Generic placeholder image

Current Catalysis

Editor-in-Chief

ISSN (Print): 2211-5447
ISSN (Online): 2211-5455

Research Article

Facile Synthesis of 1,8-dioxooctahydro Xanthenes by Reusable Zinc Sulfide based Ternary Nanocomposite via Hydrothermal Route

Author(s): Jhansi R. Sunkara and Sathish M. Botsa*

Volume 9, Issue 1, 2020

Page: [72 - 79] Pages: 8

DOI: 10.2174/2211544708666191112120505

Abstract

Background: Metal oxide or metal oxide composite nanoparticles are attaining tremendous importance due to their catalytic activities for various organic transformations.

Objective: To report the one-pot synthesis of xanthene derivatives prepared by ZnS-Fe2O3-Ag composite under solvent-free conditions.

Method: To prepare nanocomposite by a facile and simple hydrothermal approach.

Results: The prepared composite is smaller (17.56 nm) in size and can be easily separable, recycled and reused six times without any significant loss of catalytic activity with excellent yields. In short reaction time, great catalytic activity was perceived with no co-catalyst and any other activator.

Conclusion: In conclusion, ZnS-Fe2O3-Ag composite provides a simple, economical, efficient and greener method for the synthesis of one-pot multicomponent reaction of aldehyde with 1,3-diketones under solvent free conditions for the synthesis of 1,8-dioxooctahydro xanthenes. In short reaction time, great catalytic activity was perceived with no co-catalyst and any other activator.

Keywords: ZnS-Fe2O3-Ag, hydrothermal, 1, 8-dioxooctahydro xanthenes, reusable, solvent free, hydrothermal.

Graphical Abstract

[1]
Zelefack, F.; Guilet, D.; Fabre, N.; Bayet, C.; Chevalley, S.; Ngouela, S.; Lenta, B.N.; Valentin, A.; Tsamo, E.; Dijoux-Franca, M.G.V. Cytotoxic and antiplasmodial xanthones from Pentadesma butyracea. J. Nat. Prod., 2009, 72(5), 954-957.
[http://dx.doi.org/10.1021/np8005953] [PMID: 19296616]
[2]
Jamison, J.M.; Krabill, K.; Hatwalkar, A.; Jamison, E.; Tsai, C.C. Potentiation of the antiviral activity of poly r(A-U) by xanthene dyes. Cell Biol. Int. Rep., 1990, 14(12), 1075-1084.
[http://dx.doi.org/10.1016/0309-1651(90)90015-Q] [PMID: 1964628]
[3]
Poupelin, J.P.; Saint-Rut, G.; Foussard-Blanpin, O.; Narcisse, G.; Uchida-Ernouf, G.; Lacroix, R. Synthesis and anti-inflammatory properties of bis 2-hydroxy-1-naphthyl methane derivatives. Eur. J. Med. Chem., 1978, 13(1), 67-71.
[4]
Jhansi Rani, S.; Muralikrishna, R.; Sridhar, P.; Mahesh, P. One-pot facile synthesis of acridinediones and their derivatives by nano ferrite as a catalyst. Chem. Sci. Trans., 2016, 5(4), 1001-1007.
[5]
Chibale, K.; Visser, M.; Schalkwyk, D.V.; Smith, P.J.; Saravanamuthu, A.; Fairlamb, A.H. Exploring the potential of xanthene derivatives as trypanothione reductase inhibitors and chloroquine potentiating agents. Tetrahedron, 2003, 59(13), 2289-2296.
[http://dx.doi.org/10.1016/S0040-4020(03)00240-0]
[6]
Ion, R.M.; Planner, A.; Wiktorowicz, K.; Frackowiak, D. The incorporation of various porphyrins into blood cells measured via flow cytometry, absorption and emission spectroscopy. Acta Biochim. Pol., 1998, 45(3), 833-845.
[PMID: 9918512]
[7]
Menchen, S.M.; Benson, S.C.; Lam, J.Y.L.; Zhen, W.; Sun, D.; Rosenblum, B.B.; Khan, S.H.; Taing, M. Sulfonated diarylrhodamine dyes. U. S. Patent., 2003.US 6583168.
[8]
Ahmad, M.; King, T.A.; Do-Kyeong, K.; Cha, B.H.; Lee, J. Performance and photostability of xanthene and pyrromethene laser dyes in sol-gel phases. J. Phys., 2002, 35, 1473-1476.
[9]
Jha, A.; Beal, J. Convenient synthesis of 12H-benzo[a]xanthenes from 2- tetralone. Tetrahedron Lett., 2004, 45(49), 8999-9001.
[http://dx.doi.org/10.1016/j.tetlet.2004.10.046]
[10]
Qunitas, D.; Garcia, A.; Dominguez, D. Synthesis of spiro[pyrrolidine or piperidine-3,9′-xanthenes] by anionic cycloacylation of carbamates. Tetrahedron Lett., 2003, 44(52), 9291-9294.
[http://dx.doi.org/10.1016/j.tetlet.2003.10.065]
[11]
Kuo, C.W.; Fang, J.M. Synthesis of xanthenes, indanes, and tetrahydronaphthalenes via coupling reactions. Synth. Commun., 2001, 31, 877-892.
[http://dx.doi.org/10.1081/SCC-100103323]
[12]
Knignt, D.W.; Little, P.B. The first high-yielding benzyne cyclisation using a phenolic nucleophile: A new route to xanthenes. Synlett, 1998, 10, 1141-1143.
[http://dx.doi.org/10.1055/s-1998-1878]
[13]
Latham, A.H.; Williams, M.E. Controlling transport and chemical functionality of magnetic nanoparticles. Acc. Chem. Res., 2008, 41(3), 411-420.
[http://dx.doi.org/10.1021/ar700183b] [PMID: 18251514]
[14]
Laurent, S.; Forge, D.; Port, M.; Roch, A.; Robic, C.; Vander Elst, L.; Muller, R.N. Magnetic iron oxide nanoparticles: Synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem. Rev., 2008, 108(6), 2064-2110.
[http://dx.doi.org/10.1021/cr068445e] [PMID: 18543879]
[15]
Mohan, B.S.; Ramadevi, D.; Basavaiah, K. A facile synthesis of Cu2O and CuO nanoparticles via sonochemical assisted method. Curr. Nanosci., 2019, 15(2), 209-213.
[16]
Rossi, L.M.; Silva, F.P.; Vono, L.L.R.; Kiyohara, P.K.; Duarte, E.L.; Itri, R.; Landers, R.; Machado, G. Superparamagnetic nanoparticle-supported palladium: A highly stable magnetically recoverable and reusable catalyst for hydrogenation reactions. Green Chem., 2007, 9, 379-385.
[http://dx.doi.org/10.1039/b612980c]
[17]
Jin, T.S.; Zhang, J.S.; Wang, A.Q.; Li, T.S. Solid‐state condensation reactions between aldehydes and 5,5‐dimethyl‐1,3‐cyclohexanedione by grinding at room temperature. Synth. Commun., 2005, 35(17), 2339-2345.
[http://dx.doi.org/10.1080/00397910500187282]
[18]
Jin, T.S.; Zhang, J.S.; Xiao, J.C.; Wang, A.Q.; Li, T.S. Clean synthesis of 1,8-dioxo-octahydroxanthene derivatives catalyzed by p-dodecylbenezenesulfonic acid in aqueous media. Synlett, 2004, 5, 866-870.
[http://dx.doi.org/10.1055/s-2004-820022]
[19]
Fan, X.; Hu, X.; Zhang, X.; Wang, J. InCl3·4H2O-promoted green preparation of xanthenedione derivatives in ionic liquids. Can. J. Chem., 2005, 83(1), 16-20.
[http://dx.doi.org/10.1139/v04-155]
[20]
Das, B.; Thirupathi, P.; Mahender, I.; Reddy, V.S.; Rao, Y.K. Amberlyst-15: An efficient reusable heterogeneous catalyst for the synthesis of 1,8-dioxo-octahydroxanthenes and 1,8-dioxo-decahydroacridines. J. Mol. Catal., 2006, 247(1-2), 233-239.
[http://dx.doi.org/10.1016/j.molcata.2005.11.048]
[21]
Seyyedhamzeh, M.; Mirzaei, P.; Bazgir, A. Solvent-free synthesis of aryl-14H-dibenzo[a,j]xanthenes and 1,8-dioxo-octahydro-xanthenes using silica sulphuric acid as catalyst. Dyes Pigments, 2008, 76(3), 836-839.
[http://dx.doi.org/10.1016/j.dyepig.2007.02.001]
[22]
Venkateswararao, G.; Satya Sree, G.; Sathish Mohan, B.; Ravi, K. Synthesis of Benzimadazole in presence of nanocatalyst Fe2O3. Asian J. Res. Chem, 2018, 11(3), 1-3.
[http://dx.doi.org/10.5958/0974-4150.2018.00093.7]
[23]
Botsa, S.M.; Ravi, K.; Sree, G.S.; Anjaneyulu, R.B.; Baasavaiah, K. Fe2O3/RGO nanocomposite photocatalyst: effective degradation of 4-nitrophenol. Physica B: Cond. Matter, 2019, 553, 190-194.
[24]
Mohan, B.S.; Ramadevi, D.; Basavaiah, K. Removal of Nitrophenols from wastewater by monoclinic CuO/RGO nanocomposite. Nanotech. Envi. Engg, 2019, 4, 1.
[http://dx.doi.org/10.1007/s41204-018-0045-z]
[25]
Joseph, J.; Gollamudi, P.; Botsa, S.M.; Karasala, B.K.; Vidavalur, S. HClO4-SiO2 catalyzed distinct protocol for the synthesis of 3-N,N-dialkylamino-1,2,4-triazoles under solvent-free conditions. J. Emerg. Tech. and Innov. Res., 2018, 4(3), 742-749.
[26]
Naeimi, H.; Foroughi, H. ZnS nanoparticles as an efficient recyclable heterogeneous catalyst for one-pot synthesis of 4-substituted-1,5-benzodiazepines. New J. Chem., 2015, 39, 1228-1236.
[http://dx.doi.org/10.1039/C4NJ01893A]

© 2025 Bentham Science Publishers | Privacy Policy