Generic placeholder image

The Natural Products Journal

Editor-in-Chief

ISSN (Print): 2210-3155
ISSN (Online): 2210-3163

Review Article

Health Beneficial Potential of Pectolinarigenin on Human Diseases: An Updated Review of Medicinal Importance and Pharmacological Activity

Author(s): Kanika Patel and Dinesh Kumar Patel*

Volume 11, Issue 1, 2021

Published on: 11 November, 2019

Page: [3 - 12] Pages: 10

DOI: 10.2174/2210315509666191111110901

Price: $65

Abstract

Medicinal Plants are valuable source of phytochemicals which have been used in the medicine as source of raw material since very ancient time in the world. Flavonoids are one of the important classes of phytochemical basically present in the fruits, vegetables, grains, wine, tea etc. Flavonoids also play an important role in the defense mechanism of plants and produce different colours in the plants. Pectolinarigenin is a natural flavonoidal compound having molecular formula C17H14O6 and molecular weight 314.28. Pectolinarigenin is present in various plants and examples are Clerodendrum phlomidis, Eupatorium odoratum, Cirsium chanroenicum, Cirsium japonlcum, Chromolaena odorata, Cirsium setidens, and Trollius chinensis. Pectolinarigenin acts as an anticancer agent against various types of human malignancies, such as lung cancer, melanoma, hepatocellular carcinoma and colorectal adenocarcinoma. It has also anti-inflammatory, anti-allergy, cytotoxic and hepatoprotective properties. Pectolinarigenin gained attention from researchers and clinicians due to their anticancer properties and in future it could be the best choice for cancer treatment. The purpose of this review paper is to summarize all the pharmacological properties of pectolinarigenin on cancer and other disorders, describe the mode of action and possible pathways for cellular level action. The present review initially highlights the current status of flavonoids and their pharmaceutical importance, role of pectolinarigenin in human disorders, and in later section, summarizes analytical techniques of pectolinarigenin as lead molecules. This review will support all the ongoing research of pectolinarigenin through out world for their beneficial properties in all the scientific discipline.

Keywords: Analytical updates, anti-cancer, biological properties, flavonoids, herbal medicine, human diseases, pectolinarigenin, phytoconstituents, therapeutic uses.

Graphical Abstract

[1]
Maiti, S.; Nazmeen, A.; Medda, N.; Patra, R.; Ghosh, T.K. Flavonoids green tea against oxidant stress and inflammation with related human diseases. Clin. Nutr. Exp., 2019, 24, 1-14.
[http://dx.doi.org/10.1016/j.yclnex.2018.12.004]
[2]
Bakoyiannis, I.; Daskalopoulou, A.; Pergialiotis, V.; Perrea, D. Phytochemicals and cognitive health: Are flavonoids doing the trick? Biomed. Pharmacother., 2019, 109, 1488-1497.
[http://dx.doi.org/10.1016/j.biopha.2018.10.086] [PMID: 30551400]
[3]
Ghorbani, A.; Rashidi, R.; Shafiee-Nick, R. Flavonoids for preserving pancreatic beta cell survival and function: A mechanistic review. Biomed. Pharmacother., 2019, 111, 947-957.
[http://dx.doi.org/10.1016/j.biopha.2018.12.127] [PMID: 30841474]
[4]
Wang, T.Y.; Li, Q.; Bi, K.S. Bioactive flavonoids in medicinal plants: Structure, activity and biological fate. Asian J. Pharm. Sci., 2018, 13(1), 12-23.
[http://dx.doi.org/10.1016/j.ajps.2017.08.004] [PMID: 32104374]
[5]
Tarahovsky, Y.S.; Kim, Y.A.; Yagolnik, E.A.; Muzafarov, E.N. Flavonoid-membrane interactions: involvement of flavonoid-metal complexes in raft signaling. Biochim. Biophys. Acta, 2014, 1838(5), 1235-1246.
[http://dx.doi.org/10.1016/j.bbamem.2014.01.021] [PMID: 24472512]
[6]
Imran, M.; Rauf, A.; Abu-Izneid, T.; Nadeem, M.; Shariati, M.A.; Khan, I.A.; Imran, A.; Orhan, I.E.; Rizwan, M.; Atif, M.; Gondal, T.A.; Mubarak, M.S. Luteolin, a flavonoid, as an anticancer agent: A review. Biomed. Pharmacother., 2019.112108612
[http://dx.doi.org/10.1016/j.biopha.2019.108612]
[7]
Zhang, T.; Li, S.; Li, J.; Yin, F.; Hua, Y.; Wang, Z.; Lin, B.; Wang, H.; Zou, D.; Zhou, Z.; Xu, J.; Yi, C.; Cai, Z. Natural product pectolinarigenin inhibits osteosarcoma growth and metastasis via SHP-1-mediated STAT3 signaling inhibition. Cell Death Dis., 2016, 7(10), e2421-e2421.
[http://dx.doi.org/10.1038/cddis.2016.305] [PMID: 27735939]
[8]
Lim, H.; Son, K.H.; Chang, H.W.; Bae, K.; Kang, S.S.; Kim, H.P. Anti-inflammatory activity of pectolinarigenin and pectolinarin isolated from Cirsium chanroenicum. Biol. Pharm. Bull., 2008, 31(11), 2063-2067.
[http://dx.doi.org/10.1248/bpb.31.2063] [PMID: 18981574]
[9]
Anarthe, S.; Reddy, S.; Chaudhari, S. Antinociceptive activity of Clerodendrone multiflorum leaves, stems (Verbenaceae). Pharmacol. Online, 2010, 1, 527-531.
[10]
Wang, C.; Cheng, Y.; Liu, H.; Xu, Y.; Peng, H.; Lang, J.; Liao, J.; Liu, H.; Liu, H.; Fan, J. Pectolinarigenin suppresses the tumor growth in nasopharyngeal carcinoma. Cell. Physiol. Biochem., 2016, 39(5), 1795-1803.
[http://dx.doi.org/10.1159/000447879] [PMID: 27744436]
[11]
Wu, B.; Liang, J. Pectolinarigenin promotes functional recovery and inhibits apoptosis in rats following spinal cord injuries. Exp. Ther. Med., 2019, 17(5), 3877-3882.
[http://dx.doi.org/10.3892/etm.2019.7456] [PMID: 31007732]
[12]
Zhou, B.; Hong, Z.; Zheng, H.; Chen, M.; Shi, L.; Zhao, C. Pectolinarigenin suppresses pancreatic cancer cell growth by inhibiting STAT3 signaling., Nat. Prod. Commun., 2017, 12(12), 1934578X1701201212..
[13]
Yoo, Y-M.; Nam, J-H.; Kim, M-Y.; Choi, J.; Park, H-J. Pectolinarin and Pectolinarigenin of Cirsium setidens prevent the hepatic injury in rats caused by D-Galactosamine via an antioxidant mechanism. Biol. Pharm. Bull., 2008, 31(4), 760-764.
[http://dx.doi.org/10.1248/bpb.31.760] [PMID: 18379079]
[14]
Lu, M.; Kong, Q.; Xu, X.; Lu, H.; Lu, Z.; Yu, W. Pectolinarigenin - a flavonoid Compound from Cirsium Japonicum with potential anti-proliferation activity in MCF- 7 breast cancer cell. Trop. J. Pharm. Res., 2014, 13, 225.
[http://dx.doi.org/10.4314/tjpr.v13i2.9]
[15]
Lee, H.J.; Venkatarame Gowda Saralamma, V.; Kim, S.M.; Ha, S.E.; Vetrivel, P.; Kim, E.H.; Lee, S.J.; Heo, J.D.; Rampogu, S.; Lee, K.W.; Kim, G.S. Comparative proteomic profiling of tumor-associated proteins in human gastric cancer cells treated with Pectolinarigenin. Nutrients, 2018, 10(11), 1596.
[http://dx.doi.org/10.3390/nu10111596] [PMID: 30380781]
[16]
Xu, F.; Gao, X.; Pan, H. Pectolinarigenin inhibits non-small cell lung cancer progression by regulating the PTEN/PI3K/AKT signaling pathway. Oncol. Rep., 2018.
[http://dx.doi.org/10.3892/or.2018.6759]
[17]
Somwong, P.; Suttisri, R. Cytotoxic activity of the chemical constituents of Clerodendrum indicum and Clerodendrum villosum roots. J. Integr. Med., 2018, 16(1), 57-61.
[http://dx.doi.org/10.1016/j.joim.2017.12.004] [PMID: 29397094]
[18]
Bonesi, M.; Tundis, R.; Deguin, B.; Loizzo, M.R.; Menichini, F.; Tillequin, F.; Menichini, F. In vitro biological evaluation of novel 7-O-dialkylaminoalkyl cytotoxic pectolinarigenin derivatives against a panel of human cancer cell lines. Bioorg. Med. Chem. Lett., 2008, 18(20), 5431-5434.
[http://dx.doi.org/10.1016/j.bmcl.2008.09.037] [PMID: 18818071]
[19]
Wu, T.; Dong, X.; Yu, D.; Shen, Z.; Yu, J.; Yan, S. Natural product pectolinarigenin inhibits proliferation, induces apoptosis, and causes G2/M phase arrest of HCC via PI3K/AKT/mTOR/ERK signaling pathway. OncoTargets Ther., 2018, 11, 8633-8642.
[http://dx.doi.org/10.2147/OTT.S186186] [PMID: 30584322]
[20]
Erukainure, O.L.; Mesaik, M.A.; Atolani, O.; Muhammad, A.; Chukwuma, C.I.; Islam, M.S. Pectolinarigenin from the leaves of Clerodendrum volubile shows potent immunomodulatory activity by inhibiting T - cell proliferation and modulating respiratory oxidative burst in phagocytes. Biomed. Pharmacother., 2017, 93, 529-535.
[http://dx.doi.org/10.1016/j.biopha.2017.06.060] [PMID: 28686966]
[21]
Yin, Y.; Gong, F-Y.; Wu, X-X.; Sun, Y.; Li, Y-H.; Chen, T.; Xu, Q. Anti-inflammatory and immunosuppressive effect of flavones isolated from Artemisia vestita. J. Ethnopharmacol., 2008, 120(1), 1-6.
[http://dx.doi.org/10.1016/j.jep.2008.07.029] [PMID: 18721870]
[22]
Lee, H.J.; Venkatarame Gowda Saralamma, V.; Kim, S.M.; Ha, S.E.; Raha, S.; Lee, W.S.; Kim, E.H.; Lee, S.J.; Heo, J.D.; Kim, G.S. Pectolinarigenin induced cell cycle arrest, autophagy, and apoptosis in gastric cancer cell via PI3K/AKT/mTOR signaling pathway. Nutrients, 2018, 10(8), 1043.
[http://dx.doi.org/10.3390/nu10081043] [PMID: 30096805]
[23]
Xiao, Y.; Li, K.; Wang, Z.; Fu, F.; Shao, S.; Song, F.; Zhao, J.; Chen, W.; Liu, Q.; Xu, J. Pectolinarigenin prevents bone loss in ovariectomized mice and inhibits RANKL-induced osteoclastogenesis via blocking activation of MAPK and NFATc1 signaling. J. Cell. Physiol., 2019, 234(8), 13959-13968.
[http://dx.doi.org/10.1002/jcp.28079] [PMID: 30633330]
[24]
Zhang, K.; Lei, J.; He, Y.; Yang, X.; Zhang, Z.; Hao, D.; Wang, B.; He, B. A flavonoids compound inhibits osteoclast differentiation by attenuating RANKL induced NFATc-1/c-Fos induction. Int. Immunopharmacol., 2018, 61, 150-155.
[http://dx.doi.org/10.1016/j.intimp.2018.05.030] [PMID: 29879658]
[25]
Lee, S.; Lee, D-H.; Kim, J-C.; Um, B.H.; Sung, S.H.; Jeong, L.S.; Kim, Y.K.; Kim, S.N. Pectolinarigenin, an aglycone of pectolinarin, has more potent inhibitory activities on melanogenesis than pectolinarin. Biochem. Biophys. Res. Commun., 2017, 493(1), 765-772.
[http://dx.doi.org/10.1016/j.bbrc.2017.08.106] [PMID: 28851651]
[26]
Kumkarnjana, S.; Suttisri, R.; Nimmannit, U.; Koobkokkruad, T.; Pattamadilok, C.; Vardhanabhuti, N. Anti-adipogenic effect of flavonoids from Chromolaena odorata leaves in 3T3-L1 adipocytes. J. Integr. Med., 2018, 16(6), 427-434.
[http://dx.doi.org/10.1016/j.joim.2018.10.002] [PMID: 30352773]
[27]
Juckmeta, T.; Thongdeeying, P.; Itharat, A. Inhibitory effect on β -Hexosaminidase release from RBL-2H3 cells of extracts and some pure constituents of Benchalokawichian, a Thai herbal remedy, used for allergic disorders. Evid. Based Complement. Alternat. Med., 2014, 2014828760
[http://dx.doi.org/10.1155/2014/828760] [PMID: 25580152]
[28]
Badr, J.M. Chemical constituents of Phragmanthera austroarabica AG Mill and JA Nyberg with potent antioxidant activity. Pharmacogn. Res., 2014, 7(4), 335-340.
[http://dx.doi.org/10.4103/0974-8490.158436] [PMID: 26692747]
[29]
Amin, A.; Tuenter, E.; Foubert, K.; Iqbal, J.; Cos, P.; Maes, L.; Exarchou, V.; Apers, S.; Pieters, L. In Vitro and In Silico antidiabetic and antimicrobial evaluation of constituents from Kickxia ramosissima (Nanorrhinum ramosissimum). Front. Pharmacol., 2017, 8, 232.
[http://dx.doi.org/10.3389/fphar.2017.00232] [PMID: 28507520]
[30]
Muthu, C.; Reegan, A.D.; Kingsley, S.; Ignacimuthu, S. Larvicidal activity of pectolinaringenin from Clerodendrum phlomidis L. against Culex quinque fasciatus Say and Aedes aegypti L. (Diptera: Culicidae). Parasitol. Res., 2012, 111(3), 1059-1065.
[http://dx.doi.org/10.1007/s00436-012-2932-8] [PMID: 22562213]
[31]
Passero, L.F.D.; Bonfim-Melo, A.; Corbett, C.E.P.; Laurenti, M.D.; Toyama, M.H.; de Toyama, D.O.; Romoff, P.; Fávero, O.A.; dos Grecco, S.S.; Zalewsky, C.A.; Lago, J.H. Anti-leishmanial effects of purified compounds from aerial parts of Baccharis uncinella C. DC. (Asteraceae). Parasitol. Res., 2011, 108(3), 529-536.
[http://dx.doi.org/10.1007/s00436-010-2091-8] [PMID: 20886232]
[32]
Kimani, N.M.; Matasyoh, J.C.; Kaiser, M.; Brun, R.; Schmidt, T.J. Antiprotozoal sesquiterpene lactones and other constituents from Tarchonanthus camphoratus and Schkuhria pinnata. J. Nat. Prod., 2018, 81(1), 124-130.
[http://dx.doi.org/10.1021/acs.jnatprod.7b00747] [PMID: 29244495]
[33]
Thoison, O.; Sévenet, T.; Niemeyer, H.M.; Russell, G.B. Insect antifeedant compounds from Nothofagus dombeyi and N. pumilio. Phytochemistry, 2004, 65(14), 2173-2176.
[http://dx.doi.org/10.1016/j.phytochem.2004.04.002 PMID: 15279992]
[34]
Watanabe, Y.; Novaes, P.; Varela, R.M.; Molinillo, J.M.G.; Kato-Noguchi, H.; Macías, F.A. Phytotoxic potential of Onopordum acanthium L. (Asteraceae). Chem. Biodivers., 2014, 11(8), 1247-1255.
[http://dx.doi.org/10.1002/cbdv.201400070] [PMID: 25146768]
[35]
Zhang, Z.; Jia, P.; Zhang, X.; Zhang, Q.; Yang, H.; Shi, H.; Zhang, L. LC-MS/MS determination and pharmacokinetic study of seven flavonoids in rat plasma after oral administration of Cirsium japonicum DC extract. J. Ethnopharmacol., 2014, 158(A), 66-75..
[36]
Sakpakdeejaroen, I; Juckmeta, T .A development and validation of RP-HPLC method to determine anti-allergic compound in Thai traditional remedy called Benjalokawichien. J. Med. Assoc. Thail., 2014, S76-80..
[37]
Kim, M-S.; Nam, M.; Hwang, G-S. Metabolic alterations in two cirsium species identified at distinct phenological stages using UPLC-QTOF/MS. Phytochem. Anal., 2018, 29(1), 77-86.
[http://dx.doi.org/10.1002/pca.2716] [PMID: 28895216]
[38]
Zhang, X.; Liao, M.; Cheng, X.; Liang, C.; Diao, X.; Zhang, L. Ultrahigh-performance liquid chromatography coupled with triple quadrupole and time-of-flight mass spectrometry for the screening and identification of the main flavonoids and their metabolites in rats after oral administration of Cirsium japonicum DC extract. Rapid Commun. Mass Spectrom., 2018, 32(16), 1451-1461.
[http://dx.doi.org/10.1002/rcm.8161] [PMID: 29781217]
[39]
Sujatha, P.; Sreekanth, G.; Khasim, S.; Adavi Rao, B.V.; Ravi Kumar, B.; Appa Rao, A.V. Flavonoids of dikamali: A phytochemical reinvestigation. Nat. Prod. Res., 2013, 27(20), 1930-1932.
[http://dx.doi.org/10.1080/14786419.2013.782494] [PMID: 23537094]
[40]
Merfort, I. Methylated flavonoids from Arnica montana and Arnica chamissonis. Planta Med., 1984, 50(1), 107-108.
[http://dx.doi.org/10.1055/s-2007-969637] [PMID: 17340267]
[41]
Weimann, C.; Göransson, U.; Pongprayoon-Claeson, U.; Claeson, P.; Bohlin, L.; Rimpler, H.; Heinrich, M. Spasmolytic effects of Baccharis conferta and some of its constituents. J. Pharm. Pharmacol., 2002, 54(1), 99-104.
[http://dx.doi.org/10.1211/0022357021771797] [PMID: 11829135]
[42]
Uehara, A; Akiyama, S; Iwashina, T. Foliar flavonoids from Tanacetum vulgare var. boreale and their geographical variation. Nat. Prod. Commun., 2015, 10(3), 1934578X1501000307..
[43]
Csupor, D.; Widowitz, U.; Blazsó, G.; Laczkó-Zöld, E.; Tatsimo, J.S.N.; Balogh, A.; Boros, K.; Dankó, B.; Bauer, R.; Hohmann, J. Anti-inflammatory activities of eleven Centaurea species occurring in the Carpathian Basin. Phytother. Res., 2013, 27(4), 540-544.
[http://dx.doi.org/10.1002/ptr.4754] [PMID: 22674731]
[44]
Hussain, F.; Jahan, N.; Rahman, K.U.; Sultana, B.; Jamil, S. Identification of hypotensive biofunctional compounds of Coriandrum sativum and evaluation of their Angiotensin-Converting Enzyme (ACE) inhibition potential. Oxid. Med. Cell. Longev., 2018, 20184643736
[45]
Roy, R.; Pandey, V.B. A chalcone glycoside from Clerodendron phlomidis. Phytochemistry, 1994, 37(6), 1775-1776.
[http://dx.doi.org/10.1016/S0031-9422(00)89613-2] [PMID: 7766006]
[46]
Feng, L.; Zhang, Y.; Liu, Y-C.; Liu, Y.; Luo, S-H.; Huang, C-S.; Li, S.H. Leucoflavonine, a new bioactive racemic flavoalkaloid from the leaves of Leucosceptrum canum. Bioorg. Med. Chem., 2019, 27(2), 442-446.
[http://dx.doi.org/10.1016/j.bmc.2018.12.023] [PMID: 30579802]
[47]
Nugroho, A.; Lim, S-C.; Byeon, J.S.; Choi, J.S.; Park, H-J. Simultaneous quantification and validation of caffeoylquinic acids and flavonoids in Hemistepta lyrata and peroxynitrite-scavenging activity. J. Pharm. Biomed. Anal., 2013, 76, 139-144.
[http://dx.doi.org/10.1016/j.jpba.2012.12.021] [PMID: 23333682]
[48]
Yin, L.; Zheng, X.; Wang, G.; Wang, W. Microwave irradiation followed by zinc oxide based dispersive solid-phase extraction coupled with HPLC for simultaneous extraction and determination of flavonoids in Veronicastrum latifolium (Hemsl.). Yamazaki. Anal. Bioanal. Chem., 2019, 411(5), 1029-1040.
[http://dx.doi.org/10.1007/s00216-018-1529-1] [PMID: 30659326]
[49]
Kirmizibekmez, H.; Akbay, P.; Sticher, O.; Caliş, I. Iridoids from Globularia dumulosa. Z. Natforsch. C, 2003, 58(3-4), 181-186.
[http://dx.doi.org/10.1515/znc-2003-3-407] [PMID: 12710725]
[50]
Merfort, I.; Wendisch, D. New flavonoid glycosides from Arnicae Flos DAB 91. Planta Med., 1992, 58(4), 355-357.
[http://dx.doi.org/10.1055/s-2006-961484] [PMID: 17226484]
[51]
Hu, J.; Zhu, Q.; Bai, S.; Jia, Z. New Eudesmane sesquiterpene and other constituents from Artemisia mongolica. Planta Med., 1996, 62(5), 477-478.
[http://dx.doi.org/10.1055/s-2006-957946] [PMID: 17252484]
[52]
Samy, M.N.; Khalil, H.E.; Sugimoto, S.; Matsunami, K.; Otsuka, H.; Kamel, M.S. Three new flavonoid glycosides, byzantionoside B 6′-O-sulfate and xyloglucoside of (Z)-hex-3-en-1-ol from Ruellia patula. Chem. Pharm. Bull. (Tokyo), 2011, 59(6), 725-729.
[http://dx.doi.org/10.1248/cpb.59.725] [PMID: 21628908]
[53]
Tundis, R; Bonesi, M; Menichini, F; Loizzo, MR; Conforti, F Antioxidant and anti-cholinesterase activity of Globularia meridionalis extracts and isolated constituents.Nat. Prod. Commun.,2012, 7, 1934578X1200700.,
[54]
Dhiman, A.; Nanda, A.; Ahmad, S. A quest for staunch effects of flavonoids: Utopian protection against hepatic ailments. Arab. J. Chem., 2016.
[http://dx.doi.org/10.1016/j.arabjc.2012.05.001]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy