Review Article

非编码RNA相关竞争性内源RNA监管网络:肝纤维化的新型治疗方法。

卷 19, 期 5, 2019

页: [305 - 317] 页: 13

弟呕挨: 10.2174/1566523219666191107113046

价格: $65

摘要

肝纤维化或瘢痕形成是由慢性肝损伤引起的最常见的病理特征,并且被广泛认为是发病率和死亡率的主要原因之一。它的主要特征是肝星状细胞(HSC)活化和细胞外基质(ECM)蛋白沉积过多。大量证据表明,几种非编码RNA(ncRNA)失调,主要是长的非编码RNA(lncRNA),microRNA(miRNA)和环状RNA(circRNA),这有助于HSC的活化和肝纤维化的发展。这些ncRNA不仅与它们的靶基因结合以促进肝纤维化的发展和消退,而且还通过与miRNA纺丝形成信号级联反应而充当竞争性内源RNA(ceRNA)。在这些信号级联反应中,lncRNA-miRNA-mRNA和circRNA-miRNA-mRNA是肝纤维化的起始,进展和消退的关键调节剂。因此,靶向这些相互作用的ncRNA级联可以作为抑制HSC活化以及预防和消退肝纤维化的新型且潜在的治疗靶标。

关键词: 肝纤维化,非编码RNA,竞争性内源RNA,NAFLD,环状RNA,microRNA。

图形摘要

[1]
Bogdanos DP, Gao B, Gershwin ME. Liver immunology. Compr Physiol 2013; 3(2): 567-98.
[PMID: 23720323]
[2]
Friedman SL. Molecular regulation of hepatic fibrosis, an integrated cellular response to tissue injury. J Biol Chem 2000; 275(4): 2247-50.
[http://dx.doi.org/10.1074/jbc.275.4.2247] [PMID: 10644669]
[3]
Kisseleva T, Brenner DA. Hepatic stellate cells and the reversal of fibrosis. J Gastroenterol Hepatol 2006; 21(Suppl. 3): S84-7.
[http://dx.doi.org/10.1111/j.1440-1746.2006.04584.x] [PMID: 16958681]
[4]
Sánchez-Valle V, Chávez-Tapia NC, Uribe M, Méndez-Sánchez N. Role of oxidative stress and molecular changes in liver fibrosis: A review. Curr Med Chem 2012; 19(28): 4850-60.
[http://dx.doi.org/10.2174/092986712803341520] [PMID: 22709007]
[5]
Zhou W-C, Zhang Q-B, Qiao L. Pathogenesis of liver cirrhosis. World J Gastroenterol 2014; 20(23): 7312-24.
[http://dx.doi.org/10.3748/wjg.v20.i23.7312] [PMID: 24966602]
[6]
Elpek GÖ. Cellular and molecular mechanisms in the pathogenesis of liver fibrosis: An update. World J Gastroenterol 2014; 20(23): 7260-76.
[http://dx.doi.org/10.3748/wjg.v20.i23.7260] [PMID: 24966597]
[7]
Tacke F, Trautwein C. Mechanisms of liver fibrosis resolution. J Hepatol 2015; 63(4): 1038-9.
[http://dx.doi.org/10.1016/j.jhep.2015.03.039] [PMID: 26232376]
[8]
Anthony PP, Ishak KG, Nayak NC, Poulsen HE, Scheuer PJ, Sobin LH. The morphology of cirrhosis. Recommendations on definition, nomenclature, and classification by a working group sponsored by the World Health Organization. J Clin Pathol 1978; 31(5): 395-414.
[http://dx.doi.org/10.1136/jcp.31.5.395] [PMID: 649765]
[9]
Ferrell L. Liver pathology: Cirrhosis, hepatitis, and primary liver tumors. Update and diagnostic problems. Mod Pathol 2000; 13(6): 679-704.
[http://dx.doi.org/10.1038/modpathol.3880119] [PMID: 10874674]
[10]
van Dijk F, Olinga P, Poelstra K, Beljaars L. Targeted therapies in liver fibrosis: Combining the best parts of platelet-derived growth factor bb and interferon gamma. Front Med (Lausanne) 2015; 2: 72.
[http://dx.doi.org/10.3389/fmed.2015.00072] [PMID: 26501061]
[11]
Lander ES, Linton LM, Birren B, et al. Initial sequencing and analysis of the human genome. Nature 2001; 409(6822): 860-921.
[http://dx.doi.org/10.1038/35057062] [PMID: 11237011]
[12]
Eddy SR. Non-coding RNA genes and the modern RNA world. Nat Rev Genet 2001; 2(12): 919-29.
[http://dx.doi.org/10.1038/35103511] [PMID: 11733745]
[13]
Stahlhut C, Slack FJ. MicroRNAs and the cancer phenotype: Profiling, signatures and clinical implications. Genome Med 2013; 5(12): 111.
[http://dx.doi.org/10.1186/gm516] [PMID: 24373327]
[14]
Spizzo R, Almeida MI, Colombatti A, Calin GA. Long non-coding RNAs and cancer: A new frontier of translational research? Oncogene 2012; 31(43): 4577-87.
[http://dx.doi.org/10.1038/onc.2011.621] [PMID: 22266873]
[15]
Shi X, Sun M, Liu H, Yao Y, Song Y. Long non-coding RNAs: A new frontier in the study of human diseases. Cancer Lett 2013; 339(2): 159-66.
[http://dx.doi.org/10.1016/j.canlet.2013.06.013] [PMID: 23791884]
[16]
Moazed D. Small RNAs in transcriptional gene silencing and genome defence. Nature 2009; 457(7228): 413-20.
[http://dx.doi.org/10.1038/nature07756] [PMID: 19158787]
[17]
Roy S, Trautwein C, Luedde T, Roderburg C. A general overview on Non-coding RNA-based diagnostic and therapeutic approaches for liver diseases. Front Pharmacol 2018; 9: 805-5.
[http://dx.doi.org/10.3389/fphar.2018.00805] [PMID: 30158867]
[18]
Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 1993; 75(5): 843-54.
[http://dx.doi.org/10.1016/0092-8674(93)90529-Y] [PMID: 8252621]
[19]
Borchert GM, Lanier W, Davidson BL. RNA polymerase III transcribes human microRNAs. Nat Struct Mol Biol 2006; 13(12): 1097-101.
[http://dx.doi.org/10.1038/nsmb1167] [PMID: 17099701]
[20]
Landgraf P, Rusu M, Sheridan R, et al. A mammalian microRNA expression atlas based on small RNA library sequencing. Cell 2007; 129(7): 1401-14.
[http://dx.doi.org/10.1016/j.cell.2007.04.040] [PMID: 17604727]
[21]
Bandiera S, Pfeffer S, Baumert TF, Zeisel MB. miR-122--a key factor and therapeutic target in liver disease. J Hepatol 2015; 62(2): 448-57.
[http://dx.doi.org/10.1016/j.jhep.2014.10.004] [PMID: 25308172]
[22]
Szabo G, Bala S. MicroRNAs in liver disease. Nat Rev Gastroenterol Hepatol 2013; 10(9): 542-52.
[http://dx.doi.org/10.1038/nrgastro.2013.87] [PMID: 23689081]
[23]
Jiang X-P, Ai W-B, Wan L-Y, Zhang Y-Q, Wu J-F. The roles of microRNA families in hepatic fibrosis. Cell Biosci 2017; 7(1): 34.
[http://dx.doi.org/10.1186/s13578-017-0161-7] [PMID: 28680559]
[24]
He Y, Huang C, Zhang SP, Sun X, Long XR, Li J. The potential of microRNAs in liver fibrosis. Cell Signal 2012; 24(12): 2268-72.
[http://dx.doi.org/10.1016/j.cellsig.2012.07.023] [PMID: 22884954]
[25]
Ambros V. The functions of animal microRNAs. Nature 2004; 431(7006): 350-5.
[http://dx.doi.org/10.1038/nature02871] [PMID: 15372042]
[26]
Alvarez-Garcia I, Miska EA. MicroRNA functions in animal development and human disease. Development 2005; 132(21): 4653-62.
[http://dx.doi.org/10.1242/dev.02073] [PMID: 16224045]
[27]
Lee UE, and Friedman SL. Mechanisms of hepatic fibrogenesis. Best Pract Res Clin Gastroenterol 2011; 25(2): 195-206.
[http://dx.doi.org/10.1016/j.cellsig.2012.07.023] [PMID: 22884954]
[28]
Tsuchida T, Friedman SL. Mechanisms of hepatic stellate cell activation. Nat Rev Gastroenterol Hepatol 2017; 14(7): 397-411.
[http://dx.doi.org/10.1038/nrgastro.2017.38] [PMID: 28487545]
[29]
Friedman SL. Hepatic stellate cells: Protean, multifunctional, and enigmatic cells of the liver. Physiol Rev 2008; 88(1): 125-72.
[http://dx.doi.org/10.1152/physrev.00013.2007] [PMID: 18195085]
[30]
Kitano M, Bloomston PM. Hepatic stellate cells and microRNAs in pathogenesis of liver fibrosis. J Clin Med 2016; 5(3): 38.
[http://dx.doi.org/10.3390/jcm5030038] [PMID: 26999230]
[31]
Murakami Y, Toyoda H, Tanaka M, et al. The progression of liver fibrosis is related with overexpression of the miR-199 and 200 families. PLoS One 2011; 6(1)e16081
[http://dx.doi.org/10.1371/journal.pone.0016081] [PMID: 21283674]
[32]
Zhang Y, Liu J, Ma Y, et al. Integration of high-throughput data of microRNA and mRNA expression profiles reveals novel insights into the mechanism of liver fibrosis. Mol Med Rep 2019; 19(1): 115-24.
[PMID: 30431126]
[33]
Hyun J, Park J, Wang S, et al. MicroRNA expression profiling in CCl4-induced liver fibrosis of mus musculus. Int J Mol Sci 2016; 17(6)E961
[http://dx.doi.org/10.3390/ijms17060961] [PMID: 27322257]
[34]
Ogawa T, Enomoto M, Fujii H, et al. MicroRNA-221/222 upregulation indicates the activation of stellate cells and the progression of liver fibrosis. Gut 2012; 61(11): 1600-9.
[http://dx.doi.org/10.1136/gutjnl-2011-300717] [PMID: 22267590]
[35]
Sinigaglia A, Lavezzo E, Trevisan M, et al. Changes in microRNA expression during disease progression in patients with chronic viral hepatitis. Liver Int 2015; 35(4): 1324-33.
[http://dx.doi.org/10.1111/liv.12737] [PMID: 25417901]
[36]
Zhao J, Tang N, Wu K, et al. MiR-21 simultaneously regulates ERK1 signaling in HSC activation and hepatocyte EMT in hepatic fibrosis. PLoS One 2014; 9(10)e108005
[http://dx.doi.org/10.1371/journal.pone.0108005] [PMID: 25303175]
[37]
Lakner AM, Steuerwald NM, Walling TL, et al. Inhibitory effects of microRNA 19b in hepatic stellate cell-mediated fibrogenesis. Hepatology 2012; 56(1): 300-10.
[http://dx.doi.org/10.1002/hep.25613] [PMID: 22278637]
[38]
Roderburg C, Urban GW, Bettermann K, et al. Micro-RNA profiling reveals a role for miR-29 in human and murine liver fibrosis. Hepatology 2011; 53(1): 209-18.
[http://dx.doi.org/10.1002/hep.23922] [PMID: 20890893]
[39]
Leti F, Malenica I, Doshi M, et al. High-throughput sequencing reveals altered expression of hepatic microRNAs in nonalcoholic fatty liver disease-related fibrosis. Transl Res 2015; 166(3): 304-14.
[http://dx.doi.org/10.1016/j.trsl.2015.04.014] [PMID: 26001595]
[40]
Chen W, Zhao W, Yang A, et al. Integrated analysis of microRNA and gene expression profiles reveals a functional regulatory module associated with liver fibrosis. Gene 2017; 636: 87-95.
[http://dx.doi.org/10.1016/j.gene.2017.09.027] [PMID: 28919164]
[41]
Kocabayoglu P, Lade A, Lee YA, et al. β-PDGF receptor expressed by hepatic stellate cells regulates fibrosis in murine liver injury, but not carcinogenesis. J Hepatol 2015; 63(1): 141-7.
[http://dx.doi.org/10.1016/j.jhep.2015.01.036] [PMID: 25678385]
[42]
Shah R, Reyes-Gordillo K, Arellanes-Robledo J, et al. TGF-β1 up-regulates the expression of PDGF-β receptor mRNA and induces a delayed PI3K-, AKT-, and p70(S6K) -dependent proliferative response in activated hepatic stellate cells. Alcohol Clin Exp Res 2013; 37(11): 1838-48.
[http://dx.doi.org/10.1111/acer.12167] [PMID: 23895226]
[43]
Tang N, Zhang YP, Ying W, Yao XX. Interleukin-1β upregulates matrix metalloproteinase-13 gene expression via c-Jun N-terminal kinase and p38 MAPK pathways in rat hepatic stellate cells. Mol Med Rep 2013; 8(6): 1861-5.
[http://dx.doi.org/10.3892/mmr.2013.1719] [PMID: 24126863]
[44]
Robert S, Gicquel T, Bodin A, Lagente V, Boichot E. Characterization of the MMP/TIMP imbalance and collagen production induced by IL-1β or TNF-α release from human hepatic stellate cells. PLoS One 2016; 11(4)e0153118
[http://dx.doi.org/10.1371/journal.pone.0153118] [PMID: 27046197]
[45]
Ceccarelli S, Panera N, Mina M, et al. LPS-induced TNF-α factor mediates pro-inflammatory and pro-fibrogenic pattern in non-alcoholic fatty liver disease. Oncotarget 2015; 6(39): 41434-52.
[http://dx.doi.org/10.18632/oncotarget.5163] [PMID: 26573228]
[46]
Naim A, Pan Q, Baig MS. Matrix Metalloproteinases (MMPs) in liver diseases. J Clin Exp Hepatol 2017; 7(4): 367-72.
[http://dx.doi.org/10.1016/j.jceh.2017.09.004] [PMID: 29234202]
[47]
Ogawa T, Iizuka M, Sekiya Y, Yoshizato K, Ikeda K, Kawada N. Suppression of type I collagen production by microRNA-29b in cultured human stellate cells. Biochem Biophys Res Commun 2010; 391(1): 316-21.
[http://dx.doi.org/10.1016/j.bbrc.2009.11.056] [PMID: 19913496]
[48]
Zhang Z, Gao Z, Hu W, et al. 3, 3′-Diindolylmethane ameliorates experimental hepatic fibrosis via inhibiting miR-21 expression. Br J Pharmacol 2013; 170(3): 649-60.
[http://dx.doi.org/10.1111/bph.12323] [PMID: 23902531]
[49]
Wang B, Li W, Guo K, Xiao Y, Wang Y, Fan J. miR-181b promotes hepatic stellate cells proliferation by targeting p27 and is elevated in the serum of cirrhosis patients. Biochem Biophys Res Commun 2012; 421(1): 4-8.
[http://dx.doi.org/10.1016/j.bbrc.2012.03.025] [PMID: 22446332]
[50]
Iizuka M, Ogawa T, Enomoto M, et al. Induction of microRNA-214-5p in human and rodent liver fibrosis. Fibrogenesis Tissue Repair 2012; 5(1): 12.
[http://dx.doi.org/10.1186/1755-1536-5-12] [PMID: 22849305]
[51]
Venugopal SK, Jiang J, Kim TH, et al. Liver fibrosis causes downregulation of miRNA-150 and miRNA-194 in hepatic stellate cells, and their overexpression causes decreased stellate cell activation. Am J Physiol Gastrointest Liver Physiol 2010; 298(1): G101-6.
[http://dx.doi.org/10.1152/ajpgi.00220.2009] [PMID: 19892940]
[52]
Maher B. ENCODE: The human encyclopaedia. Nature 2012; 489(7414): 46-8.
[http://dx.doi.org/10.1038/489046a] [PMID: 22962707]
[53]
Ponting CP, Oliver PL, Reik W. Evolution and functions of long noncoding RNAs. Cell 2009; 136(4): 629-41.
[http://dx.doi.org/10.1016/j.cell.2009.02.006] [PMID: 19239885]
[54]
Yoon JH, Abdelmohsen K, Gorospe M. Posttranscriptional gene regulation by long noncoding RNA. J Mol Biol 2013; 425(19): 3723-30.
[http://dx.doi.org/10.1016/j.jmb.2012.11.024] [PMID: 23178169]
[55]
DiStefano JK. The emerging role of long noncoding RNAs in human disease. Methods Mol Biol 2018; 1706: 91-110.
[http://dx.doi.org/10.1007/978-1-4939-7471-9_6] [PMID: 29423795]
[56]
Zhao XY, Lin JD. Long noncoding RNAs: A new regulatory code in metabolic control. Trends Biochem Sci 2015; 40(10): 586-96.
[http://dx.doi.org/10.1016/j.tibs.2015.08.002] [PMID: 26410599]
[57]
Maeda N, Kasukawa T, Oyama R, et al. Transcript annotation in FANTOM3: Mouse gene catalog based on physical cDNAs. PLoS Genet 2006; 2(4)e62
[http://dx.doi.org/10.1371/journal.pgen.0020062] [PMID: 16683036]
[58]
Kapranov P, Cawley SE, Drenkow J, et al. Large-scale transcriptional activity in chromosomes 21 and 22. Science 2002; 296(5569): 916-9.
[http://dx.doi.org/10.1126/science.1068597] [PMID: 11988577]
[59]
Rinn JL, Euskirchen G, Bertone P, et al. The transcriptional activity of human Chromosome 22. Genes Dev 2003; 17(4): 529-40.
[http://dx.doi.org/10.1101/gad.1055203] [PMID: 12600945]
[60]
Guttman M, Garber M, Levin JZ, et al. Ab initio reconstruction of cell type-specific transcriptomes in mouse reveals the conserved multi-exonic structure of lincRNAs. Nat Biotechnol 2010; 28(5): 503-10.
[http://dx.doi.org/10.1038/nbt.1633] [PMID: 20436462]
[61]
Guttman M, Amit I, Garber M, et al. Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature 2009; 458(7235): 223-7.
[http://dx.doi.org/10.1038/nature07672] [PMID: 19182780]
[62]
Guo CJ, Xiao X, Sheng L, et al. RNA sequencing and bioinformatics analysis implicate the regulatory role of a long noncoding RNA-mRNA network in hepatic stellate cell activation. Cell Physiol Biochem 2017; 42(5): 2030-42.
[http://dx.doi.org/10.1159/000479898] [PMID: 28803234]
[63]
Zhou C, York SR, Chen JY, et al. Long noncoding RNAs expressed in human hepatic stellate cells form networks with extracellular matrix proteins. Genome Med 2016; 8(1): 31.
[http://dx.doi.org/10.1186/s13073-016-0285-0] [PMID: 27007663]
[64]
Oliva J, Bardag-Gorce F, French BA, Li J, French SW. The regulation of non-coding RNA expression in the liver of mice fed DDC. Exp Mol Pathol 2009; 87(1): 12-9.
[http://dx.doi.org/10.1016/j.yexmp.2009.03.006] [PMID: 19362547]
[65]
Yuan X, Wang J, Tang X, Li Y, Xia P, Gao X. Berberine ameliorates nonalcoholic fatty liver disease by a global modulation of hepatic mRNA and lncRNA expression profiles. J Transl Med 2015; 13: 24.
[http://dx.doi.org/10.1186/s12967-015-0383-6] [PMID: 25623289]
[66]
Zhang K, Han X, Zhang Z, et al. The liver-enriched lnc-LFAR1 promotes liver fibrosis by activating TGFβ and Notch pathways. Nat Commun 2017; 8(1): 144.
[http://dx.doi.org/10.1038/s41467-017-00204-4] [PMID: 28747678]
[67]
Atanasovska B, Rensen SS, van der Sijde MR, et al. A liver-specific long noncoding RNA with a role in cell viability is elevated in human nonalcoholic steatohepatitis. Hepatology 2017; 66(3): 794-808.
[http://dx.doi.org/10.1002/hep.29034] [PMID: 28073183]
[68]
Li C, Chen J, Zhang K, Feng B, Wang R, Chen L. Progress and prospects of long noncoding RNAs (lncRNAs) in hepatocellular carcinoma. Cell Physiol Biochem 2015; 36(2): 423-34.
[http://dx.doi.org/10.1159/000430109] [PMID: 25968300]
[69]
Leti F, Legendre C, Still CD, et al. Altered expression of MALAT1 lncRNA in nonalcoholic steatohepatitis fibrosis regulates CXCL5 in hepatic stellate cells Transl Res 2017; 190: 25-39 e21..
[http://dx.doi.org/10.1016/j.trsl.2017.09.001]
[70]
Yu F, Lu Z, Cai J, et al. MALAT1 functions as a competing endogenous RNA to mediate Rac1 expression by sequestering miR-101b in liver fibrosis. Cell Cycle 2015; 14(24): 3885-96.
[http://dx.doi.org/10.1080/15384101.2015.1120917] [PMID: 26697839]
[71]
He Y, Luo Y, Liang B, Ye L, Lu G, He W. Potential applications of MEG3 in cancer diagnosis and prognosis. Oncotarget 2017; 8(42): 73282-95.
[http://dx.doi.org/10.18632/oncotarget.19931] [PMID: 29069869]
[72]
He Y, Wu YT, Huang C, et al. Inhibitory effects of long noncoding RNA MEG3 on hepatic stellate cells activation and liver fibrogenesis. Biochim Biophys Acta 2014; 1842(11): 2204-15.
[http://dx.doi.org/10.1016/j.bbadis.2014.08.015] [PMID: 25201080]
[73]
Zhang L, Yang Z, Trottier J, Barbier O, Wang L. Long noncoding RNA MEG3 induces cholestatic liver injury by interaction with PTBP1 to facilitate shp mRNA decay. Hepatology 2017; 65(2): 604-15.
[http://dx.doi.org/10.1002/hep.28882] [PMID: 27770549]
[74]
Hanson A, Wilhelmsen D, DiStefano JK. The role of long non-coding RNAs (lncRNAs) in the development and progression of fibrosis associated with nonalcoholic fatty liver disease (NAFLD). Noncoding RNA 2018; 4(3)E18
[http://dx.doi.org/10.3390/ncrna4030018] [PMID: 30134610]
[75]
Zhou B, Yuan W, Li X. LncRNA Gm5091 alleviates alcoholic hepatic fibrosis by sponging miR-27b/23b/24 in mice. Cell Biol Int 2018; 42(10): 1330-9.
[http://dx.doi.org/10.1002/cbin.11021] [PMID: 29935035]
[76]
Yu F, Geng W, Dong P, Huang Z, Zheng J. LncRNA-MEG3 inhibits activation of hepatic stellate cells through SMO protein and miR-212. Cell Death Dis 2018; 9(10): 1014.
[http://dx.doi.org/10.1038/s41419-018-1068-x] [PMID: 30282972]
[77]
Zheng J, Dong P, Mao Y, et al. lincRNA-p21 inhibits hepatic stellate cell activation and liver fibrogenesis via p21. FEBS J 2015; 282(24): 4810-21.
[http://dx.doi.org/10.1111/febs.13544] [PMID: 26433205]
[78]
Li Z, Wang J, Zeng Q, et al. Long noncoding RNA HOTTIP Promotes mouse hepatic stellate cell activation via downregulating miR-148a. Cell Physiol Biochem 2018; 51(6): 2814-28.
[http://dx.doi.org/10.1159/000496012] [PMID: 30562760]
[79]
Wu JC, Luo SZ, Liu T, Lu LG, Xu MY. linc-SCRG1 accelerates liver fibrosis by decreasing RNA-binding protein tristetraprolin. FASEB J 2019; 33(2): 2105-15.
[http://dx.doi.org/10.1096/fj.201800098RR] [PMID: 30226813]
[80]
Gong Z, Tang J, Xiang T, et al. Genome-wide identification of long noncoding RNAs in CCl4-induced liver fibrosis via RNA sequencing. Mol Med Rep 2018; 18(1): 299-307.
[http://dx.doi.org/10.3892/mmr.2018.8986] [PMID: 29749545]
[81]
Salzman J, Gawad C, Wang PL, Lacayo N, Brown PO. Circular RNAs are the predominant transcript isoform from hundreds of human genes in diverse cell types. PLoS One 2012; 7(2)e30733
[http://dx.doi.org/10.1371/journal.pone.0030733] [PMID: 22319583]
[82]
Yang Y, Fan X, Mao M, et al. Extensive translation of circular RNAs driven by N6-methyladenosine. Cell Res 2017; 27(5): 626-41.
[http://dx.doi.org/10.1038/cr.2017.31] [PMID: 28281539]
[83]
Pamudurti NR, Bartok O, Jens M, et al. Translation of CircRNAsMol Cell 2017; 66(1): 9-21. e7.
[http://dx.doi.org/10.1016/j.molcel.2017.02.021]
[84]
Starke S, Jost I, Rossbach O, et al. Exon circularization requires canonical splice signals. Cell Rep 2015; 10(1): 103-11.
[http://dx.doi.org/10.1016/j.celrep.2014.12.002] [PMID: 25543144]
[85]
Wilusz JEA A. 360° view of circular RNAs: From biogenesis to functions. Wiley Interdiscip Rev RNA 2018; 9(4): e1478.
[http://dx.doi.org/10.1002/wrna.1478] [PMID: 29655315]
[86]
Lasda E, Parker R. Circular RNAs: Diversity of form and function. RNA 2014; 20(12): 1829-42.
[http://dx.doi.org/10.1261/rna.047126.114] [PMID: 25404635]
[87]
Abu N, Jamal R. Circular RNAs as promising biomarkers: A mini-review. Front Physiol 2016; 7: 355.
[http://dx.doi.org/10.3389/fphys.2016.00355] [PMID: 27588005]
[88]
Jin X, Feng C-Y, Xiang Z, Chen Y-P, Li Y-M. CircRNA expression pattern and circRNA-miRNA-mRNA network in the pathogenesis of nonalcoholic steatohepatitis. Oncotarget 2016; 7(41): 66455-67.
[http://dx.doi.org/10.18632/oncotarget.12186] [PMID: 27677588]
[89]
Zhou Y, Lv X, Qu H, et al. Differential expression of circular RNAs in hepatic tissue in a model of liver fibrosis and functional analysis of their target genes. Hepatol Res 2019; 49(3): 324-34.
[http://dx.doi.org/10.1111/hepr.13284] [PMID: 30379383]
[90]
Chen Y, Yuan B, Wu Z, Dong Y, Zhang L, Zeng Z. Microarray profiling of circular RNAs and the potential regulatory role of hsa_circ_0071410 in the activated human hepatic stellate cell induced by irradiation. Gene 2017; 629: 35-42.
[http://dx.doi.org/10.1016/j.gene.2017.07.078] [PMID: 28774651]
[91]
Wang SL, Yang CQ, Qi XL, et al. Inhibitory effect of bone morphogenetic protein-7 on hepatic fibrosis in rats. Int J Clin Exp Pathol 2013; 6(5): 897-903.
[PMID: 23638221]
[92]
Yao T, Chen Q, Fu L, Guo J. Circular RNAs: Biogenesis, properties, roles, and their relationships with liver diseases. Hepatol Res 2017; 47(6): 497-504.
[http://dx.doi.org/10.1111/hepr.12871] [PMID: 28185365]
[93]
Salmena L, Poliseno L, Tay Y, Kats L, Pandolfi PP. A ceRNA hypothesis: The rosetta stone of a hidden RNA language? Cell 2011; 146(3): 353-8.
[http://dx.doi.org/10.1016/j.cell.2011.07.014] [PMID: 21802130]
[94]
Bian EB, Xiong ZG, Li J. New advances of lncRNAs in liver fibrosis, with specific focus on lncRNA-miRNA interactions. J Cell Physiol 2019; 234(3): 2194-203.
[http://dx.doi.org/10.1002/jcp.27069] [PMID: 30229908]
[95]
Franco-Zorrilla JM, Valli A, Todesco M, et al. Target mimicry provides a new mechanism for regulation of microRNA activity. Nat Genet 2007; 39(8): 1033-7.
[http://dx.doi.org/10.1038/ng2079] [PMID: 17643101]
[96]
Chiyomaru T, Yamamura S, Fukuhara S, et al. Genistein inhibits prostate cancer cell growth by targeting miR-34a and oncogenic HOTAIR. PLoS One 2013; 8(8)e70372
[http://dx.doi.org/10.1371/journal.pone.0070372] [PMID: 23936419]
[97]
Jia LF, Wei SB, Gan YH, et al. Expression, regulation and roles of miR-26a and MEG3 in tongue squamous cell carcinoma. Int J Cancer 2014; 135(10): 2282-93.
[http://dx.doi.org/10.1002/ijc.28667] [PMID: 24343426]
[98]
Braconi C, Kogure T, Valeri N, et al. microRNA-29 can regulate expression of the long non-coding RNA gene MEG3 in hepatocellular cancer. Oncogene 2011; 30(47): 4750-6.
[http://dx.doi.org/10.1038/onc.2011.193] [PMID: 21625215]
[99]
Wang J, Liu X, Wu H, et al. CREB up-regulates long non-coding RNA, HULC expression through interaction with microRNA-372 in liver cancer. Nucleic Acids Res 2010; 38(16): 5366-83.
[http://dx.doi.org/10.1093/nar/gkq285] [PMID: 20423907]
[100]
Liu Q, Huang J, Zhou N, et al. LncRNA loc285194 is a p53-regulated tumor suppressor. Nucleic Acids Res 2013; 41(9): 4976-87.
[http://dx.doi.org/10.1093/nar/gkt182] [PMID: 23558749]
[101]
Zheng J, Yu F, Dong P, et al. Long non-coding RNA PVT1 activates hepatic stellate cells through competitively binding microRNA-152. Oncotarget 2016; 7(39): 62886-97.
[http://dx.doi.org/10.18632/oncotarget.11709] [PMID: 27588491]
[102]
Bian EB, Wang YY, Yang Y, et al. Hotair facilitates hepatic stellate cells activation and fibrogenesis in the liver. Biochim Biophys Acta Mol Basis Dis 2017; 1863(3): 674-86.
[http://dx.doi.org/10.1016/j.bbadis.2016.12.009] [PMID: 27979710]
[103]
Yu F, Chen B, Dong P, Zheng J. HOTAIR epigenetically modulates PTEN expression via MicroRNA-29b: A novel mechanism in regulation of liver fibrosis. Mol Ther 2017; 25(1): 205-17.
[http://dx.doi.org/10.1016/j.ymthe.2016.10.015] [PMID: 28129115]
[104]
Yu F, Lu Z, Chen B, Dong P, Zheng J. Identification of a novel lincRNA-p21-miR-181b-PTEN signaling cascade in liver fibrosis. Mediators Inflamm 2016; 2016: 9856538.
[http://dx.doi.org/10.1155/2016/9856538] [PMID: 27610008]
[105]
Yu F, Guo Y, Chen B, et al. LincRNA-p21 inhibits the Wnt/β-catenin pathway in activated hepatic stellate cells via sponging microRNA-17-5p. Cell Physiol Biochem 2017; 41(5): 1970-80.
[http://dx.doi.org/10.1159/000472410] [PMID: 28391277]
[106]
Fu N, Zhao SX, Kong LB, et al. LncRNA-ATB/microRNA-200a/β-catenin regulatory axis involved in the progression of HCV-related hepatic fibrosis. Gene 2017; 618: 1-7.
[http://dx.doi.org/10.1016/j.gene.2017.03.008] [PMID: 28302418]
[107]
Yu F, Zheng J, Mao Y, et al. Long non-coding RNA growth arrest-specific transcript 5 (GAS5) inhibits liver fibrogenesis through a mechanism of competing endogenous RNA. J Biol Chem 2015; 290(47): 28286-98.
[http://dx.doi.org/10.1074/jbc.M115.683813] [PMID: 26446789]
[108]
Yu F, Jiang Z, Chen B, Dong P, Zheng J. NEAT1 accelerates the progression of liver fibrosis via regulation of microRNA-122 and Kruppel-like factor 6. J Mol Med (Berl) 2017; 95(11): 1191-202.
[http://dx.doi.org/10.1007/s00109-017-1586-5] [PMID: 28864835]
[109]
Zheng J, Mao Y, Dong P, Huang Z, Yu F. Long noncoding RNA HOTTIP mediates SRF expression through sponging miR-150 in hepatic stellate cells. J Cell Mol Med 2019; 23(2): 1572-80.
[PMID: 30548190]
[110]
Memczak S, Jens M, Elefsinioti A, et al. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 2013; 495(7441): 333-8.
[http://dx.doi.org/10.1038/nature11928] [PMID: 23446348]
[111]
Hansen TB, Jensen TI, Clausen BH, et al. Natural RNA circles function as efficient microRNA sponges. Nature 2013; 495(7441): 384-8.
[http://dx.doi.org/10.1038/nature11993] [PMID: 23446346]
[112]
Wilusz JE, Sharp PA. Molecular biology. A circuitous route to noncoding RNA. Science 2013; 340(6131): 440-1.
[http://dx.doi.org/10.1126/science.1238522] [PMID: 23620042]
[113]
Guo XY, Chen JN, Sun F, Wang YQ, Pan Q, Fan JG. circRNA_ 0046367 Prevents hepatoxicity of lipid peroxidation: An inhibitory role against hepatic steatosis. Oxid Med Cell Longev . 2017; 2017: 3960197.
[http://dx.doi.org/10.1155/2017/3960197] [PMID: 29018509]
[114]
Guo XY, Sun F, Chen JN, Wang YQ, Pan Q, Fan JG. circRNA_0046366 inhibits hepatocellular steatosis by normalization of PPAR signaling. World J Gastroenterol 2018; 24(3): 323-37.
[http://dx.doi.org/10.3748/wjg.v24.i3.323] [PMID: 29391755]
[115]
Guo XY, He CX, Wang YQ, et al. Circular RNA profiling and bioinformatic modeling identify its regulatory role in hepatic steatosis. BioMed Res Int 2017; 2017: 5936171.
[http://dx.doi.org/10.1155/2017/5936171] [PMID: 28717649]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy