Abstract
Background: β thalassemia is a common monogenic genetic disease that is very harmful to human health. The disease arises is due to the deletion of or defects in β-globin, which reduces synthesis of the β-globin chain, resulting in a relatively excess number of α-chains. The formation of inclusion bodies deposited on the cell membrane causes a decrease in the ability of red blood cells to deform and a group of hereditary haemolytic diseases caused by massive destruction in the spleen.
Methods: In this work, machine learning algorithms were employed to build a prediction model for inhibitors against K562 based on 117 inhibitors and 190 non-inhibitors.
Results: The overall accuracy (ACC) of a 10-fold cross-validation test and an independent set test using Adaboost were 83.1% and 78.0%, respectively, surpassing Bayes Net, Random Forest, Random Tree, C4.5, SVM, KNN and Bagging.
Conclusion: This study indicated that Adaboost could be applied to build a learning model in the prediction of inhibitors against K526 cells.
Keywords: Machine learning, cross-validation test, independent set test, Adaboost; feature selection, K526 cells.
[http://dx.doi.org/10.1093/nar/gkt911] [PMID: 24137000]
[http://dx.doi.org/10.1016/S0268-960X(02)00061-9] [PMID: 12490210]
[http://dx.doi.org/10.1007/s00277-005-0049-1] [PMID: 16389564]
[http://dx.doi.org/10.1097/00043426-200212000-00021] [PMID: 12468925]
[http://dx.doi.org/10.1182/blood.V88.7.2738.bloodjournal8872738] [PMID: 8839870]
[http://dx.doi.org/10.1016/S0140-6736(05)63080-2] [PMID: 9274590]
[PMID: 1385194]
[http://dx.doi.org/10.1182/blood-2010-10-314096] [PMID: 21464371]
[http://dx.doi.org/10.1182/blood-2002-08-2617] [PMID: 12393499]
[PMID: 30091413]
[http://dx.doi.org/10.1155/2017/4649191] [PMID: 28630865]
[http://dx.doi.org/10.1007/s11030-017-9732-0] [PMID: 28275924]
[http://dx.doi.org/10.18632/oncotarget.19169] [PMID: 28915661]
[http://dx.doi.org/10.1155/2017/1972097] [PMID: 28691016]
[http://dx.doi.org/10.2174/1574893611666151119220248]
[http://dx.doi.org/10.2174/1386207319666151110122931] [PMID: 26552439]
[http://dx.doi.org/10.2174/1574893611666160610104946]
[http://dx.doi.org/10.2174/1574893612666170405125637]
[http://dx.doi.org/10.2174/1574893612666171121154655]
[http://dx.doi.org/10.2174/1574893612666171121162552]
[http://dx.doi.org/10.2174/1574893611666151215213508]
[http://dx.doi.org/10.2174/1574893614666181120093740]
[http://dx.doi.org/10.2174/1574893612666170707095707]
[http://dx.doi.org/10.2174/1574893611666161118142801]
[http://dx.doi.org/10.2174/1574893611666161110112006]
[http://dx.doi.org/10.2174/1574893612666170905153933]
[http://dx.doi.org/10.1186/s12917-019-1903-z] [PMID: 31118049]
[PMID: 29107015]
[http://dx.doi.org/10.1016/j.ygeno.2017.08.005] [PMID: 28818512]
[PMID: 28989035]
[http://dx.doi.org/10.3390/genes8100243] [PMID: 28953220]
[http://dx.doi.org/10.1007/s11095-018-2562-7] [PMID: 30617559]
[http://dx.doi.org/10.1007/978-1-4020-9783-6_3]
[http://dx.doi.org/10.1002/slct.201900114]
[http://dx.doi.org/10.2174/157340991501181214103556] [PMID: 30569845]
[http://dx.doi.org/10.1016/j.molstruc.2019.02.052]
[http://dx.doi.org/10.1021/acsami.8b15785] [PMID: 30547572]
[http://dx.doi.org/10.1021/acs.est.8b04394] [PMID: 30589539]
[http://dx.doi.org/10.1016/j.chemosphere.2019.03.020] [PMID: 30870630]
[http://dx.doi.org/10.1021/jacs.8b11224] [PMID: 30565929]
[http://dx.doi.org/10.2174/1568026619666190510093651] [PMID: 31074367]
[http://dx.doi.org/10.3390/biom8030092] [PMID: 30205520]
[http://dx.doi.org/10.1021/acs.analchem.8b04322] [PMID: 30449086]
[http://dx.doi.org/10.1002/minf.201800154] [PMID: 30945814]
[http://dx.doi.org/10.1039/C8SC04175J] [PMID: 30842833]
[http://dx.doi.org/10.1109/TCYB.2016.2623900] [PMID: 27898387]
[http://dx.doi.org/10.1016/j.csbj.2018.11.007] [PMID: 30595814]
[http://dx.doi.org/10.2174/1570178615666180724103325]
[http://dx.doi.org/10.1007/BF00994018]
[http://dx.doi.org/10.1109/72.788640] [PMID: 18252602]
[http://dx.doi.org/10.1007/BF00994018]
[http://dx.doi.org/10.2174/1573406413666170522150940] [PMID: 28530547]
[http://dx.doi.org/10.1002/minf.201800095] [PMID: 30548221]
[http://dx.doi.org/10.1016/j.ecoenv.2019.04.035] [PMID: 31026752]
[http://dx.doi.org/10.1039/C6RA06159A]
[http://dx.doi.org/10.1016/j.chemosphere.2010.11.043] [PMID: 21145574]
[http://dx.doi.org/10.1016/j.chemolab.2017.06.011]
[http://dx.doi.org/10.1007/s11030-008-9092-x] [PMID: 18937041]
[http://dx.doi.org/10.1002/jcc.21148] [PMID: 18988254]
[http://dx.doi.org/10.1021/acs.jcim.9b00295] [PMID: 31083984]
[http://dx.doi.org/10.3892/ol.2019.10068] [PMID: 31007759]
[http://dx.doi.org/10.1002/minf.201800028] [PMID: 30251339]
[http://dx.doi.org/10.1021/acs.chemrestox.9b00011] [PMID: 31066547]
[http://dx.doi.org/10.1002/minf.201800088] [PMID: 30259699]
[http://dx.doi.org/10.1016/j.jmgm.2019.04.007] [PMID: 31100677]
[http://dx.doi.org/10.1016/j.scitotenv.2018.01.124] [PMID: 29898519]
[http://dx.doi.org/10.1016/j.matcom.2018.02.001]
[http://dx.doi.org/10.1007/s10822-018-0116-z] [PMID: 29626291]