Generic placeholder image

当代肿瘤药物靶点

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Research Article

circEPSTI1充当调控骨肉瘤进展的ceRNA

卷 20, 期 4, 2020

页: [288 - 294] 页: 7

弟呕挨: 10.2174/1568009619666191107140948

价格: $65

摘要

背景:最近的研究报道了环状RNA(circRNA)在肿瘤进展中的重要作用。但是,大多数circRNA在骨肉瘤中的功能和表达情况仍不清楚。 方法:我们通过qRT-PCR检测了circEPSTI1(一种circRNA)在50对配对的正常组织和骨肉瘤组织中的表达。然后,我们进一步探索了circEPSTI1在体外和体内在骨肉瘤进展中的功能。例如,检查了细胞增殖和迁移。进行了一些实验以探索circEPSTI1在miRNA中的调控功能,并研究circEPSTI1在骨肉瘤中的潜在作用。 结果:我们发现circEPSTI1在骨肉瘤中显着上调。 circEPSTI1的抑制抑制了体外骨肉瘤癌细胞的增殖和迁移。双重荧光素酶报告基因检测表明,circEPSTI1和MCL1(髓样细胞白血病1)可以与miR-892b结合,而MCL1和circEPSTI1是miR-892b的靶标。 结论:因此,circEPSTI1-miR-892b-MCL1轴通过miRNA海绵化机制影响骨肉瘤的进展。 circEPSTI1可用作骨肉瘤治疗的靶标和生物标志物。

关键词: circEPSTI1,环状RNA,miR-892b,MCL1,竞争性内源性RNA,骨肉瘤。

图形摘要

[1]
Isakoff, M.S.; Bielack, S.S.; Meltzer, P.; Gorlick, R. Osteosarcoma: Current treatment and a collaborative pathway to success. J. Clin. Oncol., 2015, 33(27), 3029-3035.
[http://dx.doi.org/10.1200/JCO.2014.59.4895] [PMID: 26304877]
[2]
Kansara, M.; Teng, M.W.; Smyth, M.J.; Thomas, D.M. Translational biology of osteosarcoma. Nat. Rev. Cancer, 2014, 14(11), 722-735.
[http://dx.doi.org/10.1038/nrc3838] [PMID: 25319867]
[3]
Tang, W.; Fu, K.; Sun, H.; Rong, D.; Wang, H.; Cao, H. CircRNA microarray profiling identifies a novel circulating biomarker for detection of gastric cancer. Mol. Cancer, 2018, 17(1), 137.
[http://dx.doi.org/10.1186/s12943-018-0888-8] [PMID: 30236115]
[4]
Tan, S.; Sun, D.; Pu, W.; Gou, Q.; Guo, C.; Gong, Y.; Li, J.; Wei, Y.Q.; Liu, L.; Zhao, Y.; Peng, Y. Circular RNA F-circEA-2a derived from EML4-ALK fusion gene promotes cell migration and invasion in non-small cell lung cancer. Mol. Cancer, 2018, 17(1), 138.
[http://dx.doi.org/10.1186/s12943-018-0887-9] [PMID: 30236141]
[5]
Salmena, L.; Poliseno, L.; Tay, Y.; Kats, L.; Pandolfi, P.P. A ceRNA hypothesis: The rosetta stone of a hidden RNA language? Cell, 2011, 146(3), 353-358.
[http://dx.doi.org/10.1016/j.cell.2011.07.014] [PMID: 21802130]
[6]
Karreth, F.A.; Pandolfi, P.P. ceRNA cross-talk in cancer: When ce-bling rivalries go awry. Cancer Discov., 2013, 3(10), 1113-1121.
[http://dx.doi.org/10.1158/2159-8290.CD-13-0202] [PMID: 24072616]
[7]
Tay, Y.; Rinn, J.; Pandolfi, P.P. The multilayered complexity of ceRNA crosstalk and competition. Nature, 2014, 505(7483), 344-352.
[http://dx.doi.org/10.1038/nature12986] [PMID: 24429633]
[8]
Memczak, S.; Jens, M.; Elefsinioti, A.; Torti, F.; Krueger, J.; Rybak, A.; Maier, L.; Mackowiak, S.D.; Gregersen, L.H.; Munschauer, M.; Loewer, A.; Ziebold, U.; Landthaler, M.; Kocks, C.; le Noble, F.; Rajewsky, N. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature, 2013, 495(7441), 333-338.
[http://dx.doi.org/10.1038/nature11928] [PMID: 23446348]
[9]
Hansen, T.B.; Jensen, T.I.; Clausen, B.H.; Bramsen, J.B.; Finsen, B.; Damgaard, C.K.; Kjems, J. Natural RNA circles function as efficient microRNA sponges. Nature, 2013, 495(7441), 384-388.
[http://dx.doi.org/10.1038/nature11993] [PMID: 23446346]
[10]
Chen, B.; Wei, W.; Huang, X.; Xie, X.; Kong, Y.; Dai, D.; Yang, L.; Wang, J.; Tang, H.; Xie, X. circEPSTI1 as a prognostic marker and mediator of triple-negative breast cancer progression. Theranostics, 2018, 8(14), 4003-4015.
[http://dx.doi.org/10.7150/thno.24106] [PMID: 30083277]
[11]
Lam, L.T.; Lu, X.; Zhang, H.; Lesniewski, R.; Rosenberg, S.; Semizarov, D. A microRNA screen to identify modulators of sensitivity to BCL2 inhibitor ABT-263 (navitoclax). Mol. Cancer Ther., 2010, 9(11), 2943-2950.
[http://dx.doi.org/10.1158/1535-7163.MCT-10-0427] [PMID: 20829195]
[12]
Gill, J.; Ahluwalia, M.K.; Geller, D.; Gorlick, R. New targets and approaches in osteosarcoma. Pharmacol. Ther., 2013, 137(1), 89-99.
[http://dx.doi.org/10.1016/j.pharmthera.2012.09.003] [PMID: 22983152]
[13]
Kun-Peng, Z.; Xiao-Long, M.; Lei, Z.; Chun-Lin, Z.; Jian-Ping, H.; Tai-Cheng, Z. Screening circular RNA related to chemotherapeutic resistance in osteosarcoma by RNA sequencing. Epigenomics, 2018, 10(10), 1327-1346.
[http://dx.doi.org/10.2217/epi-2018-0023] [PMID: 30191736]
[14]
Kun-Peng, Z.; Chun-Lin, Z.; Jian-Ping, H.; Lei, Z. A novel circulating HSA_circ_0081001 act as a potential biomarker for diagnosis and prognosis of osteosarcoma. Int. J. Biol. Sci., 2018, 14(11), 1513-1520.
[http://dx.doi.org/10.7150/ijbs.27523] [PMID: 30263004]
[15]
Kun-Peng, Z.; Xiao-Long, M.; Chun-Lin, Z. Overexpressed circPVT1, a potential new circular RNA biomarker, contributes to doxorubicin and cisplatin resistance of osteosarcoma cells by regulating ABCB1. Int. J. Biol. Sci., 2018, 14(3), 321-330.
[http://dx.doi.org/10.7150/ijbs.24360] [PMID: 29559849]
[16]
Wang, Y.; Hou, J.; He, D.; Sun, M.; Zhang, P.; Yu, Y.; Chen, Y. The emerging function and mechanism of ceRNAs in cancer. Trends Genet., 2016, 32(4), 211-224.
[http://dx.doi.org/10.1016/j.tig.2016.02.001] [PMID: 26922301]
[17]
Li, X.; Yang, L.; Chen, L.L. The Biogenesis, functions, and challenges of circular RNAs. Mol. Cell, 2018, 71(3), 428-442.
[http://dx.doi.org/10.1016/j.molcel.2018.06.034] [PMID: 30057200]
[18]
Xie, F.; Li, Y.; Wang, M.; Huang, C.; Tao, D.; Zheng, F.; Zhang, H.; Zeng, F.; Xiao, X.; Jiang, G. Circular RNA BCRC-3 suppresses bladder cancer proliferation through miR-182-5p/p27 axis. Mol. Cancer, 2018, 17(1), 144.
[http://dx.doi.org/10.1186/s12943-018-0892-z] [PMID: 30285878]
[19]
Zhu, K.P.; Zhang, C.L.; Ma, X.L.; Hu, J.P.; Cai, T.; Zhang, L. Analyzing the interactions of mRNAs and ncRNAs to predict competing endogenous RNA networks in osteosarcoma chemo-resistance. Molecular therapy. J. Am. Soc. Gene Ther., , 2019.
[http://dx.doi.org/10.1016/j.ymthe.2019.01.001]
[20]
Xu, X.; Lu, J.; Wang, F.; Liu, X.; Peng, X.; Yu, B.; Zhao, F.; Li, X. Dynamic changes in plasma microRNAs have potential predictive values in monitoring recurrence and metastasis of nasopharyngeal carcinoma. BioMed Res. Int., 2018., 20187329195
[http://dx.doi.org/10.1155/2018/7329195] [PMID: 29581984]
[21]
Shin, S.S.; Park, S.S.; Hwang, B.; Moon, B.; Kim, W.T.; Kim, W.J.; Moon, S.K. MicroRNA-892b influences proliferation, migration and invasion of bladder cancer cells by mediating the p19ARF/cyclin D1/CDK6 and Sp-1/MMP-9 pathways. Oncol. Rep., 2016, 36(4), 2313-2320.
[http://dx.doi.org/10.3892/or.2016.5052] [PMID: 27573859]
[22]
Jiang, L.; Yu, L.; Zhang, X.; Lei, F.; Wang, L.; Liu, X.; Wu, S.; Zhu, J.; Wu, G.; Cao, L.; Liu, A.; Song, L.; Li, J. miR-892b silencing activates NF-κB and promotes aggressiveness in breast cancer. Cancer Res., 2016, 76(5), 1101-1111.
[http://dx.doi.org/10.1158/0008-5472.CAN-15-1770] [PMID: 26747895]
[23]
Hao, L.; Rong, W.; Bai, L.; Cui, H.; Zhang, S.; Li, Y.; Chen, D.; Meng, X. Upregulated circular RNA circ_0007534 indicates an unfavorable prognosis in pancreatic ductal adenocarcinoma and regulates cell proliferation, apoptosis, and invasion by sponging miR-625 and miR-892b. J. Cell. Biochem., 2019, 120(3), 3780-3789.
[http://dx.doi.org/10.1002/jcb.27658] [PMID: 30382592]
[24]
Perciavalle, R.M.; Opferman, J.T. Delving deeper: MCL-1's contributions to normal and cancer biology. Trends Cell Biol., 2013, 23(1), 22-29.
[http://dx.doi.org/10.1016/j.tcb.2012.08.011] [PMID: 23026029]
[25]
Wertz, I.E.; Kusam, S.; Lam, C.; Okamoto, T.; Sandoval, W.; Anderson, D.J.; Helgason, E.; Ernst, J.A.; Eby, M.; Liu, J.; Belmont, L.D.; Kaminker, J.S.; O’Rourke, K.M.; Pujara, K.; Kohli, P.B.; Johnson, A.R.; Chiu, M.L.; Lill, J.R.; Jackson, P.K.; Fairbrother, W.J.; Seshagiri, S.; Ludlam, M.J.; Leong, K.G.; Dueber, E.C.; Maecker, H.; Huang, D.C.; Dixit, V.M. Sensitivity to antitubulin chemotherapeutics is regulated by MCL1 and FBW7. Nature, 2011, 471(7336), 110-114.
[http://dx.doi.org/10.1038/nature09779] [PMID: 21368834]
[26]
Ashkenazi, A.; Fairbrother, W.J.; Leverson, J.D.; Souers, A.J. From basic apoptosis discoveries to advanced selective BCL-2 family inhibitors. Nat. Rev. Drug Discov., 2017, 16(4), 273-284.
[http://dx.doi.org/10.1038/nrd.2016.253] [PMID: 28209992]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy