Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

Research Article

Nano-ZrO2/TiO2 Impregnated Orange Wood Sawdust and Peach Stone Shell Adsorbents for Cr (VI) Removal

Author(s): Şerife Parlayıcı, Kübra Tuna Sezer and Erol Pehlivan*

Volume 16, Issue 7, 2020

Page: [880 - 892] Pages: 13

DOI: 10.2174/1573411015666191114143128

Price: $65

Abstract

Background: In this work, Cr (VI) adsorption on nano-ZrO2๏TiO2 impregnated orange wood sawdust (Zr๏Ti/OWS) and nano-ZrO2๏TiO2 impregnated peach stone shell (Zr๏Ti/PSS) was investigated by applying different adsorption parameters such as Cr (VI) concentrations, contact time, adsorbent dose, and pH for all adsorbents.

Methods: The adsorbents were characterized by SEM and FT-IR. The equilibrium status was achieved after 120 min of contact time and optimum pH value around 2 were determined for Cr (VI) adsorption. Adsorption data in the equilibrium is well-assembled by the Langmuir model during the adsorption process.

Results: Langmuir isotherm model showed a maximum adsorption value of OWS: 21.65 mg/g and Zr๏Ti/OWS: 27.25 mg/g. The same isotherm displayed a maximum adsorption value of PSS: 17.64 mg/g, and Zr๏Ti/PSS: 31.15 mg/g. Pseudo-second-order kinetic models (R2=0.99) were found to be the best models for describing the Cr (VI) adsorption reactions.

Conclusion: Thermodynamic parameters such as changes in ΔG°, ΔH°, and ΔS° have been estimated, and the process was found to be spontaneous.

Keywords: Cr (VI) removal, kinetics, orange wood sawdust, peach stone shell, ZrO2-TiO2 nanoparticles, adsorption process.

Graphical Abstract

[1]
Bulgariu, L.; Bulgariu, D. Functionalized soy waste biomass-A novel environmental-friendly biosorbent for the removal of heavy metals from aqueous solution. J. Clean. Prod., 2018, 197, 875-885.
[http://dx.doi.org/10.1016/j.jclepro.2018.06.261]
[2]
Lu, F.; Huanga, C.; You, L.; Yin, Y.; Zhang, Q. Cross-linked amino konjac glucomannan as an eco-friendly adsorbent for adsorption of Cr (VI) from aqueous solution. J. Mol. Liq., 2017, 247, 141-150.
[http://dx.doi.org/10.1016/j.molliq.2017.09.107]
[3]
US, EPA. IRIS, Toxicological Review of Hexavalent Chromium. In: U.S. Environmental Protection Agency; Washington. DC EPA/635/ R- 10/004A. , 2010.
[4]
Jobby, R.; Jha, P.; Yadav, A.K.; Desai, N. Biosorption and biotransformation of hexavalent chromium [Cr(VI)]: A comprehensive review. Chemosphere, 2018, 207, 255-266.
[http://dx.doi.org/10.1016/j.chemosphere.2018.05.050] [PMID: 29803157]
[5]
Duranoğlu, D.; Trochimczuk, A.W.; Beker, Ü. A comparison study of peach stone and acrylonitrile-divinylbenzene copolymer based activated carbons as chromium (VI) sorbents. Chem. Eng. J., 2010, 165(1), 56-63.
[http://dx.doi.org/10.1016/j.cej.2010.08.054]
[6]
Masiya, T.T.; Gudyanga, F.P. Investigation of granular activated carbon from peach stones for gold adsorption in acidic thiourea. J. South. Afr. Inst. Min. Metall., 2009, 1, 465-474.
[7]
Hubbe, M.A.; Hasan, S.H.; Ducoste, J.J. Metal ion sorption Review. Biol. Res., 2011, 6, 2167-2287.
[8]
Lopičić, Z.R.; Bočarov Stančić, A.S.; Stojanović, M.D.; Milojković, J.V.; Pantić, V.R. Ada mović, M.J. In vitro evaluation of the efficacy of peach stones as mycotoxin binders. J. Nat. Sci. Matica Srpska Novi Sad, 2013, 124, 287-296.
[http://dx.doi.org/10.2298/ZMSPN1324287L]
[9]
Shukla, A.; Zhang, Y.H.; Dubey, P.; Margrave, J.L.; Shukla, S.S. The role of sawdust in the removal of unwanted materials from water. J. Hazard. Mater., 2002, 95(1-2), 137-152.
[http://dx.doi.org/10.1016/S0304-3894(02)00089-4] [PMID: 12409244]
[10]
Gode, F.; Atalay, E.D.; Pehlivan, E. Removal of Cr(VI) from aqueous solutions using modified red pine sawdust. J. Hazard. Mater., 2008, 152(3), 1201-1207.
[http://dx.doi.org/10.1016/j.jhazmat.2007.07.104] [PMID: 17826899]
[11]
Zakaria, Z.A.; Suratman, M.; Mohammed, N.; Ahmad, W.A. Chromium(VI) removal from aqueous solution by untreated rubber wood sawdust. Desalination, 2009, 244, 109-121.
[http://dx.doi.org/10.1016/j.desal.2008.05.018]
[12]
Azzaz, A.A.; Jellali, S.; Assadi, A.A.; Bousselmi, L. Chemical treatment of orange tree sawdust for a cationic dye enhancement removal from aqueous solutions: Kinetic, equilibrium and thermodynamic studies. Desal. and Wat. Treat., 2016, 57(46), 22107-22119.
[http://dx.doi.org/10.1080/19443994.2015.1103313]
[13]
Das, C.; Gebru, K.A. Preparation and characterization of CA-PEG-TiO2 membranes Effect of PEG and TiO2 on morphology, flux and fouling performance. J. Mem. Sci. Res., 2017, 3(2), 90-101.
[14]
Yin, X.; Liu, W.; Ni, J. Removal of coexisting Cr(VI) and 4-chlorophenol through reduction and Fenton reaction in a single system. Chem. Eng. J., 2014, 248, 89-97.
[http://dx.doi.org/10.1016/j.cej.2014.03.017]
[15]
Wan Ngah, W.S.; Hanafiah, M.A.K.M. Removal of heavy metal ions from wastewater by chemically modified plant wastes as adsorbents: a review. Bioresour. Technol., 2008, 99(10), 3935-3948.
[http://dx.doi.org/10.1016/j.biortech.2007.06.011] [PMID: 17681755]
[16]
Bayramoglu, G.; Arica, M.Y. Adsorption of Cr (VI) onto PEI immobilized acrylate-based magnetic beads: isotherms, kinetics and thermodynamics study. Chem. Eng. J., 2008, 139(1), 20-28.
[http://dx.doi.org/10.1016/j.cej.2007.07.068]
[17]
Gebru, K.A.; Das, C. Removal of chromium (VI) ions from aqueous solutions using amine-impregnated TiO2 nanoparticles modified cellulose acetate membranes. Chemosphere, 2018, 191, 673-684.
[http://dx.doi.org/10.1016/j.chemosphere.2017.10.107] [PMID: 29078191]
[18]
Yılmaz, S. Analysis of structural and mechanical properties of zirconium dioxide crystal; Pamukkale University: Denizli, 2012, pp. 1-52.
[19]
Rodrigues, L.A.; Maschio, L.J.; da Silva, R.E.; da Silva, M.L. Adsorption of Cr(VI) from aqueous solution by hydrous zirconium oxide. J. Hazard. Mater., 2010, 173(1-3), 630-636.
[http://dx.doi.org/10.1016/j.jhazmat.2009.08.131] [PMID: 19748728]
[20]
Ku, Y.; Jung, I.L. Photocatalytic reduction of Cr(VI) in aqueous solutions by UV irradiation with the presence of titanium dioxide. Water Res., 2001, 35(1), 135-142.
[http://dx.doi.org/10.1016/S0043-1354(00)00098-1] [PMID: 11257867]
[21]
Solano, R.; Cerri, G.; Herrera, A.; Vargas, X. Cr+6 and Zn+2 removal for heterogeneous photocatalysis with TiO2 in synthetic wastewater. Int. J. Chemtech Res., 2018, 11(03), 312-320.
[22]
Silva, C.J.S.M.; Sousa, F.; Gübitz, G. Cavaco-Paulo1, A. Chemical modifications on proteins using glutaraldehyde. Food Technol. Biotechnol., 2004, 42(1), 51-56.
[23]
Gun, M. Investigation of the utilization of alginatechitosan nanoparticles for colchicine delivery; Adnan Menderes University, Graduate School of Natural and Applied Sciences, Department of Chemistry, 2013.
[24]
Boddu, V.M.; Abburi, K.; Talbott, J.L.; Smith, E.D.; Haasch, R. Removal of arsenic (III) and arsenic (V) from aqueous medium using chitosan-coated biosorbent. Water Res., 2008, 42(3), 633-642.
[http://dx.doi.org/10.1016/j.watres.2007.08.014] [PMID: 17822735]
[25]
Shang, J.; Yan, S.; Wang, Q. Degradation mechanism and chemical component changes in Betulap latyphylla wood by wood-rot fungi. BioResources, 2013, 8(4), 6066-6077.
[http://dx.doi.org/10.15376/biores.8.4.6066-6077]
[26]
Salmah, H.; Marliza, M.; Teh, P.L. Treated coconut shell reinforced unsaturated polyester composites. Int. J. Eng. Tech, 2013, 13(02), 94-103.
[27]
Khan, S.A.; Khan, S.B.; Asiri, A.M.; Ahmad, I. Zirconia-based catalyst for the one-pot synthesis of coumarin through Pechmann reaction. Nanoscale Res. Lett., 2016, 11(1), 345.
[http://dx.doi.org/10.1186/s11671-016-1525-3] [PMID: 27460593]
[28]
Fu, C.J.; Zhan, Z.W.; Yu, M.; Li, S.M.; Liu, J.H.; Dong, L. Influence of Zr/Si molar ratio on structure, morphology and corrosion resistant of organosilane coatings doped with zirconium (IV) n-propoxide. Int. J. Electrochem. Sci., 2014, 9(5), 2603-2619.
[29]
Elvira, M.R.; Mazo, M.A.; Tamayo, A.; Rubio, F.; Rubio, J.; Oteo, J.L. Study and characterization of organically modified silica-zirconia anti-graffiti coatings obtained by sol-gel. J. Chem. Chem. Eng., 2013, 7(2), 120-131.
[30]
Soler-Illia, G.D.A.; Louis, A.; Sanchez, C. Synthesis and characterization of mesostructured titania-based materials through evaporation-inducedself-assembly. Chem. Mater., 2002, 14(2), 750-759.
[http://dx.doi.org/10.1021/cm011217a]
[31]
Dakiky, M.; Khamis, M.; Manassra, A.; Mereb, M. Selective Adsorption of Cr(VI) in industrial wastewater using low-cost abundantly available adsorbents. Adv. Environ. Res., 2002, 6, 533-540.
[http://dx.doi.org/10.1016/S1093-0191(01)00079-X]
[32]
Dhal, B.; Thatoi, H.N.; Das, N.N.; Pandey, B.D. Chemical and microbial remediation of hexavalent chromium from contaminated soil and mining/metallurgical solid waste: A review. J. Hazard. Mater., 2013, 250-251, 272-291.
[http://dx.doi.org/10.1016/j.jhazmat.2013.01.048] [PMID: 23467183]
[33]
Aranda-García, E.; Morales-Barrera, L.; Pineda-Camacho, G.; Cristiani-Urbina, E. Effect of pH, ionic strength, and background electrolytes on Cr(VI) and total chromium removal by acorn shell of Quercus crassipes Humb. &. Bonpl. Environ. Monit. Assess., 2014, 186(10), 6207-6221.
[http://dx.doi.org/10.1007/s10661-014-3849-8] [PMID: 24880725]
[34]
Park, D.; Yun, Y.S.; Park, J.M. The past, present, and future trends of biosorption. Biotech. Biopro. Eng., 2010, 15(1), 86-102.
[http://dx.doi.org/10.1007/s12257-009-0199-4]
[35]
Fiol, N.; Escudero, C.; Villaescusa, I. Chromium sorption and Cr(VI) reduction to Cr(III) by grape stalks and yohimbe bark. Bioresour. Technol., 2008, 99(11), 5030-5036.
[http://dx.doi.org/10.1016/j.biortech.2007.09.007] [PMID: 17945493]
[36]
Enniya, I.; Rghioui, L.; Jourani, A. Adsorption of hexavalent chromium in aqueous solution on activated carbon prepared from apple peels. Sustain. Chem. Phar., 2018, 7, 9-16.
[http://dx.doi.org/10.1016/j.scp.2017.11.003]
[37]
Langmuir, I. The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc., 1918, 40(9), 1361-1403.
[http://dx.doi.org/10.1021/ja02242a004]
[38]
Freundlich, H.M.F. Over the adsorption in solution. J. Phys. Chem., 1906, 57, 385-471.
[39]
Dubinin, M.M.; Radushkevich, L.V. Equation of the characteristic curve of activated charcoal. Proc. Acad. Sci. USSR Phys. Chem. Sect., 1947, 55, 331-333.
[40]
Scatchard, G. The attractions of proteins for small molecules and ions. Ann. N. Y. Acad. Sci., 1949, 51(4), 660-672.
[http://dx.doi.org/10.1111/j.1749-6632.1949.tb27297.x]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy