID: 23424111]
[27]
Cheng F, Liu C, Jiang J, et al. Prediction of drug-target interactions and drug repositioning via network-based inference. PLOS Comput Biol 2012; 8(5)e1002503
[http://dx.doi.org/10.1371/journal.pcbi.1002503] [PMID: 22589709]
[http://dx.doi.org/10.1371/journal.pcbi.1002503] [PMID: 22589709]
[28]
Kanehisa M, Goto S, Sato Y, Kawashima M, Furumichi M, Tanabe M. Data, information, knowledge and principle: back to metabolism in KEGG. Nucleic Acids Res 2014; 42(Database issue): D199-205.
[http://dx.doi.org/10.1093/nar/gkt1076] [PMID: 24214961]
[http://dx.doi.org/10.1093/nar/gkt1076] [PMID: 24214961]
[29]
Study of pralatrexate and gemcitabine with b12 and folic acid to treat relapsed/refractory lymphoproliferative malignancies.
Clinical Trials gov. 2007.
[30]
Phase II study of the effect of leuprolide acetate and spironolactone on insulin resistance in hyperandrogenic women with polycystic ovarian disease or hyperandrogenism insulin resistance acanthosis nigricans syndrome. Clinical Trials gov 2006.