Review Article

CXCL12-CXCR4信号轴在癌症转移中起关键作用,并且是开发针对转移性癌症的新型疗法的潜在目标

卷 27, 期 33, 2020

页: [5543 - 5561] 页: 19

弟呕挨: 10.2174/0929867326666191113113110

价格: $65

摘要

转移是癌症患者死亡的主要原因:目前尚无有效的癌症转移治疗方法。这主要是由于我们对癌症转移机制的了解不足。越来越多的研究表明,C-X-C基序趋化因子配体12(CXCL12)在各种组织和器官中均过表达。这是一个关键的生态位因子,可以培育转移前的生态位(致瘤土壤),并将肿瘤细胞(致癌的“种子”)募集到这些生态位,从而促进癌细胞的侵袭和转移能力。但是,C-X-C基序趋化因子受体4(CXCR4)在各种癌症干/祖细胞中异常过表达,并充当CXCL12受体。 CXCL12激活CXCR4以及多个下游多个致瘤信号通路,从而促进了多种癌基因的表达。 CXCL12-CXCR4信号轴的激活促进上皮-间质转化(EMT),并使癌症干/祖细胞动员至转移前的生态位。它还可以培养具有高运动性,侵袭性和扩散表型的癌细胞,从而加剧多发性近端或远端癌转移。这导致患者预后不良。基于这一证据,最近的研究探索了靶向CXCL12或CXCR4的抗癌疗法,并在临床前试验中取得了可喜的结果。通过靶向CXCL12-CXCR4信号轴,进一步探索这一新策略及其对转移癌的有效治疗作用,可能会导致一种新颖的疗法,该疗法可以清除肿瘤微环境(“土壤”)并杀死癌细胞,尤其是杀死癌细胞癌症患者中的癌症干/祖细胞(“种子”)。最终,这种方法具有有效治疗转移性癌症的潜力。

关键词: CXCL12,CXCR4,癌症转移,治疗,癌症治疗,信号轴。

[1]
Fidler, I.J. The pathogenesis of cancer metastasis: the ‘seed and soil’ hypothesis revisited. Nat. Rev. Cancer, 2003, 3(6), 453-458.
[http://dx.doi.org/10.1038/nrc1098] [PMID: 12778135]
[2]
Lichtenstein, A.V. Genetic mosaicism and cancer: cause and effect. Cancer Res., 2018, 78(6), 1375-1378.
[http://dx.doi.org/10.1158/0008-5472.CAN-17-2769] [PMID: 29472519]
[3]
Agliano, A.; Calvo, A.; Box, C. The challenge of targeting cancer stem cells to halt metastasis. Semin. Cancer Biol., 2017, 44, 25-42.
[http://dx.doi.org/10.1016/j.semcancer.2017.03.003] [PMID: 28323021]
[4]
Ribatti, D.; Mangialardi, G.; Vacca, A. Stephen Paget and the ‘seed and soil’ theory of metastatic dissemination. Clin. Exp. Med., 2006, 6(4), 145-149.
[http://dx.doi.org/10.1007/s10238-006-0117-4] [PMID: 17191105]
[5]
Whitson, R.J.; Oro, A.E. Soil primes the seed: epigenetic landscape drives tumor behavior. Cell Stem Cell, 2017, 20(2), 149-150.
[http://dx.doi.org/10.1016/j.stem.2017.01.007] [PMID: 28157493]
[6]
Pastushenko, I.; Brisebarre, A.; Sifrim, A.; Fioramonti, M.; Revenco, T.; Boumahdi, S.; Van Keymeulen, A.; Brown, D.; Moers, V.; Lemaire, S.; De Clercq, S.; Minguijón, E.; Balsat, C.; Sokolow, Y.; Dubois, C.; De Cock, F.; Scozzaro, S.; Sopena, F.; Lanas, A.; D’Haene, N.; Salmon, I.; Marine, J.C.; Voet, T.; Sotiropoulou, P.A.; Blanpain, C. Identification of the tumour transition states occurring during EMT. Nature, 2018, 556(7702), 463-468.
[http://dx.doi.org/10.1038/s41586-018-0040-3] [PMID: 29670281]
[7]
Americal Association for Cancer Research. CXCL12 has niche-specific roles in leukemia stem cell function. Cancer Discov., 2019, 9(5), OF11.
[http://dx.doi.org/10.1158/2159-8290.CD-RW2019-044]
[8]
Jung, Y.; Cackowski, F.C.; Yumoto, K.; Decker, A.M.; Wang, J.; Kim, J.K.; Lee, E.; Wang, Y.; Chung, J.S.; Gursky, A.M.; Krebsbach, P.H.; Pienta, K.J.; Morgan, T.M.; Taichman, R.S. CXCL12γ Promotes metastatic castration-resistant prostate cancer by inducing cancer stem cell and neuroendocrine phenotypes. Cancer Res., 2018, 78(8), 2026-2039.
[http://dx.doi.org/10.1158/0008-5472.CAN-17-2332] [PMID: 29431639]
[9]
Kong, L.; Guo, S.; Liu, C.; Zhao, Y.; Feng, C.; Liu, Y.; Wang, T.; Li, C. Overexpression of SDF-1 activates the NF-κB pathway to induce epithelial to mesenchymal transition and cancer stem cell-like phenotypes of breast cancer cells. Int. J. Oncol., 2016, 48(3), 1085-1094.
[http://dx.doi.org/10.3892/ijo.2016.3343] [PMID: 26782945]
[10]
Miyata, T.; Yamashita, Y.I.; Yoshizumi, T.; Shiraishi, M.; Ohta, M.; Eguchi, S.; Aishima, S.; Fujioka, H.; Baba, H. CXCL12 expression in intrahepatic cholangiocarcinoma is associated with metastasis and poor prognosis. Cancer Sci., 2019, 110(10), 3197-3203.
[http://dx.doi.org/10.1111/cas.14151] [PMID: 31361379]
[11]
Wang, M.; Yang, X.; Wei, M.; Wang, Z. The role of CXCL12 axis in lung metastasis of colorectal cancer. J. Cancer, 2018, 9(21), 3898-3903.
[http://dx.doi.org/10.7150/jca.26383] [PMID: 30410593]
[12]
Ahirwar, D.K.; Nasser, M.W.; Ouseph, M.M.; Elbaz, M.; Cuitiño, M.C.; Kladney, R.D.; Varikuti, S.; Kaul, K.; Satoskar, A.R.; Ramaswamy, B.; Zhang, X.; Ostrowski, M.C.; Leone, G.; Ganju, R.K. Fibroblast-derived CXCL12 promotes breast cancer metastasis by facilitating tumor cell intravasation. Oncogene, 2018, 37(32), 4428-4442.
[http://dx.doi.org/10.1038/s41388-018-0263-7] [PMID: 29720724]
[13]
Azizidoost, S.; Asnafi, A.A.; Saki, N. Signaling-chemokine axis network in brain as a sanctuary site for metastasis. J. Cell. Physiol., 2019, 234(4), 3376-3382.
[http://dx.doi.org/10.1002/jcp.27305] [PMID: 30187487]
[14]
Conley-LaComb, M.K.; Saliganan, A.; Kandagatla, P.; Chen, Y.Q.; Cher, M.L.; Chinni, S.R. PTEN loss mediated Akt activation promotes prostate tumor growth and metastasis via CXCL12/CXCR4 signaling. Mol. Cancer, 2013, 12(1), 85.
[http://dx.doi.org/10.1186/1476-4598-12-85] [PMID: 23902739]
[15]
Lee, B.C.; Lee, T.H.; Avraham, S.; Avraham, H.K. Involvement of the chemokine receptor CXCR4 and its ligand stromal cell-derived factor 1alpha in breast cancer cell migration through human brain microvascular endothelial cells. Mol. Cancer Res., 2004, 2(6), 327-338.
[PMID: 15235108]
[16]
Roy, I.; Zimmerman, N.P.; Mackinnon, A.C.; Tsai, S.; Evans, D.B.; Dwinell, M.B. CXCL12 chemokine expression suppresses human pancreatic cancer growth and metastasis. PLoS One, 2014, 9(3)e90400
[http://dx.doi.org/10.1371/journal.pone.0090400] [PMID: 24594697]
[17]
Gil, M.; Komorowski, M.P.; Seshadri, M.; Rokita, H.; McGray, A.J.; Opyrchal, M.; Odunsi, K.O.; Kozbor, D. CXCL12/CXCR4 blockade by oncolytic virotherapy inhibits ovarian cancer growth by decreasing immunosuppression and targeting cancer-initiating cells. J. Immunol., 2014, 193(10), 5327-5337.
[http://dx.doi.org/10.4049/jimmunol.1400201] [PMID: 25320277]
[18]
Wang, J.; Knaut, H. Chemokine signaling in development and disease. Development, 2014, 141(22), 4199-4205.
[http://dx.doi.org/10.1242/dev.101071] [PMID: 25371357]
[19]
Ruscher, K.; Kuric, E.; Liu, Y.; Walter, H.L.; Issazadeh-Navikas, S.; Englund, E.; Wieloch, T. Inhibition of CXCL12 signaling attenuates the postischemic immune response and improves functional recovery after stroke. J. Cereb. Blood Flow Metab., 2013, 33(8), 1225-1234.
[http://dx.doi.org/10.1038/jcbfm.2013.71] [PMID: 23632969]
[20]
Cheng, J.W.; Sadeghi, Z.; Levine, A.D.; Penn, M.S.; von Recum, H.A.; Caplan, A.I.; Hijaz, A. The role of CXCL12 and CCL7 chemokines in immune regulation, embryonic development, and tissue regeneration. Cytokine, 2014, 69(2), 277-283.
[http://dx.doi.org/10.1016/j.cyto.2014.06.007] [PMID: 25034237]
[21]
Sleightholm, R.L.; Neilsen, B.K.; Li, J.; Steele, M.M.; Singh, R.K.; Hollingsworth, M.A.; Oupicky, D. Emerging roles of the CXCL12/CXCR4 axis in pancreatic cancer progression and therapy. Pharmacol. Ther., 2017, 179, 158-170.
[http://dx.doi.org/10.1016/j.pharmthera.2017.05.012] [PMID: 28549596]
[22]
Feig, C.; Jones, J.O.; Kraman, M.; Wells, R.J.; Deonarine, A.; Chan, D.S.; Connell, C.M.; Roberts, E.W.; Zhao, Q.; Caballero, O.L.; Teichmann, S.A.; Janowitz, T.; Jodrell, D.I.; Tuveson, D.A.; Fearon, D.T. Targeting CXCL12 from FAP-expressing carcinoma-associated fibroblasts synergizes with anti-PD-L1 immunotherapy in pancreatic cancer. Proc. Natl. Acad. Sci. USA, 2013, 110(50), 20212-20217.
[http://dx.doi.org/10.1073/pnas.1320318110] [PMID: 24277834]
[23]
Neagu, M.; Constantin, C.; Longo, C. Chemokines in the melanoma metastasis biomarkers portrait. J. Immunoassay Immunochem., 2015, 36(6), 559-566.
[http://dx.doi.org/10.1080/15321819.2015.1035593] [PMID: 25839711]
[24]
Amarante, M.K.; Vitiello, G.A.F.; Rosa, M.H.; Mancilla, I.A.; Watanabe, M.A.E. Potential use of CXCL12/CXCR4 and sonic hedgehog pathways as therapeutic targets in medulloblastoma. Acta Oncol., 2018, 57(9), 1134-1142.
[http://dx.doi.org/10.1080/0284186X.2018.1473635] [PMID: 29771176]
[25]
Nazari, A.; Khorramdelazad, H.; Hassanshahi, G. Biological/pathological functions of the CXCL12/CXCR4/CXCR7 axes in the pathogenesis of bladder cancer. Int. J. Clin. Oncol., 2017, 22(6), 991-1000.
[http://dx.doi.org/10.1007/s10147-017-1187-x] [PMID: 29022185]
[26]
Jeng, K.S.; Jeng, C.J.; Jeng, W.J.; Chang, C.F.; Sheen, I.S. Role of C-X-C chemokine ligand 12/C-X-C chemokine receptor 4 in the progression of hepatocellular carcinoma. Oncol. Lett., 2017, 14(2), 1905-1910.
[http://dx.doi.org/10.3892/ol.2017.6396] [PMID: 28789425]
[27]
Zheng, N.; Chen, J.; Li, T.; Liu, W.; Liu, J.; Chen, H.; Wang, J.; Jia, L. 0000-0001-6839-5545, A.O. Abortifacient metapristone (RU486 derivative) interrupts CXCL12/CXCR4 axis for ovarian metastatic chemoprevention. Mol. Carcinog., 2017, 56, 1896-1908.
[http://dx.doi.org/10.1002/mc.22645] [PMID: 28277622]
[28]
Hsiao, J.J.; Ng, B.H.; Smits, M.M.; Wang, J.; Jasavala, R.J.; Martinez, H.D.; Lee, J.; Alston, J.J.; Misonou, H.; Trimmer, J.S.; Wright, M.E. Androgen receptor and chemokine receptors 4 and 7 form a signaling axis to regulate CXCL12-dependent cellular motility. BMC Cancer, 2015, 15, 204.
[http://dx.doi.org/10.1186/s12885-015-1201-5] [PMID: 25884570]
[29]
Li, X.; Bu, W.; Meng, L.; Liu, X.; Wang, S.; Jiang, L.; Ren, M.; Fan, Y.; Sun, H. CXCL12/CXCR4 pathway orchestrates CSC-like properties by CAF recruited tumor associated macrophage in OSCC. Exp. Cell Res., 2019, 378(2), 131-138.
[http://dx.doi.org/10.1016/j.yexcr.2019.03.013] [PMID: 30857971]
[30]
Xia, R.; Xu, G.; Huang, Y.; Sheng, X.; Xu, X.; Lu, H. Hesperidin suppresses the migration and invasion of non-small cell lung cancer cells by inhibiting the SDF-1/CXCR-4 pathway. Life Sci., 2018, 201, 111-120.
[http://dx.doi.org/10.1016/j.lfs.2018.03.046] [PMID: 29604270]
[31]
Sivina, M.; Kreitman, R.J.; Arons, E.; Ravandi, F.; Burger, J.A. The bruton tyrosine kinase inhibitor ibrutinib (PCI-32765) blocks hairy cell leukaemia survival, proliferation and B cell receptor signalling: a new therapeutic approach. Br. J. Haematol., 2014, 166(2), 177-188.
[http://dx.doi.org/10.1111/bjh.12867] [PMID: 24697238]
[32]
Ludwig, H.; Weisel, K.; Petrucci, M.T.; Leleu, X.; Cafro, A.M.; Garderet, L.; Leitgeb, C.; Foa, R.; Greil, R.; Yakoub-Agha, I.; Zboralski, D.; Vauléon, S.; Dümmler, T.; Beyer, D.; Kruschinski, A.; Riecke, K.; Baumann, M.; Engelhardt, M. Olaptesed pegol, an anti-CXCL12/SDF-1 Spiegelmer, alone and with bortezomib-dexamethasone in relapsed/refractory multiple myeloma: a phase IIa study. Leukemia, 2017, 31(4), 997-1000.
[http://dx.doi.org/10.1038/leu.2017.5] [PMID: 28074071]
[33]
Hainsworth, J.D.; Reeves, J.A.; Mace, J.R.; Crane, E.J.; Hamid, O.; Stille, J.R.; Flynt, A.; Roberson, S.; Polzer, J.; Arrowsmith, E.R.A. A randomized, open-label phase 2 study of the CXCR4 inhibitor LY2510924 in combination with sunitinib versus sunitinib alone in patients with metastatic renal cell carcinoma (RCC). Target. Oncol., 2016, 11(5), 643-653.
[http://dx.doi.org/10.1007/s11523-016-0434-9] [PMID: 27154357]
[34]
Lu, C.; Xu, F.; Gu, J.; Yuan, Y.; Zhao, G.; Yu, X.; Ge, D. Clinical and biological significance of stem-like CD133(+) CXCR4(+) cells in esophageal squamous cell carcinoma. J. Thorac. Cardiovasc. Surg., 2015, 150(2), 386-395.
[http://dx.doi.org/10.1016/j.jtcvs.2015.05.030] [PMID: 26092504]
[35]
Cioffi, M.; D’Alterio, C.; Camerlingo, R.; Tirino, V.; Consales, C.; Riccio, A.; Ieranò, C.; Cecere, S.C.; Losito, N.S.; Greggi, S.; Pignata, S.; Pirozzi, G.; Scala, S. Identification of a distinct population of CD133(+)CXCR4(+) cancer stem cells in ovarian cancer. Sci. Rep., 2015, 5, 10357.
[http://dx.doi.org/10.1038/srep10357] [PMID: 26020117]
[36]
Jensen, T.; Vadasz, S.; Phoenix, K.; Claffey, K.; Parikh, N.; Finck, C. Descriptive analysis of tumor cells with stem like phenotypes in metastatic and benign adrenal tumors. J. Pediatr. Surg., 2015, 50(9), 1493-1501.
[http://dx.doi.org/10.1016/j.jpedsurg.2015.04.012] [PMID: 25976447]
[37]
Margolin, D.A.; Myers, T.; Zhang, X.; Bertoni, D.M.; Reuter, B.A.; Obokhare, I.; Borgovan, T.; Grimes, C.; Green, H.; Driscoll, T.; Lee, C.G.; Davis, N.K.; Li, L. The critical roles of tumor-initiating cells and the lymph node stromal microenvironment in human colorectal cancer extranodal metastasis using a unique humanized orthotopic mouse model. FASEB J., 2015, 29(8), 3571-3581.
[http://dx.doi.org/10.1096/fj.14-268938] [PMID: 25962655]
[38]
Hira, V.V.; Ploegmakers, K.J.; Grevers, F.; Verbovšek, U.; Silvestre-Roig, C.; Aronica, E.; Tigchelaar, W.; Turnšek, T.L.; Molenaar, R.J.; Van Noorden, C.J. CD133+ and nestin+ glioma stem-like cells reside around CD31+ arterioles in niches that express SDF-1α, CXCR4, osteopontin and cathepsin K. J. Histochem. Cytochem., 2015, 63(7), 481-493.
[http://dx.doi.org/10.1369/0022155415581689] [PMID: 25809793]
[39]
Zhu, L.; Zhang, W.; Wang, J.; Liu, R. Evidence of CD90+CXCR4+ cells as circulating tumor stem cells in hepatocellular carcinoma. Tumour Biol., 2015, 36(7), 5353-5360.
[http://dx.doi.org/10.1007/s13277-015-3196-6] [PMID: 25672610]
[40]
Bertolini, G.; D’Amico, L.; Moro, M.; Landoni, E.; Perego, P.; Miceli, R.; Gatti, L.; Andriani, F.; Wong, D.; Caserini, R.; Tortoreto, M.; Milione, M.; Ferracini, R.; Mariani, L.; Pastorino, U.; Roato, I.; Sozzi, G.; Roz, L. Microenvironment-modulated metastatic CD133+/CXCR4+/EpCAM-lung cancer-initiating cells sustain tumor dissemination and correlate with poor prognosis. Cancer Res., 2015, 75(17), 3636-3649.
[http://dx.doi.org/10.1158/0008-5472.CAN-14-3781] [PMID: 26141860]
[41]
Bleul, C.C.; Farzan, M.; Choe, H.; Parolin, C.; Clark-Lewis, I.; Sodroski, J.; Springer, T.A. The lymphocyte chemoattractant SDF-1 is a ligand for LESTR/fusin and blocks HIV-1 entry. Nature, 1996, 382(6594), 829-833.
[http://dx.doi.org/10.1038/382829a0] [PMID: 8752280]
[42]
Oberlin, E.; Amara, A.; Bachelerie, F.; Bessia, C.; Virelizier, J.L.; Arenzana-Seisdedos, F.; Schwartz, O.; Heard, J.M.; Clark-Lewis, I.; Legler, D.F.; Loetscher, M.; Baggiolini, M.; Moser, B. The CXC chemokine SDF-1 is the ligand for LESTR/fusin and prevents infection by T-cell-line-adapted HIV-1. Nature, 1996, 382(6594), 833-835.
[http://dx.doi.org/10.1038/382833a0] [PMID: 8752281]
[43]
Schols, D.; Struyf, S.; Van Damme, J.; Esté, J.A.; Henson, G.; De Clercq, E. Inhibition of T-tropic HIV strains by selective antagonization of the chemokine receptor CXCR4. J. Exp. Med., 1997, 186(8), 1383-1388.
[http://dx.doi.org/10.1084/jem.186.8.1383] [PMID: 9334378]
[44]
Sakaida, H.; Hori, T.; Yonezawa, A.; Sato, A.; Isaka, Y.; Yoshie, O.; Hattori, T.; Uchiyama, T. T-tropic human immunodeficiency virus type 1 (HIV-1)-derived V3 loop peptides directly bind to CXCR-4 and inhibit T-tropic HIV-1 infection. J. Virol., 1998, 72(12), 9763-9770.
[http://dx.doi.org/10.1128/JVI.72.12.9763-9770.1998] [PMID: 9811711]
[45]
De La Luz Sierra, M.; Yang, F.; Narazaki, M.; Salvucci, O.; Davis, D.; Yarchoan, R.; Zhang, H.H.; Fales, H.; Tosato, G. Differential processing of stromal-derived factor-1alpha and stromal-derived factor-1beta explains functional diversity. Blood, 2004, 103(7), 2452-2459.
[http://dx.doi.org/10.1182/blood-2003-08-2857] [PMID: 14525775]
[46]
Crump, M.P.; Gong, J.H.; Loetscher, P.; Rajarathnam, K.; Amara, A.; Arenzana-Seisdedos, F.; Virelizier, J.L.; Baggiolini, M.; Sykes, B.D.; Clark-Lewis, I. Solution structure and basis for functional activity of stromal cell-derived factor-1: dissociation of CXCR4 activation from binding and inhibition of HIV-1. EMBO J., 1997, 16(23), 6996-7007.
[http://dx.doi.org/10.1093/emboj/16.23.6996] [PMID: 9384579]
[47]
Timotijević, G.; Mostarica Stojković, M.; Miljković, D. CXCL12: role in neuroinflammation. Int. J. Biochem. Cell Biol., 2012, 44(6), 838-841.
[http://dx.doi.org/10.1016/j.biocel.2012.03.014] [PMID: 22484430]
[48]
Zhao, Z.; Ma, X.; Ma, J.; Sun, X.; Li, F.; Lv, J. Naringin enhances endothelial progenitor cell (EPC) proliferation and tube formation capacity through the CXCL12/CXCR4/PI3K/Akt signaling pathway. Chem. Biol. Interact., 2018, 286, 45-51.
[http://dx.doi.org/10.1016/j.cbi.2018.03.002] [PMID: 29510123]
[49]
Zirafi, O.; Kim, K.A.; Ständker, L.; Mohr, K.B.; Sauter, D.; Heigele, A.; Kluge, S.F.; Wiercinska, E.; Chudziak, D.; Richter, R.; Moepps, B.; Gierschik, P.; Vas, V.; Geiger, H.; Lamla, M.; Weil, T.; Burster, T.; Zgraja, A.; Daubeuf, F.; Frossard, N.; Hachet-Haas, M.; Heunisch, F.; Reichetzeder, C.; Galzi, J.L.; Pérez-Castells, J.; Canales-Mayordomo, A.; Jiménez-Barbero, J.; Giménez-Gallego, G.; Schneider, M.; Shorter, J.; Telenti, A.; Hocher, B.; Forssmann, W.G.; Bonig, H.; Kirchhoff, F.; Münch, J. Discovery and characterization of an endogenous CXCR4 antagonist. Cell Rep., 2015, 11(5), 737-747.
[http://dx.doi.org/10.1016/j.celrep.2015.03.061] [PMID: 25921529]
[50]
Chen, L.; Xu, S.; Zeng, X.; Li, J.; Yin, W.; Chen, Y.; Shao, Z.; Jin, W. c-myb activates CXCL12 transcription in T47D and MCF7 breast cancer cells. Acta Biochim. Biophys. Sin. (Shanghai), 2010, 42(1), 1-7.
[http://dx.doi.org/10.1093/abbs/gmp108] [PMID: 20043041]
[51]
Piva, R.; Manferdini, C.; Lambertini, E.; Torreggiani, E.; Penolazzi, L.; Gambari, R.; Pastore, A.; Pelucchi, S.; Gabusi, E.; Piacentini, A.; Filardo, G.; Facchini, A.; Lisignoli, G. Slug contributes to the regulation of CXCL12 expression in human osteoblasts. Exp. Cell Res., 2011, 317(8), 1159-1168.
[http://dx.doi.org/10.1016/j.yexcr.2010.12.011] [PMID: 21182836]
[52]
Uygur, B.; Wu, W.S. SLUG promotes prostate cancer cell migration and invasion via CXCR4/CXCL12 axis. Mol. Cancer, 2011, 10, 139.
[http://dx.doi.org/10.1186/1476-4598-10-139] [PMID: 22074556]
[53]
Holland, J.D.; Györffy, B.; Vogel, R.; Eckert, K.; Valenti, G.; Fang, L.; Lohneis, P.; Elezkurtaj, S.; Ziebold, U.; Birchmeier, W. Combined Wnt/β-catenin, Met and CXCL12/CXCR4 signals characterize basal breast cancer and predict disease outcome. Cell Rep., 2013, 5(5), 1214-1227.
[http://dx.doi.org/10.1016/j.celrep.2013.11.001] [PMID: 24290754]
[54]
Santiago, B.; Calonge, E.; Del Rey, M.J.; Gutierrez-Cañas, I.; Izquierdo, E.; Usategui, A.; Galindo, M.; Alcamí, J.; Pablos, J.L. CXCL12 gene expression is upregulated by hypoxia and growth arrest but not by inflammatory cytokines in rheumatoid synovial fibroblasts. Cytokine, 2011, 53(2), 184-190.
[http://dx.doi.org/10.1016/j.cyto.2010.06.006] [PMID: 20609598]
[55]
Boudot, A.; Kerdivel, G.; Lecomte, S.; Flouriot, G.; Desille, M.; Godey, F.; Leveque, J.; Tas, P.; Le Dréan, Y.; Pakdel, F. COUP-TFI modifies CXCL12 and CXCR4 expression by activating EGF signaling and stimulates breast cancer cell migration. BMC Cancer, 2014, 14, 407.
[http://dx.doi.org/10.1186/1471-2407-14-407] [PMID: 24906407]
[56]
Khurana, S.; Melacarne, A.; Yadak, R.; Schouteden, S.; Notelaers, T.; Pistoni, M.; Maes, C.; Verfaillie, C.M. SMAD signaling regulates CXCL12 expression in the bone marrow niche, affecting homing and mobilization of hematopoietic progenitors. Stem Cells, 2014, 32(11), 3012-3022.
[http://dx.doi.org/10.1002/stem.1794] [PMID: 25069965]
[57]
Chen, X.W.; Yu, T.J.; Zhang, J.; Li, Y.; Chen, H.L.; Yang, G.F.; Yu, W.; Liu, Y.Z.; Liu, X.X.; Duan, C.F.; Tang, H.L.; Qiu, M.; Wang, C.L.; Zheng, H.; Yue, J.; Guo, A.M.; Yang, J. CYP4A in tumor-associated macrophages promotes pre-metastatic niche formation and metastasis. Oncogene, 2017, 36(35), 5045-5057.
[http://dx.doi.org/10.1038/onc.2017.118] [PMID: 28481877]
[58]
Murgai, M.; Ju, W.; Eason, M.; Kline, J.; Beury, D.W.; Kaczanowska, S.; Miettinen, M.M.; Kruhlak, M.; Lei, H.; Shern, J.F.; Cherepanova, O.A.; Owens, G.K.; Kaplan, R.N. KLF4-dependent perivascular cell plasticity mediates pre-metastatic niche formation and metastasis. Nat. Med., 2017, 23(10), 1176-1190.
[http://dx.doi.org/10.1038/nm.4400] [PMID: 28920957]
[59]
Hiratsuka, S.; Tomita, T.; Mishima, T.; Matsunaga, Y.; Omori, T.; Ishibashi, S.; Yamaguchi, S.; Hosogane, T.; Watarai, H.; Omori-Miyake, M.; Yamamoto, T.; Shibata, N.; Watanabe, A.; Aburatani, H.; Tomura, M.; High, K.A.; Maru, Y. Hepato-entrained B220+CD11c+NK1.1+ cells regulate pre-metastatic niche formation in the lung. EMBO Mol. Med., 2018, 10(7)e8643
[http://dx.doi.org/10.15252/emmm.201708643] [PMID: 29930175]
[60]
Houg, D.S.; Bijlsma, M.F. The hepatic pre-metastatic niche in pancreatic ductal adenocarcinoma. Mol. Cancer, 2018, 17(1), 95.
[http://dx.doi.org/10.1186/s12943-018-0842-9] [PMID: 29903049]
[61]
Shu, S.; Yang, Y.; Allen, C.L.; Maguire, O.; Minderman, H.; Sen, A.; Ciesielski, M.J.; Collins, K.A.; Bush, P.J.; Singh, P.; Wang, X.; Morgan, M.; Qu, J.; Bankert, R.B.; Whiteside, T.L.; Wu, Y.; Ernstoff, M.S. Metabolic reprogramming of stromal fibroblasts by melanoma exosome microRNA favours a pre-metastatic microenvironment. Sci. Rep., 2018, 8(1), 12905.
[http://dx.doi.org/10.1038/s41598-018-31323-7] [PMID: 30150674]
[62]
Wang, Y.; Ding, Y.; Guo, N.; Wang, S. MDSCs: key criminals of tumor pre-metastatic niche formation. Front. Immunol., 2019, 10, 172.
[http://dx.doi.org/10.3389/fimmu.2019.00172] [PMID: 30792719]
[63]
Doglioni, G.; Parik, S.; Fendt, S.M. Interactions in the (pre)metastatic niche support metastasis formation. Front. Oncol., 2019, 9, 219.
[http://dx.doi.org/10.3389/fonc.2019.00219] [PMID: 31069166]
[64]
Kim, H.; Chung, H.; Kim, J.; Choi, D.H.; Shin, Y.; Kang, Y.G.; Kim, B.M.; Seo, S.U.; Chung, S.; Seok, S.H. Macrophages-triggered sequential remodeling of endothelium-interstitial matrix to form pre-metastatic niche in microfluidic tumor microenvironment. Adv. Sci. (Weinh.), 2019, 6(11)1900195
[http://dx.doi.org/10.1002/advs.201900195] [PMID: 31179226]
[65]
Liu, Y.; Gu, Y.; Han, Y.; Zhang, Q.; Jiang, Z.; Zhang, X.; Huang, B.; Xu, X.; Zheng, J.; Cao, X. Tumor exosomal RNAs promote lung pre-metastatic niche formation by activating alveolar epithelial TLR3 to recruit neutrophils. Cancer Cell, 2016, 30(2), 243-256.
[http://dx.doi.org/10.1016/j.ccell.2016.06.021] [PMID: 27505671]
[66]
Zeng, Z.; Li, Y.; Pan, Y.; Lan, X.; Song, F.; Sun, J.; Zhou, K.; Liu, X.; Ren, X.; Wang, F.; Hu, J.; Zhu, X.; Yang, W.; Liao, W.; Li, G.; Ding, Y.; Liang, L. Cancer-derived exosomal miR-25-3p promotes pre-metastatic niche formation by inducing vascular permeability and angiogenesis. Nat. Commun., 2018, 9(1), 5395.
[http://dx.doi.org/10.1038/s41467-018-07810-w] [PMID: 30568162]
[67]
Guo, Y.; Ji, X.; Liu, J.; Fan, D.; Zhou, Q.; Chen, C.; Wang, W.; Wang, G.; Wang, H.; Yuan, W.; Ji, Z.; Sun, Z. Effects of exosomes on pre-metastatic niche formation in tumors. Mol. Cancer, 2019, 18(1), 39.
[http://dx.doi.org/10.1186/s12943-019-0995-1] [PMID: 30857545]
[68]
Wu, S.; Zheng, Q.; Xing, X.; Dong, Y.; Wang, Y.; You, Y.; Chen, R.; Hu, C.; Chen, J.; Gao, D.; Zhao, Y.; Wang, Z.; Xue, T.; Ren, Z.; Cui, J. Matrix stiffness-upregulated LOXL2 promotes fibronectin production, MMP9 and CXCL12 expression and BMDCs recruitment to assist pre-metastatic niche formation. J. Exp. Clin. Cancer Res., 2018, 37(1), 99.
[http://dx.doi.org/10.1186/s13046-018-0761-z] [PMID: 29728125]
[69]
Mannavola, F.; Tucci, M.; Felici, C.; Passarelli, A.; D’Oronzo, S.; Silvestris, F. Tumor-derived exosomes promote the in vitro osteotropism of melanoma cells by activating the SDF-1/CXCR4/CXCR7 axis. J. Transl. Med., 2019, 17(1), 230.
[http://dx.doi.org/10.1186/s12967-019-1982-4] [PMID: 31324252]
[70]
Muders, M.H.; Baretton, G.B. The metastatic niche. Mechanisms and prognostic implications. Pathologe, 2015, 36(Suppl. 2), 185-188.
[http://dx.doi.org/10.1007/s00292-015-0079-y] [PMID: 26395891]
[71]
Silinsky, J.; Grimes, C.; Driscoll, T.; Green, H.; Cordova, J.; Davis, N.K.; Li, L.; Margolin, D.A. CD 133+ and CXCR4+ colon cancer cells as a marker for lymph node metastasis. J. Surg. Res., 2013, 185(1), 113-118.
[http://dx.doi.org/10.1016/j.jss.2013.05.049] [PMID: 23777983]
[72]
Wang, N.; Docherty, F.; Brown, H.K.; Reeves, K.; Fowles, A.; Lawson, M.; Ottewell, P.D.; Holen, I.; Croucher, P.I.; Eaton, C.L. Mitotic quiescence, but not unique “stemness,” marks the phenotype of bone metastasis-initiating cells in prostate cancer. FASEB J., 2015, 29(8), 3141-3150.
[http://dx.doi.org/10.1096/fj.14-266379] [PMID: 25888599]
[73]
Trautmann, F.; Cojoc, M.; Kurth, I.; Melin, N.; Bouchez, L.C.; Dubrovska, A.; Peitzsch, C. CXCR4 as biomarker for radioresistant cancer stem cells. Int. J. Radiat. Biol., 2014, 90(8), 687-699.
[http://dx.doi.org/10.3109/09553002.2014.906766] [PMID: 24650104]
[74]
Kimura, T.; Wang, L.; Tabu, K.; Tsuda, M.; Tanino, M.; Maekawa, A.; Nishihara, H.; Hiraga, H.; Taga, T.; Oda, Y.; Tanaka, S. Identification and analysis of CXCR4-positive synovial sarcoma-initiating cells. Oncogene, 2016, 35(30), 3932-3943.
[http://dx.doi.org/10.1038/onc.2015.461] [PMID: 26640147]
[75]
Heiler, S.; Wang, Z.; Zöller, M. Pancreatic cancer stem cell markers and exosomes - the incentive push. World J. Gastroenterol., 2016, 22(26), 5971-6007.
[http://dx.doi.org/10.3748/wjg.v22.i26.5971] [PMID: 27468191]
[76]
Cheng, B.; Yang, G.; Jiang, R.; Cheng, Y.; Yang, H.; Pei, L.; Qiu, X. Cancer stem cell markers predict a poor prognosis in renal cell carcinoma: a meta-analysis. Oncotarget, 2016, 7(40), 65862-65875.
[http://dx.doi.org/10.18632/oncotarget.11672] [PMID: 27588469]
[77]
Flüh, C.; Hattermann, K.; Mehdorn, H.M.; Synowitz, M.; Held-Feindt, J. Differential expression of CXCR4 and CXCR7 with various stem cell markers in paired human primary and recurrent glioblastomas. Int. J. Oncol., 2016, 48(4), 1408-1416.
[http://dx.doi.org/10.3892/ijo.2016.3354] [PMID: 26821357]
[78]
Rasti, A.; Abolhasani, M.; Zanjani, L.S.; Asgari, M.; Mehrazma, M.; Madjd, Z. Reduced expression of CXCR4, a novel renal cancer stem cell marker, is associated with high-grade renal cell carcinoma. J. Cancer Res. Clin. Oncol., 2017, 143(1), 95-104.
[http://dx.doi.org/10.1007/s00432-016-2239-8] [PMID: 27638770]
[79]
Corrò, C.; Moch, H. Biomarker discovery for renal cancer stem cells. J. Pathol. Clin. Res., 2018, 4(1), 3-18.
[http://dx.doi.org/10.1002/cjp2.91] [PMID: 29416873]
[80]
Dotan, I.; Werner, L.; Vigodman, S.; Weiss, S.; Brazowski, E.; Maharshak, N.; Chen, O.; Tulchinsky, H.; Halpern, Z.; Guzner-Gur, H. CXCL12 is a constitutive and inflammatory chemokine in the intestinal immune system. Inflamm. Bowel Dis., 2010, 16(4), 583-592.
[http://dx.doi.org/10.1002/ibd.21106] [PMID: 19774645]
[81]
Noort, A.R.; van Zoest, K.P.; Weijers, E.M.; Koolwijk, P.; Maracle, C.X.; Novack, D.V.; Siemerink, M.J.; Schlingemann, R.O.; Tak, P.P.; Tas, S.W. NF-κB-inducing kinase is a key regulator of inflammation-induced and tumour-associated angiogenesis. J. Pathol., 2014, 234(3), 375-385.
[http://dx.doi.org/10.1002/path.4403] [PMID: 25043127]
[82]
Pan, F.; Ma, S.; Cao, W.; Liu, H.; Chen, F.; Chen, X.; Shi, R. SDF-1α upregulation of MMP-2 is mediated by p38 MAPK signaling in pancreatic cancer cell lines. Mol. Biol. Rep., 2013, 40(7), 4139-4146.
[http://dx.doi.org/10.1007/s11033-012-2225-4] [PMID: 23712777]
[83]
Ray, P.; Stacer, A.C.; Fenner, J.; Cavnar, S.P.; Meguiar, K.; Brown, M.; Luker, K.E.; Luker, G.D. CXCL12-γ in primary tumors drives breast cancer metastasis. Oncogene, 2015, 34(16), 2043-2051.
[http://dx.doi.org/10.1038/onc.2014.157] [PMID: 24909174]
[84]
Hernández-López, C.; Varas, A.; Sacedón, R.; Jiménez, E.; Muñoz, J.J.; Zapata, A.G.; Vicente, A. Stromal cell-derived factor 1/CXCR4 signaling is critical for early human T-cell development. Blood, 2002, 99(2), 546-554.
[http://dx.doi.org/10.1182/blood.V99.2.546] [PMID: 11781237]
[85]
Mao, W.; Yi, X.; Qin, J.; Tian, M.; Jin, G. CXCL12 inhibits cortical neuron apoptosis by increasing the ratio of Bcl-2/Bax after traumatic brain injury. Int. J. Neurosci., 2014, 124(4), 281-290.
[http://dx.doi.org/10.3109/00207454.2013.838236] [PMID: 23984821]
[86]
Yuecheng, Y.; Xiaoyan, X. Stromal-cell derived factor-1 regulates epithelial ovarian cancer cell invasion by activating matrix metalloproteinase-9 and matrix metalloproteinase-2. Eur. J. Cancer Prev., 2007, 16(5), 430-435.
[http://dx.doi.org/10.1097/01.cej.0000236259.88146.a4] [PMID: 17923814]
[87]
Tripathi, V.; Kumar, R.; Dinda, A.K.; Kaur, J.; Luthra, K. CXCL12-CXCR7 signaling activates ERK and Akt pathways in human choriocarcinoma cells. Cell Commun. Adhes., 2014, 21(4), 221-228.
[http://dx.doi.org/10.3109/15419061.2013.876013] [PMID: 24450273]
[88]
Wei, L.; Zhang, B.; Cao, W.; Xing, H.; Yu, X.; Zhu, D. Inhibition of CXCL12/CXCR4 suppresses pulmonary arterial smooth muscle cell proliferation and cell cycle progression via PI3K/Akt pathway under hypoxia. J. Recept. Signal Transduct. Res., 2015, 35(4), 329-339.
[http://dx.doi.org/10.3109/10799893.2014.984308] [PMID: 25421526]
[89]
Delgado-Martín, C.; Escribano, C.; Pablos, J.L.; Riol-Blanco, L.; Rodríguez-Fernández, J.L. Chemokine CXCL12 uses CXCR4 and a signaling core formed by bifunctional Akt, extracellular signal-regulated kinase (ERK)1/2, and mammalian target of rapamycin complex 1 (mTORC1) proteins to control chemotaxis and survival simultaneously in mature dendritic cells. J. Biol. Chem., 2011, 286(43), 37222-37236.
[http://dx.doi.org/10.1074/jbc.M111.294116] [PMID: 21878648]
[90]
Lin, C.H.; Shih, C.H.; Lin, Y.C.; Yang, Y.L.; Chen, B.C. MEKK1, JNK, and SMAD3 mediate CXCL12-stimulated connective tissue growth factor expression in human lung fibroblasts. J. Biomed. Sci., 2018, 25(1), 19.
[http://dx.doi.org/10.1186/s12929-018-0421-9] [PMID: 29499695]
[91]
Wang, S.; Zhang, S.; Li, J.; Xu, X.; Weng, Y.; Zheng, M.; Ouyang, L.; Li, F. CXCL12-induced upregulation of FOXM1 expression promotes human glioblastoma cell invasion. Biochem. Biophys. Res. Commun., 2014, 447(1), 1-6.
[http://dx.doi.org/10.1016/j.bbrc.2013.12.079] [PMID: 24561124]
[92]
Yamazaki, M.; Nakamura, K.; Mizukami, Y.; Ii, M.; Sasajima, J.; Sugiyama, Y.; Nishikawa, T.; Nakano, Y.; Yanagawa, N.; Sato, K.; Maemoto, A.; Tanno, S.; Okumura, T.; Karasaki, H.; Kono, T.; Fujiya, M.; Ashida, T.; Chung, D.C.; Kohgo, Y. Sonic hedgehog derived from human pancreatic cancer cells augments angiogenic function of endothelial progenitor cells. Cancer Sci., 2008, 99(6), 1131-1138.
[http://dx.doi.org/10.1111/j.1349-7006.2008.00795.x] [PMID: 18422746]
[93]
Wang, B.; Wang, W.; Niu, W.; Liu, E.; Liu, X.; Wang, J.; Peng, C.; Liu, S.; Xu, L.; Wang, L.; Niu, J. SDF-1/CXCR4 axis promotes directional migration of colorectal cancer cells through upregulation of integrin αvβ6. Carcinogenesis, 2014, 35(2), 282-291.
[http://dx.doi.org/10.1093/carcin/bgt331] [PMID: 24085800]
[94]
Winderlich, J.N.; Kremer, K.L.; Koblar, S.A. Adult human dental pulp stem cells promote blood-brain barrier permeability through vascular endothelial growth factor-a expression. J. Cereb. Blood Flow Metab., 2016, 36(6), 1087-1097.
[http://dx.doi.org/10.1177/0271678X15608392] [PMID: 26661186]
[95]
Yao, C.; Li, P.; Song, H.; Song, F.; Qu, Y.; Ma, X.; Shi, R.; Wu, J. Retraction note to: CXCL12/CXCR4 axis upregulates twist to induce EMT in human glioblastoma. Mol. Neurobiol., 2017, 54(9), 7553.
[http://dx.doi.org/10.1007/s12035-017-0629-9] [PMID: 28550531]
[96]
Yao, C.; Li, P.; Song, H.; Song, F.; Qu, Y.; Ma, X.; Shi, R.; Wu, J. CXCL12/CXCR4 axis upregulates twist to induce EMT in human glioblastoma. Mol. Neurobiol., 2016, 53(6), 3948-3953.
[http://dx.doi.org/10.1007/s12035-015-9340-x] [PMID: 26179613]
[97]
Hu, T.H.; Yao, Y.; Yu, S.; Han, L.L.; Wang, W.J.; Guo, H.; Tian, T.; Ruan, Z.P.; Kang, X.M.; Wang, J.; Wang, S.H.; Nan, K.J. SDF-1/CXCR4 promotes epithelial-mesenchymal transition and progression of colorectal cancer by activation of the Wnt/β-catenin signaling pathway. Cancer Lett., 2014, 354(2), 417-426.
[http://dx.doi.org/10.1016/j.canlet.2014.08.012] [PMID: 25150783]
[98]
Sun, Y.; Liu, X.; Zhang, Q.; Mao, X.; Feng, L.; Su, P.; Chen, H.; Guo, Y.; Jin, F. Oncogenic potential of TSTA3 in breast cancer and its regulation by the tumor suppressors miR-125a-5p and miR-125b. Tumour Biol., 2016, 37(4), 4963-4972.
[http://dx.doi.org/10.1007/s13277-015-4178-4] [PMID: 26531722]
[99]
Miao, C.G.; Yang, Y.Y.; He, X.; Li, X.F.; Huang, C.; Huang, Y.; Zhang, L.; Lv, X.W.; Jin, Y.; Li, J. Wnt signaling pathway in rheumatoid arthritis, with special emphasis on the different roles in synovial inflammation and bone remodeling. Cell. Signal., 2013, 25(10), 2069-2078.
[http://dx.doi.org/10.1016/j.cellsig.2013.04.002] [PMID: 23602936]
[100]
Zhang, F.; Kang, H.; Xu, Q. Estrogen increases secretion of stromal cell derived factor-1 in human breast cancer cells. Int. J. Clin. Exp. Med., 2014, 7(12), 5529-5534.
[PMID: 25664066]
[101]
Li, X.; Li, P.; Chang, Y.; Xu, Q.; Wu, Z.; Ma, Q.; Wang, Z. The SDF-1/CXCR4 axis induces epithelial-mesenchymal transition in hepatocellular carcinoma. Mol. Cell. Biochem., 2014, 392(1-2), 77-84.
[http://dx.doi.org/10.1007/s11010-014-2020-8] [PMID: 24658853]
[102]
Lv, B.; Yang, X.; Lv, S.; Wang, L.; Fan, K.; Shi, R.; Wang, F.; Song, H.; Ma, X.; Tan, X.; Xu, K.; Xie, J.; Wang, G.; Feng, M.; Zhang, L. CXCR4 Signaling induced epithelial-mesenchymal transition by PI3K/AKT and ERK pathways in glioblastoma. Mol. Neurobiol., 2015, 52(3), 1263-1268.
[http://dx.doi.org/10.1007/s12035-014-8935-y] [PMID: 25326893]
[103]
Xu, C.; Liu, Y.; Xiao, L.; Guo, C.; Deng, S.; Zheng, S.; Zeng, E. The involvement of anterior gradient 2 in the stromal cell-derived factor 1-induced epithelial-mesenchymal transition of glioblastoma. Tumour Biol., 2016, 37(5), 6091-6097.
[http://dx.doi.org/10.1007/s13277-015-4481-0] [PMID: 26608373]
[104]
Bertran, E.; Crosas-Molist, E.; Sancho, P.; Caja, L.; Lopez-Luque, J.; Navarro, E.; Egea, G.; Lastra, R.; Serrano, T.; Ramos, E.; Fabregat, I. Overactivation of the TGF-β pathway confers a mesenchymal-like phenotype and CXCR4-dependent migratory properties to liver tumor cells. Hepatology, 2013, 58(6), 2032-2044.
[http://dx.doi.org/10.1002/hep.26597] [PMID: 23813475]
[105]
Yamaguchi, K.; Miyashita, K.; Aizawa, K.; Todoroki, H.; Kiyonaga, H. A case of gastric cancer with liver metastasis in which obstruction of the bile duct and choledocholithiasis was caused by intra-hepatic arterial infusion chemotherapy. Gan To Kagaku Ryoho, 2003, 30(4), 523-526.
[PMID: 12722686]
[106]
Hirakawa, S.; Detmar, M.; Kerjaschki, D.; Nagamatsu, S.; Matsuo, K.; Tanemura, A.; Kamata, N.; Higashikawa, K.; Okazaki, H.; Kameda, K.; Nishida-Fukuda, H.; Mori, H.; Hanakawa, Y.; Sayama, K.; Shirakata, Y.; Tohyama, M.; Tokumaru, S.; Katayama, I.; Hashimoto, K. Nodal lymphangiogenesis and metastasis: Role of tumor-induced lymphatic vessel activation in extramammary Paget’s disease. Am. J. Pathol., 2009, 175(5), 2235-2248.
[http://dx.doi.org/10.2353/ajpath.2009.090420] [PMID: 19815713]
[107]
Li, D.; Qu, C.; Ning, Z.; Wang, H.; Zang, K.; Zhuang, L.; Chen, L.; Wang, P.; Meng, Z. Radiation promotes epithelial-to-mesenchymal transition and invasion of pancreatic cancer cell by activating carcinoma-associated fibroblasts. Am. J. Cancer Res., 2016, 6(10), 2192-2206.
[PMID: 27822411]
[108]
Yan, Y.; Zhou, C.; Li, J.; Chen, K.; Wang, G.; Wei, G.; Chen, M.; Li, X. Resveratrol inhibits hepatocellular carcinoma progression driven by hepatic stellate cells by targeting Gli-1. Mol. Cell. Biochem., 2017, 434(1-2), 17-24.
[http://dx.doi.org/10.1007/s11010-017-3031-z] [PMID: 28455791]
[109]
Lin, Y.; Ma, Q.; Li, L.; Wang, H. The CXCL12-CXCR4 axis promotes migration, invasiveness, and EMT in human papillary thyroid carcinoma B-CPAP cells via NF-κB signaling. Biochem. Cell Biol., 2018, 96(5), 619-626.
[http://dx.doi.org/10.1139/bcb-2017-0074] [PMID: 29316404]
[110]
Zhou, B.; Chen, W.L.; Wang, Y.Y.; Lin, Z.Y.; Zhang, D.M.; Fan, S.; Li, J.S. A role for cancer-associated fibroblasts in inducing the epithelial-to-mesenchymal transition in human tongue squamous cell carcinoma. J. Oral Pathol. Med., 2014, 43(8), 585-592.
[http://dx.doi.org/10.1111/jop.12172] [PMID: 24645915]
[111]
Albert, S.; Hourseau, M.; Halimi, C.; Serova, M.; Descatoire, V.; Barry, B.; Couvelard, A.; Riveiro, M.E.; Tijeras-Raballand, A.; de Gramont, A.; Raymond, E.; Faivre, S. Prognostic value of the chemokine receptor CXCR4 and epithelial-to-mesenchymal transition in patients with squamous cell carcinoma of the mobile tongue. Oral Oncol., 2012, 48(12), 1263-1271.
[http://dx.doi.org/10.1016/j.oraloncology.2012.06.010] [PMID: 22776129]
[112]
Clarke, M.F.; Dick, J.E.; Dirks, P.B.; Eaves, C.J.; Jamieson, C.H.; Jones, D.L.; Visvader, J.; Weissman, I.L.; Wahl, G.M. Cancer stem cells-perspectives on current status and future directions: AACR workshop on cancer stem cells. Cancer Res., 2006, 66(19), 9339-9344.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-3126] [PMID: 16990346]
[113]
Nguyen, L.V.; Vanner, R.; Dirks, P.; Eaves, C.J. Cancer stem cells: an evolving concept. Nat. Rev. Cancer, 2012, 12(2), 133-143.
[http://dx.doi.org/10.1038/nrc3184] [PMID: 22237392]
[114]
Kreso, A.; van Galen, P.; Pedley, N.M.; Lima-Fernandes, E.; Frelin, C.; Davis, T.; Cao, L.; Baiazitov, R.; Du, W.; Sydorenko, N.; Moon, Y.C.; Gibson, L.; Wang, Y.; Leung, C.; Iscove, N.N.; Arrowsmith, C.H.; Szentgyorgyi, E.; Gallinger, S.; Dick, J.E.; O’Brien, C.A. Self-renewal as a therapeutic target in human colorectal cancer. Nat. Med., 2014, 20(1), 29-36.
[http://dx.doi.org/10.1038/nm.3418] [PMID: 24292392]
[115]
Tu, Z.; Xie, S.; Xiong, M.; Liu, Y.; Yang, X.; Tembo, K.M.; Huang, J.; Hu, W.; Huang, X.; Pan, S.; Liu, P.; Altaf, E.; Kang, G.; Xiong, J.; Zhang, Q. CXCR4 is involved in CD133-induced EMT in non-small cell lung cancer. Int. J. Oncol., 2017, 50(2), 505-514.
[http://dx.doi.org/10.3892/ijo.2016.3812] [PMID: 28000861]
[116]
Korkaya, H.; Liu, S.; Wicha, M.S. Breast cancer stem cells, cytokine networks, and the tumor microenvironment. J. Clin. Invest., 2011, 121(10), 3804-3809.
[http://dx.doi.org/10.1172/JCI57099] [PMID: 21965337]
[117]
Korkaya, H.; Liu, S.; Wicha, M.S. Regulation of cancer stem cells by cytokine networks: attacking cancer’s inflammatory roots. Clin. Cancer Res., 2011, 17(19), 6125-6129.
[http://dx.doi.org/10.1158/1078-0432.CCR-10-2743] [PMID: 21685479]
[118]
Fessler, E.; Dijkgraaf, F.E.; De Sousa, E.; Melo, F.; Medema, J.P.; Medema, J.P.; Medema, J.P. Cancer stem cell dynamics in tumor progression and metastasis: is the microenvironment to blame? Cancer Lett., 2013, 341(1), 97-104.
[http://dx.doi.org/10.1016/j.canlet.2012.10.015] [PMID: 23089245]
[119]
Hanahan, D.; Coussens, L.M. Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell, 2012, 21(3), 309-322.
[http://dx.doi.org/10.1016/j.ccr.2012.02.022] [PMID: 22439926]
[120]
Kashyap, M.K.; Amaya-Chanaga, C.I.; Kumar, D.; Simmons, B.; Huser, N.; Gu, Y.; Hallin, M.; Lindquist, K.; Yafawi, R.; Choi, M.Y.; Amine, A.A.; Rassenti, L.Z.; Zhang, C.; Liu, S.H.; Smeal, T.; Fantin, V.R.; Kipps, T.J.; Pernasetti, F.; Castro, J.E. Targeting the CXCR4 pathway using a novel anti-CXCR4 IgG1 antibody (PF-06747143) in chronic lymphocytic leukemia. J. Hematol. Oncol., 2017, 10(1), 112.
[http://dx.doi.org/10.1186/s13045-017-0435-x] [PMID: 28526063]
[121]
Im, J.Y.; Min, W.K.; Park, M.H.; Kim, N.; Lee, J.K.; Jin, H.K.; Choi, J.Y.; Kim, S.Y.; Bae, J.S. AMD3100 improves ovariectomy-induced osteoporosis in mice by facilitating mobilization of hematopoietic stem/progenitor cells. BMB Rep., 2014, 47(8), 439-444.
[http://dx.doi.org/10.5483/BMBRep.2014.47.8.159] [PMID: 24314140]
[122]
Peled, A.; Tavor, S. Role of CXCR4 in the pathogenesis of acute myeloid leukemia. Theranostics, 2013, 3(1), 34-39.
[http://dx.doi.org/10.7150/thno.5150] [PMID: 23382784]
[123]
Feys, L.; Descamps, B.; Vanhove, C.; Vral, A.; Veldeman, L.; Vermeulen, S.; De Wagter, C.; Bracke, M.; De Wever, O. Radiation-induced lung damage promotes breast cancer lung-metastasis through CXCR4 signaling. Oncotarget, 2015, 6(29), 26615-26632.
[http://dx.doi.org/10.18632/oncotarget.5666] [PMID: 26396176]
[124]
Jiang, Z.; Zhou, W.; Guan, S.; Wang, J.; Liang, Y. Contribution of SDF-1α/CXCR4 signaling to brain development and glioma progression. Neurosignals, 2013, 21(3-4), 240-258.
[http://dx.doi.org/10.1159/000339091] [PMID: 22922481]
[125]
Shen, W.; Hu, X.M.; Liu, Y.N.; Han, Y.; Chen, L.P.; Wang, C.C.; Song, C. CXCL12 in astrocytes contributes to bone cancer pain through CXCR4-mediated neuronal sensitization and glial activation in rat spinal cord. J. Neuroinflammation, 2014, 11, 75.
[http://dx.doi.org/10.1186/1742-2094-11-75] [PMID: 24735601]
[126]
Liepelt, A.; Tacke, F. Stromal cell-derived factor-1 (SDF-1) as a target in liver diseases. Am. J. Physiol. Gastrointest. Liver Physiol., 2016, 311(2), G203-G209.
[http://dx.doi.org/10.1152/ajpgi.00193.2016] [PMID: 27313175]
[127]
Luker, K.E.; Lewin, S.A.; Mihalko, L.A.; Schmidt, B.T.; Winkler, J.S.; Coggins, N.L.; Thomas, D.G.; Luker, G.D. Scavenging of CXCL12 by CXCR7 promotes tumor growth and metastasis of CXCR4-positive breast cancer cells. Oncogene, 2012, 31(45), 4750-4758.
[http://dx.doi.org/10.1038/onc.2011.633] [PMID: 22266857]
[128]
Xu, Q.; Wang, Z.; Chen, X.; Duan, W.; Lei, J.; Zong, L.; Li, X.; Sheng, L.; Ma, J.; Han, L.; Li, W.; Zhang, L.; Guo, K.; Ma, Z.; Wu, Z.; Wu, E.; Ma, Q. Stromal-derived factor-1α/CXCL12-CXCR4 chemotactic pathway promotes perineural invasion in pancreatic cancer. Oncotarget, 2015, 6(7), 4717-4732.
[http://dx.doi.org/10.18632/oncotarget.3069] [PMID: 25605248]
[129]
Bartolomé, R.A.; Gálvez, B.G.; Longo, N.; Baleux, F.; Van Muijen, G.N.; Sánchez-Mateos, P.; Arroyo, A.G.; Teixidó, J. Stromal cell-derived factor-1alpha promotes melanoma cell invasion across basement membranes involving stimulation of membrane-type 1 matrix metalloproteinase and Rho GTPase activities. Cancer Res., 2004, 64(7), 2534-2543.
[http://dx.doi.org/10.1158/0008-5472.CAN-03-3398] [PMID: 15059909]
[130]
Lin, C.H.; Shih, C.H.; Tseng, C.C.; Yu, C.C.; Tsai, Y.J.; Bien, M.Y.; Chen, B.C. CXCL12 induces connective tissue growth factor expression in human lung fibroblasts through the Rac1/ERK, JNK, and AP-1 pathways. PLoS One, 2014, 9(8)e104746
[http://dx.doi.org/10.1371/journal.pone.0104746] [PMID: 25121739]
[131]
Wald, O.; Izhar, U.; Amir, G.; Kirshberg, S.; Shlomai, Z.; Zamir, G.; Peled, A.; Shapira, O.M. Interaction between neoplastic cells and cancer-associated fibroblasts through the CXCL12/CXCR4 axis: role in non-small cell lung cancer tumor proliferation. J. Thorac. Cardiovasc. Surg., 2011, 141(6), 1503-1512.
[http://dx.doi.org/10.1016/j.jtcvs.2010.11.056] [PMID: 21463876]
[132]
Economidou, F.; Antoniou, K.M.; Soufla, G.; Lasithiotaki, I.; Karagiannis, K.; Lymbouridou, R.; Proklou, A.; Spandidos, D.A.; Siafakas, N.M. Role of VEGF-stromal cell-derived factor-1alpha/CXCL12 axis in pleural effusion of lung cancer. J. Recept. Signal Transduct. Res., 2010, 30(3), 154-160.
[http://dx.doi.org/10.3109/10799891003671147] [PMID: 20196627]
[133]
Wagner, P.L.; Hyjek, E.; Vazquez, M.F.; Meherally, D.; Liu, Y.F.; Chadwick, P.A.; Rengifo, T.; Sica, G.L.; Port, J.L.; Lee, P.C.; Paul, S.; Altorki, N.K.; Saqi, A. CXCL12 and CXCR4 in adenocarcinoma of the lung: association with metastasis and survival. J. Thorac. Cardiovasc. Surg., 2009, 137(3), 615-621.
[http://dx.doi.org/10.1016/j.jtcvs.2008.07.039] [PMID: 19258077]
[134]
Xie, S.; Zeng, W.; Fan, G.; Huang, J.; Kang, G.; Geng, Q.; Cheng, B.; Wang, W.; Dong, P. Effect of CXCL12/CXCR4 on increasing the metastatic potential of non-small cell lung cancer in vitro is inhibited through the downregulation of CXCR4 chemokine receptor expression. Oncol. Lett., 2014, 7(4), 941-947.
[http://dx.doi.org/10.3892/ol.2014.1837] [PMID: 24944647]
[135]
Paratore, S.; Banna, G.L.; D’Arrigo, M.; Saita, S.; Iemmolo, R.; Lucenti, L.; Bellia, D.; Lipari, H.; Buscarino, C.; Cunsolo, R.; Cavallaro, S. CXCR4 and CXCL12 immunoreactivities differentiate primary non-small-cell lung cancer with or without brain metastases. Cancer Biomark., 2011-2012, 10(2), 79-89.
[http://dx.doi.org/10.3233/CBM-2011-0232] [PMID: 22430135]
[136]
Lee, Y.L.; Kuo, W.H.; Lin, C.W.; Chen, W.; Cheng, W.E.; Chen, S.C.; Shih, C.M. Association of genetic polymorphisms of CXCL12/SDF1 gene and its receptor, CXCR4, to the susceptibility and prognosis of non-small cell lung cancer. Lung Cancer, 2011, 73(2), 147-152.
[http://dx.doi.org/10.1016/j.lungcan.2010.12.011] [PMID: 21292343]
[137]
Sterlacci, W.; Saker, S.; Huber, B.; Fiegl, M.; Tzankov, A. Expression of the CXCR4 ligand SDF-1/CXCL12 is prognostically important for adenocarcinoma and large cell carcinoma of the lung. Virchows Arch., 2016, 468(4), 463-471.
[http://dx.doi.org/10.1007/s00428-015-1900-y] [PMID: 26818832]
[138]
Suzuki, M.; Mohamed, S.; Nakajima, T.; Kubo, R.; Tian, L.; Fujiwara, T.; Suzuki, H.; Nagato, K.; Chiyo, M.; Motohashi, S.; Yasufuku, K.; Iyoda, A.; Yoshida, S.; Sekine, Y.; Shibuya, K.; Hiroshima, K.; Nakatani, Y.; Yoshino, I.; Fujisawa, T. Aberrant methylation of CXCL12 in non-small cell lung cancer is associated with an unfavorable prognosis. Int. J. Oncol., 2008, 33(1), 113-119.
[http://dx.doi.org/10.3892/ijo.33.1.113] [PMID: 18575756]
[139]
Katsura, M.; Shoji, F.; Okamoto, T.; Shimamatsu, S.; Hirai, F.; Toyokawa, G.; Morodomi, Y.; Tagawa, T.; Oda, Y.; Maehara, Y. Correlation between CXCR4/CXCR7/CXCL12 chemokine axis expression and prognosis in lymph-node-positive lung cancer patients. Cancer Sci., 2018, 109(1), 154-165.
[http://dx.doi.org/10.1111/cas.13422] [PMID: 29032612]
[140]
Oonakahara, K.; Matsuyama, W.; Higashimoto, I.; Kawabata, M.; Arimura, K.; Osame, M. Stromal-derived factor-1alpha/CXCL12-CXCR 4 axis is involved in the dissemination of NSCLC cells into pleural space. Am. J. Respir. Cell Mol. Biol., 2004, 30(5), 671-677.
[http://dx.doi.org/10.1165/rcmb.2003-0340OC] [PMID: 14672915]
[141]
Terasaki, M.; Sugita, Y.; Arakawa, F.; Okada, Y.; Ohshima, K.; Shigemori, M. CXCL12/CXCR4 signaling in malignant brain tumors: a potential pharmacological therapeutic target. Brain Tumor Pathol., 2011, 28(2), 89-97.
[http://dx.doi.org/10.1007/s10014-010-0013-1] [PMID: 21210239]
[142]
Tang, T.; Xia, Q.J.; Chen, J.B.; Xi, M.R.; Lei, D. Expression of the CXCL12/SDF-1 chemokine receptor CXCR7 in human brain tumours. Asian Pac. J. Cancer Prev., 2012, 13(10), 5281-5286.
[http://dx.doi.org/10.7314/APJCP.2012.13.10.5281] [PMID: 23244149]
[143]
Zhang, W.; Bao, L.; Yang, S.; Qian, Z.; Dong, M.; Yin, L.; Zhao, Q.; Ge, K.; Deng, Z.; Zhang, J.; Qi, F.; An, Z.; Yu, Y.; Wang, Q.; Wu, R.; Fan, F.; Zhang, L.; Chen, X.; Na, Y.; Feng, L.; Liu, L.; Zhu, Y.; Qin, T.; Zhang, S.; Zhang, Y.; Zhang, X.; Wang, J.; Yi, X.; Zou, L.; Xin, H.W.; Ditzel, H.J.; Gao, H.; Zhang, K.; Liu, B.; Cheng, S. Tumor-selective replication herpes simplex virus-based technology significantly improves clinical detection and prognostication of viable circulating tumor cells. Oncotarget, 2016, 7(26), 39768-39783.
[http://dx.doi.org/10.18632/oncotarget.9465] [PMID: 27206795]
[144]
Kowalczuk, O.; Burzykowski, T.; Niklinska, W.E.; Kozlowski, M.; Chyczewski, L.; Niklinski, J. CXCL5 as a potential novel prognostic factor in early stage non-small cell lung cancer: results of a study of expression levels of 23 genes. Tumour Biol., 2014, 35(5), 4619-4628.
[http://dx.doi.org/10.1007/s13277-014-1605-x] [PMID: 24500664]
[145]
Donà, E.; Barry, J.D.; Valentin, G.; Quirin, C.; Khmelinskii, A.; Kunze, A.; Durdu, S.; Newton, L.R.; Fernandez-Minan, A.; Huber, W.; Knop, M.; Gilmour, D. Directional tissue migration through a self-generated chemokine gradient. Nature, 2013, 503(7475), 285-289.
[http://dx.doi.org/10.1038/nature12635] [PMID: 24067609]
[146]
Xin, Q.; Zhang, N.; Yu, H.B.; Zhang, Q.; Cui, Y.F.; Zhang, C.S.; Ma, Z.; Yang, Y.; Liu, W. CXCR7/CXCL12 axis is involved in lymph node and liver metastasis of gastric carcinoma. World J. Gastroenterol., 2017, 23(17), 3053-3065.
[http://dx.doi.org/10.3748/wjg.v23.i17.3053] [PMID: 28533662]
[147]
Wang, H.C.; Li, T.Y.; Chao, Y.J.; Hou, Y.C.; Hsueh, Y.S.; Hsu, K.H.; Shan, Y.S. KIT exon 11 codons 557-558 deletion mutation promotes liver metastasis through the CXCL12/CXCR4 axis in gastrointestinal stromal tumors. Clin. Cancer Res., 2016, 22(14), 3477-3487.
[http://dx.doi.org/10.1158/1078-0432.CCR-15-2748] [PMID: 26936919]
[148]
D’Alterio, C.; Nasti, G.; Polimeno, M.; Ottaiano, A.; Conson, M.; Circelli, L.; Botti, G.; Scognamiglio, G.; Santagata, S.; De Divitiis, C.; Nappi, A.; Napolitano, M.; Tatangelo, F.; Pacelli, R.; Izzo, F.; Vuttariello, E.; Botti, G.; Scala, S. CXCR4-CXCL12-CXCR7, TLR2-TLR4, and PD-1/PD-L1 in colorectal cancer liver metastases from neoadjuvant-treated patients. OncoImmunology, 2016, 5(12)e1254313
[http://dx.doi.org/10.1080/2162402X.2016.1254313] [PMID: 28123896]
[149]
Gronthos, S.; Zannettino, A.C. The role of the chemokine CXCL12 in osteoclastogenesis. Trends Endocrinol. Metab., 2007, 18(3), 108-113.
[http://dx.doi.org/10.1016/j.tem.2007.02.002] [PMID: 17320408]
[150]
Conley-LaComb, M.K.; Semaan, L.; Singareddy, R.; Li, Y.; Heath, E.I.; Kim, S.; Cher, M.L.; Chinni, S.R. Pharmacological targeting of CXCL12/CXCR4 signaling in prostate cancer bone metastasis. Mol. Cancer, 2016, 15(1), 68.
[http://dx.doi.org/10.1186/s12943-016-0552-0] [PMID: 27809841]
[151]
Cioffi, M.; Trabulo, S.M.; Vallespinos, M.; Raj, D.; Kheir, T.B.; Lin, M.L.; Begum, J.; Baker, A.M.; Amgheib, A.; Saif, J.; Perez, M.; Soriano, J.; Desco, M.; Gomez-Gaviro, M.V.; Cusso, L.; Megias, D.; Aicher, A.; Heeschen, C. The miR-25-93-106b cluster regulates tumor metastasis and immune evasion via modulation of CXCL12 and PD-L1. Oncotarget, 2017, 8(13), 21609-21625.
[http://dx.doi.org/10.18632/oncotarget.15450] [PMID: 28423491]
[152]
Subik, K.; Shu, L.; Wu, C.; Liang, Q.; Hicks, D.; Boyce, B.; Schiffhauer, L.; Chen, D.; Chen, C.; Tang, P.; Xing, L. The ubiquitin E3 ligase WWP1 decreases CXCL12-mediated MDA231 breast cancer cell migration and bone metastasis. Bone, 2012, 50(4), 813-823.
[http://dx.doi.org/10.1016/j.bone.2011.12.022] [PMID: 22266093]
[153]
Zhao, B.C.; Wang, Z.J.; Mao, W.Z.; Ma, H.C.; Han, J.G.; Zhao, B.; Xu, H.M. CXCR4/SDF-1 axis is involved in lymph node metastasis of gastric carcinoma. World J. Gastroenterol., 2011, 17(19), 2389-2396.
[http://dx.doi.org/10.3748/wjg.v17.i19.2389] [PMID: 21633638]
[154]
Ying, J.; Xu, Q.; Zhang, G.; Liu, B.; Zhu, L. The expression of CXCL12 and CXCR4 in gastric cancer and their correlation to lymph node metastasis. Med. Oncol., 2012, 29(3), 1716-1722.
[http://dx.doi.org/10.1007/s12032-011-9990-0] [PMID: 21630055]
[155]
Wu, W.; Qian, L.; Chen, X.; Ding, B. Prognostic significance of CXCL12, CXCR4, and CXCR7 in patients with breast cancer. Int. J. Clin. Exp. Pathol., 2015, 8(10), 13217-13224.
[PMID: 26722521]
[156]
Fridrichova, I.; Smolkova, B.; Kajabova, V.; Zmetakova, I.; Krivulcik, T.; Mego, M.; Cierna, Z.; Karaba, M.; Benca, J.; Pindak, D.; Bohac, M.; Repiska, V.; Danihel, L. CXCL12 and ADAM23 hypermethylation are associated with advanced breast cancers. Transl. Res., 2015, 165(6), 717-730.
[http://dx.doi.org/10.1016/j.trsl.2014.12.006] [PMID: 25620615]
[157]
Sasaki, K.; Natsugoe, S.; Ishigami, S.; Matsumoto, M.; Okumura, H.; Setoyama, T.; Uchikado, Y.; Kita, Y.; Tamotsu, K.; Sakurai, T.; Owaki, T.; Aikou, T. Expression of CXCL12 and its receptor CXCR4 correlates with lymph node metastasis in submucosal esophageal cancer. J. Surg. Oncol., 2008, 97(5), 433-438.
[http://dx.doi.org/10.1002/jso.20976] [PMID: 18176915]
[158]
Liu, H.; Pan, Z.; Li, A.; Fu, S.; Lei, Y.; Sun, H.; Wu, M.; Zhou, W. Roles of chemokine receptor 4 (CXCR4) and chemokine ligand 12 (CXCL12) in metastasis of hepatocellular carcinoma cells. Cell. Mol. Immunol., 2008, 5(5), 373-378.
[http://dx.doi.org/10.1038/cmi.2008.46] [PMID: 18954561]
[159]
Lv, Z.D.; Kong, B.; Liu, X.P.; Dong, Q.; Niu, H.T.; Wang, Y.H.; Li, F.N.; Wang, H.B. CXCL12 chemokine expression suppresses human breast cancer growth and metastasis in vitro and in vivo. Int. J. Clin. Exp. Pathol., 2014, 7(10), 6671-6678.
[PMID: 25400746]
[160]
Zhi, Y.; Chen, J.; Zhang, S.; Chang, X.; Ma, J.; Dai, D. Down-regulation of CXCL12 by DNA hypermethylation and its involvement in gastric cancer metastatic progression. Dig. Dis. Sci., 2012, 57(3), 650-659.
[http://dx.doi.org/10.1007/s10620-011-1922-5] [PMID: 21960286]
[161]
Yamada, K.; Maishi, N.; Akiyama, K.; Towfik Alam, M.; Ohga, N.; Kawamoto, T.; Shindoh, M.; Takahashi, N.; Kamiyama, T.; Hida, Y.; Taketomi, A.; Hida, K. CXCL12-CXCR7 axis is important for tumor endothelial cell angiogenic property. Int. J. Cancer, 2015, 137(12), 2825-2836.
[http://dx.doi.org/10.1002/ijc.29655] [PMID: 26100110]
[162]
Zhong, C.; Wang, J.; Li, B.; Xiang, H.; Ultsch, M.; Coons, M.; Wong, T.; Chiang, N.Y.; Clark, S.; Clark, R.; Quintana, L.; Gribling, P.; Suto, E.; Barck, K.; Corpuz, R.; Yao, J.; Takkar, R.; Lee, W.P.; Damico-Beyer, L.A.; Carano, R.D.; Adams, C.; Kelley, R.F.; Wang, W.; Ferrara, N. Development and preclinical characterization of a humanized antibody targeting CXCL12. Clin. Cancer Res., 2013, 19(16), 4433-4445.
[http://dx.doi.org/10.1158/1078-0432.CCR-13-0943] [PMID: 23812669]
[163]
Takekoshi, T.; Ziarek, J.J.; Volkman, B.F.; Hwang, S.T. A locked, dimeric CXCL12 variant effectively inhibits pulmonary metastasis of CXCR4-expressing melanoma cells due to enhanced serum stability. Mol. Cancer Ther., 2012, 11(11), 2516-2525.
[http://dx.doi.org/10.1158/1535-7163.MCT-12-0494] [PMID: 22869557]
[164]
Goffart, N.; Kroonen, J.; Di Valentin, E.; Dedobbeleer, M.; Denne, A.; Martinive, P.; Rogister, B. Adult mouse subventricular zones stimulate glioblastoma stem cells specific invasion through CXCL12/CXCR4 signaling. Neuro-oncol., 2015, 17(1), 81-94.
[http://dx.doi.org/10.1093/neuonc/nou144] [PMID: 25085362]
[165]
O’Boyle, G.; Swidenbank, I.; Marshall, H.; Barker, C.E.; Armstrong, J.; White, S.A.; Fricker, S.P.; Plummer, R.; Wright, M.; Lovat, P.E. Inhibition of CXCR4-CXCL12 chemotaxis in melanoma by AMD11070. Br. J. Cancer, 2013, 108(8), 1634-1640.
[http://dx.doi.org/10.1038/bjc.2013.124] [PMID: 23538388]
[166]
Kim, S.Y.; Lee, C.H.; Midura, B.V.; Yeung, C.; Mendoza, A.; Hong, S.H.; Ren, L.; Wong, D.; Korz, W.; Merzouk, A.; Salari, H.; Zhang, H.; Hwang, S.T.; Khanna, C.; Helman, L.J. Inhibition of the CXCR4/CXCL12 chemokine pathway reduces the development of murine pulmonary metastases. Clin. Exp. Metastasis, 2008, 25(3), 201-211.
[http://dx.doi.org/10.1007/s10585-007-9133-3] [PMID: 18071913]
[167]
Unzueta, U.; Céspedes, M.V.; Ferrer-Miralles, N.; Casanova, I.; Cedano, J.; Corchero, J.L.; Domingo-Espín, J.; Villaverde, A.; Mangues, R.; Vázquez, E. Intracellular CXCR4+ cell targeting with T22-empowered protein-only nanoparticles. Int. J. Nanomedicine, 2012, 7, 4533-4544.
[http://dx.doi.org/ 10.2147/ijn.s34450] [PMID: 22923991]
[168]
Platt, D.; Amara, S.; Mehta, T.; Vercuyssee, K.; Myles, E.L.; Johnson, T.; Tiriveedhi, V. Violacein inhibits matrix metalloproteinase mediated CXCR4 expression: potential anti-tumor effect in cancer invasion and metastasis. Biochem. Biophys. Res. Commun., 2014, 455(1-2), 107-112.
[http://dx.doi.org/10.1016/j.bbrc.2014.10.124] [PMID: 25450700]
[169]
Ma, L.; Qiao, H.; He, C.; Yang, Q.; Cheung, C.H.; Kanwar, J.R.; Sun, X. Modulating the interaction of CXCR4 and CXCL12 by low-molecular-weight heparin inhibits hepatic metastasis of colon cancer. Invest. New Drugs, 2012, 30(2), 508-517.
[http://dx.doi.org/10.1007/s10637-010-9578-0] [PMID: 21080209]
[170]
Zhong, G.X.; Gong, Y.; Yu, C.J.; Wu, S.F.; Ma, Q.P.; Wang, Y.; Ren, J.; Zhang, X.C.; Yang, W.H.; Zhu, W. Significantly inhibitory effects of low molecular weight heparin (Fraxiparine) on the motility of lung cancer cells and its related mechanism. Tumour Biol., 2015, 36(6), 4689-4697.
[http://dx.doi.org/10.1007/s13277-015-3117-8] [PMID: 25619477]
[171]
Miao, L.; Li, J.; Liu, Q.; Feng, R.; Das, M.; Lin, C.M.; Goodwin, T.J.; Dorosheva, O.; Liu, R.; Huang, L. Transient and local expression of chemokine and immune checkpoint traps to treat pancreatic cancer. ACS Nano, 2017, 11(9), 8690-8706.
[http://dx.doi.org/10.1021/acsnano.7b01786] [PMID: 28809532]
[172]
Zboralski, D.; Hoehlig, K.; Eulberg, D.; Frömming, A.; Vater, A. Increasing tumor-infiltrating T cells through inhibition of CXCL12 with NOX-A12 synergizes with PD-1 blockade. Cancer Immunol. Res., 2017, 5(11), 950-956.
[http://dx.doi.org/10.1158/2326-6066.CIR-16-0303] [PMID: 28963140]
[173]
Zeng, Y.; Li, B.; Liang, Y.; Reeves, P.M.; Qu, X.; Ran, C.; Liu, Q.; Callahan, M.V.; Sluder, A.E.; Gelfand, J.A.; Chen, H.; Poznansky, M.C. Dual blockade of CXCL12-CXCR4 and PD-1-PD-L1 pathways prolongs survival of ovarian tumor-bearing mice by prevention of immunosuppression in the tumor microenvironment. FASEB J., 2019, 33(5), 6596-6608.
[http://dx.doi.org/10.1096/fj.201802067RR] [PMID: 30802149]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy