Generic placeholder image

Current Stem Cell Research & Therapy

Editor-in-Chief

ISSN (Print): 1574-888X
ISSN (Online): 2212-3946

Review Article

Recent Approaches for Angiogenesis in Search of Successful Tissue Engineering and Regeneration

Author(s): Lekkala Vinod Kumar Reddy, Durai Murugan, Madhubanti Mullick, Erfath Thanjeem Begum Moghal and Dwaipayan Sen*

Volume 15, Issue 2, 2020

Page: [111 - 134] Pages: 24

DOI: 10.2174/1574888X14666191104151928

Price: $65

Abstract

Angiogenesis plays a central role in human physiology from reproduction and fetal development to wound healing and tissue repair/regeneration. Clinically relevant therapies are needed for promoting angiogenesis in order to supply oxygen and nutrients after transplantation, thus relieving the symptoms of ischemia. Increase in angiogenesis can lead to the restoration of damaged tissues, thereby leading the way for successful tissue regeneration. Tissue regeneration is a broad field that has shown the convergence of various interdisciplinary fields, wherein living cells in conjugation with biomaterials have been tried and tested on to the human body. Although there is a prevalence of various approaches that hypothesize enhanced tissue regeneration via angiogenesis, none of them have been successful in gaining clinical relevance. Hence, the current review summarizes the recent cell-based and cell free (exosomes, extracellular vesicles, micro-RNAs) therapies, gene and biomaterial-based approaches that have been used for angiogenesis-mediated tissue regeneration and have been applied in treating disease models like ischemic heart, brain stroke, bone defects and corneal defects. This review also puts forward a concise report of the pre-clinical and clinical studies that have been performed so far; thereby presenting the credible impact of the development of biomaterials and their 3D concepts in the field of tissue engineering and regeneration, which would lead to the probable ways for heralding the successful future of angiogenesis-mediated approaches in the greater perspective of tissue engineering and regenerative medicine.

Keywords: Angiogenesis, stem cells, cell and gene therapy, biomaterials, tissue engineering, 3D bioprinting, scaffold, exosomes, miRNA.

[1]
Potente M, Gerhardt H, Carmeliet P. Basic and therapeutic aspects of angiogenesis. Cell 2011; 146(6): 873-87.
[http://dx.doi.org/10.1016/j.cell.2011.08.039] [PMID: 21925313]
[2]
Böhrnsen F, Schliephake H. Supportive angiogenic and osteogenic differentiation of mesenchymal stromal cells and endothelial cells in monolayer and co-cultures. Int J Oral Sci 2016; 8(4): 223-30.
[http://dx.doi.org/10.1038/ijos.2016.39] [PMID: 27910940]
[3]
Carmeliet P, Jain RK. Molecular mechanisms and clinical applications of angiogenesis. Nature 2011; 473(7347): 298-307.
[http://dx.doi.org/10.1038/nature10144] [PMID: 21593862]
[4]
Tahergorabi Z, Khazaei M. A review on angiogenesis and its assays. Iran J Basic Med Sci 2012; 15(6): 1110-26.
[PMID: 23653839]
[5]
Dergilev K, Tsokolaeva Z, Makarevich P, et al. C-Kit cardiac progenitor cell based cell sheet improves vascularization and attenuates cardiac remodeling following myocardial infarction in rats. BioMed Res Int 2018. 20183536854
[http://dx.doi.org/10.1155/2018/3536854] [PMID: 30046593]
[6]
Shi C, Zhao Y, Yang Y, et al. Collagen-binding VEGF targeting the cardiac extracellular matrix promotes recovery in porcine chronic myocardial infarction. Biomater Sci 2018; 6(2): 356-63.
[http://dx.doi.org/10.1039/C7BM00891K] [PMID: 29266144]
[7]
Seo Y, Jung Y, Kim SH. Decellularized heart ECM hydrogel using supercritical carbon dioxide for improved angiogenesis. Acta Biomater 2018; 67: 270-81.
[http://dx.doi.org/10.1016/j.actbio.2017.11.046] [PMID: 29223704]
[8]
Deng Y, Wang J, He G, Qu F, Zheng M. Mobilization of endothelial progenitor cell in patients with acute ischemic stroke. Neurol Sci 2018; 39(3): 437-43.
[http://dx.doi.org/10.1007/s10072-017-3143-y] [PMID: 29147957]
[9]
Théry C, Witwer KW, Aikawa E, et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): A position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles 2018; 7(1)1535750
[http://dx.doi.org/10.1080/20013078.2018.1535750] [PMID: 30637094]
[10]
Potz BA, Scrimgeour LA, Pavlov VI, Sodha NR, Abid MR, Sellke FW. Extracellular Vesicle Injection Improves Myocardial Function and Increases Angiogenesis in a Swine Model of Chronic Ischemia. J Am Heart Assoc 2018; 7(12)e008344
[http://dx.doi.org/10.1161/JAHA.117.008344] [PMID: 29895586]
[11]
Beltrami C, Besnier M, Shantikumar S, et al. Human pericardial fluid contains exosomes enriched with cardiovascular-expressed micrornas and promotes therapeutic angiogenesis. Mol Ther 2017; 25(3): 679-93.
[http://dx.doi.org/10.1016/j.ymthe.2016.12.022] [PMID: 28159509]
[12]
Lai RC, Arslan F, Lee MM, et al. Exosome secreted by MSC reduces myocardial ischemia/reperfusion injury. Stem Cell Res (Amst) 2010; 4(3): 214-22.
[http://dx.doi.org/10.1016/j.scr.2009.12.003] [PMID: 20138817]
[13]
Ma J, Zhao Y, Sun L, et al. Exosomes derived from Akt-modified human umbilical cord mesenchymal stem cells improve cardiac regeneration and promote angiogenesis via activating platelet-derived growth factor D. Stem Cells Transl Med 2017; 6(1): 51-9.
[http://dx.doi.org/10.5966/sctm.2016-0038] [PMID: 28170176]
[14]
Adamiak M, Cheng G, Bobis-Wozowicz S, et al. Induced Pluripotent Stem Cell (iPSC)-derived extracellular vesicles are safer and more effective for cardiac repair than iPSCs. Circ Res 2018; 122(2): 296-309.
[http://dx.doi.org/10.1161/CIRCRESAHA.117.311769] [PMID: 29118058]
[15]
Vandergriff A, Huang K, Shen D, et al. Targeting regenerative exosomes to myocardial infarction using cardiac homing peptide. Theranostics 2018; 8(7): 1869-78.
[http://dx.doi.org/10.7150/thno.20524] [PMID: 29556361]
[16]
Jung JH, Fu X, Yang PC. Exosomes Generated From iPSC-Derivatives: New Direction for Stem Cell Therapy in Human Heart Diseases. Circ Res 2017; 120(2): 407-17.
[http://dx.doi.org/10.1161/CIRCRESAHA.116.309307] [PMID: 28104773]
[17]
Zhao X, Chen H, Xiao D, et al. Comparison of non-human primate versus human induced pluripotent stem cell-derived cardiomyocytes for treatment of myocardial infarction. Stem Cell Reports 2018; 10(2): 422-35.
[http://dx.doi.org/10.1016/j.stemcr.2018.01.002] [PMID: 29398480]
[18]
Xue C, Shen Y, Li X, et al. Exosomes derived from hypoxia-treated human adipose mesenchymal stem cells enhance angiogenesis through the PKA signaling pathway. Stem Cells Dev 2018; 27(7): 456-65.
[http://dx.doi.org/10.1089/scd.2017.0296] [PMID: 29415626]
[19]
Kumagai M, Minakata K, Masumoto H, et al. A therapeutic angiogenesis of sustained release of basic fibroblast growth factor using biodegradable gelatin hydrogel sheets in a canine chronic myocardial infarction model. Heart Vessels 2018; 33(10): 1251-7.
[http://dx.doi.org/10.1007/s00380-018-1185-6] [PMID: 29761379]
[20]
Browne S, Jha AK, Ameri K, Marcus SG, Yeghiazarians Y, Healy KE. TGF-β1/CD105 signaling controls vascular network formation within growth factor sequestering hyaluronic acid hydrogels. PLoS One 2018; 13(3)e0194679
[http://dx.doi.org/10.1371/journal.pone.0194679] [PMID: 29566045]
[21]
Luo F, Wu P, Chen J, et al. ANGPTL3 possibly promotes cardiac angiogenesis through improving proangiogenic ability of endothelial progenitor cells after myocardial infarction. Lipids Health Dis 2018; 17(1): 184.
[http://dx.doi.org/10.1186/s12944-018-0835-0] [PMID: 30086775]
[22]
Zhou XL, Zhu RR, Liu S, et al. Notch signaling promotes angiogenesis and improves cardiac function after myocardial infarction. J Cell Biochem 2018; 119(8): 7105-12.
[http://dx.doi.org/10.1002/jcb.27032] [PMID: 29737557]
[23]
Zhao Y, Song J, Bi X, et al. Thymosin β4 promotes endothelial progenitor cell angiogenesis via a vascular endothelial growth factor-dependent mechanism. Mol Med Rep 2018; 18(2): 2314-20.
[http://dx.doi.org/10.3892/mmr.2018.9199] [PMID: 29956769]
[24]
Chen K, Yan M, Li Y, et al. Intermedin1-53 enhances angiogenesis and attenuates adverse remodeling following myocardial infarction by activating AMP-activated protein kinase. Mol Med Rep 2017; 15(4): 1497-506.
[http://dx.doi.org/10.3892/mmr.2017.6193] [PMID: 28259938]
[25]
Makarevich PI, Dergilev KV, Tsokolaeva ZI, et al. Angiogenic and pleiotropic effects of VEGF165 and HGF combined gene therapy in a rat model of myocardial infarction. PLoS One 2018; 13(5)e0197566
[http://dx.doi.org/10.1371/journal.pone.0197566] [PMID: 29787588]
[26]
Renaud-Gabardos E, Tatin F, Hantelys F, et al. Therapeutic Benefit and Gene Network Regulation by Combined Gene Transfer of Apelin, FGF2, and SERCA2a into Ischemic Heart. Mol Ther 2018; 26(3): 902-16.
[http://dx.doi.org/10.1016/j.ymthe.2017.11.007] [PMID: 29249393]
[27]
Zimna A, Wiernicki B, Kolanowski T, et al. Biological and Pro-Angiogenic Properties of Genetically Modified Human Primary Myoblasts Overexpressing Placental Growth Factor in In vitro and In vivo Studies. Arch Immunol Ther Exp (Warsz) 2018; 66(2): 145-59.
[http://dx.doi.org/10.1007/s00005-017-0486-2] [PMID: 28951939]
[28]
Ottaviani L, Sansonetti M, da Costa Martins PA. Myocardial cell-to-cell communication via microRNAs. Noncoding RNA Res 2018; 3(3): 144-53.
[http://dx.doi.org/10.1016/j.ncrna.2018.05.004] [PMID: 30175287]
[29]
Boon RA. Non-coding RNAs in cardiovascular health and disease. Noncoding RNA Res 2018; 3(3): 99.
[http://dx.doi.org/10.1016/j.ncrna.2018.07.002] [PMID: 30175282]
[30]
Holfeld J, PÃlzl L, Graber M, et al. miR-19a-3p containing exosomes improve cardiac function in ischemic myocardium. Thorac cardiovasc Surg 2018; 66(S 01) DGTHG-V17
[31]
Wang S, Wu J, You J, et al. HSF1 deficiency accelerates the transition from pressure overload-induced cardiac hypertrophy to heart failure through endothelial miR-195a-3p-mediated impairment of cardiac angiogenesis. J Mol Cell Cardiol 2018; 118: 193-207.
[http://dx.doi.org/10.1016/j.yjmcc.2018.03.017] [PMID: 29626503]
[32]
Dong J, Zhang Z, Huang H, et al. miR-10a rejuvenates aged human mesenchymal stem cells and improves heart function after myocardial infarction through KLF4. Stem Cell Res Ther 2018; 9(1): 151.
[http://dx.doi.org/10.1186/s13287-018-0895-0] [PMID: 29848383]
[33]
Fan ZG, Qu XL, Chu P, et al. MicroRNA-210 promotes angiogenesis in acute myocardial infarction. Mol Med Rep 2018; 17(4): 5658-65.
[http://dx.doi.org/10.3892/mmr.2018.8620] [PMID: 29484401]
[34]
Zhao Y, Yan M, Chen C, et al. MiR-124 aggravates failing hearts by suppressing CD151-facilitated angiogenesis in heart. Oncotarget 2018; 9(18): 14382-96.
[http://dx.doi.org/10.18632/oncotarget.24205] [PMID: 29581851]
[35]
Liang J, Huang W, Cai W, et al. Inhibition of microRNA-495 Enhances Therapeutic Angiogenesis of Human Induced Pluripotent Stem Cells. Stem Cells 2017; 35(2): 337-50.
[http://dx.doi.org/10.1002/stem.2477] [PMID: 27538588]
[36]
Wen Y, Chen R, Zhu C, et al. MiR-503 suppresses hypoxia-induced proliferation, migration and angiogenesis of endothelial progenitor cells by targeting Apelin. Peptides 2018; 105: 58-65.
[http://dx.doi.org/10.1016/j.peptides.2018.05.008] [PMID: 29800588]
[37]
Gong M, Yu B, Wang J, et al. Mesenchymal stem cells release exosomes that transfer miRNAs to endothelial cells and promote angiogenesis. Oncotarget 2017; 8(28): 45200-12.
[http://dx.doi.org/10.18632/oncotarget.16778] [PMID: 28423355]
[38]
Wang N, Chen C, Yang D, et al. Mesenchymal stem cells-derived extracellular vesicles, via miR-210, improve infarcted cardiac function by promotion of angiogenesis. Biochim Biophys Acta Mol Basis Dis 2017; 1863(8): 2085-92.
[http://dx.doi.org/10.1016/j.bbadis.2017.02.023] [PMID: 28249798]
[39]
Bi M, Wang J, Zhang Y, et al. Bone mesenchymal stem cells transplantation combined with mild hypothermia improves the prognosis of cerebral ischemia in rats. PLoS One 2018; 13(8)e0197405
[http://dx.doi.org/10.1371/journal.pone.0197405] [PMID: 30067742]
[40]
Nakanishi K, Sato Y, Mizutani Y, Ito M, Hirakawa A, Higashi Y. Rat umbilical cord blood cells attenuate hypoxic-ischemic brain injury in neonatal rats. Sci Rep 2017; 7: 44111.
[http://dx.doi.org/10.1038/srep44111] [PMID: 28281676]
[41]
Kong Z, Hong Y, Zhu J, Cheng X, Liu Y. Endothelial progenitor cells improve functional recovery in focal cerebral ischemia of rat by promoting angiogenesis via VEGF. J Clin Neurosci 2018; 55: 116-21.
[http://dx.doi.org/10.1016/j.jocn.2018.07.011] [PMID: 30041898]
[42]
Sargento-Freitas J, Pereira A, Gomes A, et al. STROKE34 Study Protocol: A Randomized Controlled Phase IIa Trial of Intra-Arterial CD34+ Cells in Acute Ischemic Stroke. Front Neurol 2018; 9: 302.
[http://dx.doi.org/10.3389/fneur.2018.00302] [PMID: 29867719]
[43]
Guo XB, Deng X, Wei Y. Homing of cultured endothelial progenitor cells and their effect on traumatic brain injury in rat model. Sci Rep 2017; 7(1): 4164.
[http://dx.doi.org/10.1038/s41598-017-04153-2] [PMID: 28646184]
[44]
Wang Y, Zhang R, Xing X, et al. Repulsive guidance molecule a suppresses angiogenesis after ischemia/reperfusion injury of middle cerebral artery occlusion in rats. Neurosci Lett 2018; 662: 318-23.
[http://dx.doi.org/10.1016/j.neulet.2017.10.036] [PMID: 29061393]
[45]
Chen X, Zhang X, Chen T, et al. Inhibition of immunoproteasome promotes angiogenesis via enhancing hypoxia-inducible factor-1α abundance in rats following focal cerebral ischaemia. Brain Behav Immun 2018; 73: 167-79.
[http://dx.doi.org/10.1016/j.bbi.2018.04.009] [PMID: 29679638]
[46]
Xing S, Pan N, Xu W, Zhang J, Li J, Dang C, et al. EphrinB2 activation enhances angiogenesis, reduces amyloid-beta deposits and secondary damage in thalamus at the early stage after cortical infarction in hypertensive rats. J Cereb Blood Flow Metab 2019; 39(9): 1776-89.
[47]
Gu N, Dong Y, Tian Y, et al. Anti-apoptotic and angiogenic effects of intelectin-1 in rat cerebral ischemia. Brain Res Bull 2017; 130: 27-35.
[http://dx.doi.org/10.1016/j.brainresbull.2016.12.006] [PMID: 28017783]
[48]
Chen Y, Zhang X, He J, Xie Y, Yang Y. Delayed Administration of the Glucagon-Like Peptide 1 Analog Liraglutide Promoting Angiogenesis after Focal Cerebral Ischemia in Mice. J Stroke Cerebrovasc Dis 2018; 27(5): 1318-25.
[http://dx.doi.org/10.1016/j.jstrokecerebrovasdis.2017.12.015] [PMID: 29395648]
[49]
Deng G, Qiu Z, Li D, Fang Y, Zhang S. Delayed administration of guanosine improves long-term functional recovery and enhances neurogenesis and angiogenesis in a mouse model of photothrombotic stroke. Mol Med Rep 2017; 15(6): 3999-4004.
[http://dx.doi.org/10.3892/mmr.2017.6521] [PMID: 28487988]
[50]
Dong B, Zhang Z, Xie K, et al. Hemopexin promotes angiogenesis via up-regulating HO-1 in rats after cerebral ischemia-reperfusion injury. BMC Anesthesiol 2018; 18(1): 2.
[http://dx.doi.org/10.1186/s12871-017-0466-4] [PMID: 29298658]
[51]
Lu L, Bai X, Cao Y, et al. Growth Differentiation Factor 11 Promotes Neurovascular Recovery After Stroke in Mice. Front Cell Neurosci 2018; 12: 205.
[http://dx.doi.org/10.3389/fncel.2018.00205] [PMID: 30061815]
[52]
Jain A, Kratimenos P, Koutroulis I, Jain A, Buddhavarapu A, Ara J. Effect of Intranasally Delivered rh-VEGF165 on Angiogenesis Following Cerebral Hypoxia-Ischemia in the Cerebral Cortex of Newborn Piglets. Int J Mol Sci 2017; 18(11): 2356.
[http://dx.doi.org/10.3390/ijms18112356] [PMID: 29112164]
[53]
Wesley UV, Hatcher JF, Ayvaci ER, Klemp A, Dempsey RJ. Regulation of Dipeptidyl Peptidase IV in the Post-stroke Rat Brain and In vitro Ischemia: Implications for Chemokine-Mediated Neural Progenitor Cell Migration and Angiogenesis. Mol Neurobiol 2017; 54(7): 4973-85.
[http://dx.doi.org/10.1007/s12035-016-0039-4] [PMID: 27525674]
[54]
Lee H, Jin Y-C, Kim S-W, Kim I-D, Lee H-K, Lee J-K. Proangiogenic functions of an RGD-SLAY-containing osteopontin icosamer peptide in HUVECs and in the postischemic brain. Exp Mol Med 2018; 50(1)e430
[http://dx.doi.org/10.1038/emm.2017.241] [PMID: 29350679]
[55]
Liu J, Zhou X, Li Q, et al. Role of Phosphorylated HDAC4 in Stroke-Induced Angiogenesis. BioMed Res Int 2017. 20172957538
[http://dx.doi.org/10.1155/2017/2957538] [PMID: 28127553]
[56]
Li Y, Chang S, Li W, et al. cxcl12-engineered endothelial progenitor cells enhance neurogenesis and angiogenesis after ischemic brain injury in mice. Stem Cell Res Ther 2018; 9(1): 139.
[http://dx.doi.org/10.1186/s13287-018-0865-6] [PMID: 29751775]
[57]
Ma J, Zhang L, Niu T, Ai C, Jia G, Jin X, et al. Growth differentiation factor 11 improves neurobehavioral recovery and stimulates angiogenesis in rats subjected to cerebral ischemia/reperfusion. Brain Res Bull 139: 38-47.
[58]
Fuster-Matanzo A, Manferrari G, Marchetti B, Pluchino S. Wnt3a promotes pro-angiogenic features in macrophages in vitro: Implications for stroke pathology. Exp Biol Med (Maywood) 2018; 243(1): 22-8.
[http://dx.doi.org/10.1177/1535370217746392] [PMID: 29199847]
[59]
Wan J, Wan H, Yang R, et al. Protective effect of Danhong Injection combined with Naoxintong Capsule on cerebral ischemia-reperfusion injury in rats. J Ethnopharmacol 2018; 211: 348-57.
[http://dx.doi.org/10.1016/j.jep.2017.10.002] [PMID: 28986333]
[60]
Li ZC, Jia YP, Wang Y, Qi JL, Han XP. Effects of dexmedetomidine post-treatment on BDNF and VEGF expression following cerebral ischemia/reperfusion injury in rats. Mol Med Rep 2018; 17(4): 6033-7.
[http://dx.doi.org/10.3892/mmr.2018.8597] [PMID: 29436655]
[61]
Yang Y, Dong B, Lu J, Wang G, Yu Y. Hemopexin reduces blood-brain barrier injury and protects synaptic plasticity in cerebral ischemic rats by promoting EPCs through the HO-1 pathway. Brain Res 2018; 1699: 177-85.
[http://dx.doi.org/10.1016/j.brainres.2018.08.008] [PMID: 30092232]
[62]
Li Y, Zhang X, Cui L, et al. Salvianolic acids enhance cerebral angiogenesis and neurological recovery by activating JAK2/STAT3 signaling pathway after ischemic stroke in mice. J Neurochem 2017; 143(1): 87-99.
[http://dx.doi.org/10.1111/jnc.14140] [PMID: 28771727]
[63]
Wang Z, Wang R, Wang K, Liu X. Upregulated long noncoding RNA Snhg1 promotes the angiogenesis of brain microvascular endothelial cells after oxygen-glucose deprivation treatment by targeting miR-199a. Can J Physiol Pharmacol 2018; 96(9): 909-15.
[http://dx.doi.org/10.1139/cjpp-2018-0107] [PMID: 29883549]
[64]
Meng ZY, Kang HL, Duan W, Zheng J, Li QN, Zhou ZJ. MicroRNA-210 Promotes Accumulation of Neural Precursor Cells Around Ischemic Foci After Cerebral Ischemia by Regulating the SOCS1-STAT3-VEGF-C Pathway. J Am Heart Assoc 2018; 7(5) e005052
[http://dx.doi.org/10.1161/JAHA.116.005052] [PMID: 29478968]
[65]
Huang J, Qu M, Lu Y, Gao P. [OP.1B.06] MIR-126 modified endothelial progenitor cells transplantation contributes to angiogenesis after brain focal ischemia in shr rats. J Hypertens 2017. 35e6
[http://dx.doi.org/10.1097/01.hjh.0000522992.29699.06]
[66]
Shan C, Ma Y. MicroRNA-126/stromal cell-derived factor 1/C-X-C chemokine receptor type 7 signaling pathway promotes post-stroke angiogenesis of endothelial progenitor cell transplantation. Mol Med Rep 2018; 17(4): 5300-5.
[http://dx.doi.org/10.3892/mmr.2018.8513] [PMID: 29393458]
[67]
Shi FP, Wang XH, Zhang HX, et al. MiR-103 regulates the angiogenesis of ischemic stroke rats by targeting vascular endothelial growth factor (VEGF). Iran J Basic Med Sci 2018; 21(3): 318-24.
[PMID: 29511499]
[68]
Zhao WJ, Zhang HF, Su JY. Downregulation of microRNA-195 promotes angiogenesis induced by cerebral infarction via targeting VEGFA. Mol Med Rep 16(4): 5434-40.
[http://dx.doi.org/10.3892/mmr.2017.7230]
[69]
Fan Y, Ding S, Sun Y, Zhao B, Pan Y, Wan J. MiR-377 Regulates Inflammation and Angiogenesis in Rats After Cerebral Ischemic Injury. J Cell Biochem 2018; 119(1): 327-37.
[http://dx.doi.org/10.1002/jcb.26181] [PMID: 28569430]
[70]
Ren L, Wei C, Li K, Lu Z. LncRNA MALAT1up-regulates VEGF-A and ANGPT2 to promote angiogenesis in brain microvascular endothelial cells against oxygen-glucose deprivation via targeting miR-145. Biosci Rep 2018.
[71]
Zhan R, Xu K, Pan J, Xu Q, Xu S, Shen J. Long noncoding RNA MEG3 mediated angiogenesis after cerebral infarction through regulating p53/NOX4 axis. Biochem Biophys Res Commun 2017; 490(3): 700-6.
[http://dx.doi.org/10.1016/j.bbrc.2017.06.104] [PMID: 28634073]
[72]
Bao M-H, Szeto V, Yang BB, Zhu SZ, Sun H-S, Feng Z-P. Long non-coding RNAs in ischemic stroke. Cell Death Dis 2018; 9(3): 281.
[http://dx.doi.org/10.1038/s41419-018-0282-x] [PMID: 29449542]
[73]
Zhang L, Luo X, Chen F, et al. LncRNA SNHG1 regulates cerebrovascular pathologies as a competing endogenous RNA through HIF-1α/VEGF signaling in ischemic stroke. J Cell Biochem 2018; 119(7): 5460-72.
[http://dx.doi.org/10.1002/jcb.26705] [PMID: 29377234]
[74]
Liang Z, Chi YJ, Lin GQ, Luo SH, Jiang QY, Chen YK. MiRNA-26a promotes angiogenesis in a rat model of cerebral infarction via PI3K/AKT and MAPK/ERK pathway. Eur Rev Med Pharmacol Sci 2018; 22(11): 3485-92.
[PMID: 29917203]
[75]
Liu XL, Wang G, Song W, Yang WX, Hua J, Lyu L. microRNA-137 promotes endothelial progenitor cell proliferation and angiogenesis in cerebral ischemic stroke mice by targeting NR4A2 through the Notch pathway. J Cell Physiol 2018; 233(7): 5255-66.
[http://dx.doi.org/10.1002/jcp.26312] [PMID: 29206299]
[76]
Xin H, Li Y, Cui Y, Yang JJ, Zhang ZG, Chopp M. Systemic administration of exosomes released from mesenchymal stromal cells promote functional recovery and neurovascular plasticity after stroke in rats. JCBFM 2013; 33(11): 1711-5.
[http://dx.doi.org/10.1038/jcbfm.2013.152]
[77]
Yang Y, Cai Y, Zhang Y, Liu J, Xu Z. Exosomes Secreted by Adipose-Derived Stem Cells Contribute to Angiogenesis of Brain Microvascular Endothelial Cells Following Oxygen-Glucose Deprivation In vitro Through MicroRNA-181b/TRPM7 Axis. J Mol Neurosci 2018; 65(1): 74-83.
[http://dx.doi.org/10.1007/s12031-018-1071-9] [PMID: 29705934]
[78]
Zhang ZG, Buller B, Chopp M. Exosomes - beyond stem cells for restorative therapy in stroke and neurological injury. Nat Rev Neurol 2019; 15(4): 193-203.
[http://dx.doi.org/10.1038/s41582-018-0126-4] [PMID: 30700824]
[79]
Manuel GE, Johnson T, Liu D. Therapeutic angiogenesis of exosomes for ischemic stroke. Int J Physiol Pathophysiol Pharmacol 2017; 9(6): 188-91.
[PMID: 29348795]
[80]
Tian T, Zhang HX, He CP, et al. Surface functionalized exosomes as targeted drug delivery vehicles for cerebral ischemia therapy. Biomaterials 2018; 150: 137-49.
[http://dx.doi.org/10.1016/j.biomaterials.2017.10.012] [PMID: 29040874]
[81]
Zhang H, Wu J, Wu J, et al. Exosome-mediated targeted delivery of miR-210 for angiogenic therapy after cerebral ischemia in mice. J Nanobiotechnology 2019; 17(1): 29.
[http://dx.doi.org/10.1186/s12951-019-0461-7] [PMID: 30782171]
[82]
Shi Y, Shi H, Nomi A, Lei-Lei Z, Zhang B, Qian H. Mesenchymal stem cell-derived extracellular vesicles: a new impetus of promoting angiogenesis in tissue regeneration. Cytotherapy 2019; 21(5): 497-508.
[http://dx.doi.org/10.1016/j.jcyt.2018.11.012] [PMID: 31079806]
[83]
Besnier M, Gasparino S, Vono R, et al. miR-210 Enhances the Therapeutic Potential of Bone-Marrow-Derived Circulating Proangiogenic Cells in the Setting of Limb Ischemia. Mol Ther 2018; 26(7): 1694-705.
[http://dx.doi.org/10.1016/j.ymthe.2018.06.003] [PMID: 29908843]
[84]
MacAskill MG, Saif J, Condie A, et al. Robust revascularization in models of limb ischemia using a clinically translatable human stem cell-derived endothelial cell product. Mol Ther 2018; 26(7): 1669-84.
[http://dx.doi.org/10.1016/j.ymthe.2018.03.017] [PMID: 29703701]
[85]
Park JK, Lee TW, Do EK, Moon HJ, Kim JH. Role of Notch1 in the arterial specification and angiogenic potential of mouse embryonic stem cell-derived endothelial cells. Stem Cell Res Ther 2018; 9(1): 197.
[http://dx.doi.org/10.1186/s13287-018-0945-7] [PMID: 30021650]
[86]
Park I-S, Chung P-S, Ahn JC. Adipose-derived stem cell spheroid treated with low-level light irradiation accelerates spontaneous angiogenesis in mouse model of hindlimb ischemia. Cytotherapy 2017; 19(9): 1070-8.
[http://dx.doi.org/10.1016/j.jcyt.2017.06.005] [PMID: 28739168]
[87]
Rossi E, Smadja D, Goyard C, et al. Co-injection of mesenchymal stem cells with endothelial progenitor cells accelerates muscle recovery in hind limb ischemia through an endoglin-dependent mechanism. Thromb Haemost 2017; 117(10): 1908-18.
[http://dx.doi.org/10.1160/TH17-01-0007] [PMID: 28771278]
[88]
Fraineau S, Palii CG, McNeill B, et al. Epigenetic Activation of Pro-angiogenic Signaling Pathways in Human Endothelial Progenitors Increases Vasculogenesis. Stem Cell Reports 2017; 9(5): 1573-87.
[http://dx.doi.org/10.1016/j.stemcr.2017.09.009] [PMID: 29033304]
[89]
Brewster L, Robinson S, Wang R, et al. Expansion and angiogenic potential of mesenchymal stem cells from patients with critical limb ischemia. J Vasc Surg 2017; 65(3): 826-838.e1.
[http://dx.doi.org/10.1016/j.jvs.2015.02.061] [PMID: 26921003]
[90]
Van Pham P, Vu NB, Nguyen HT, et al. ETV-2 activated proliferation of endothelial cells and attenuated acute hindlimb ischemia in mice. In Vitro Cell Dev Biol Anim 2017; 53(7): 616-25.
[http://dx.doi.org/10.1007/s11626-017-0151-4] [PMID: 28424975]
[91]
Parikh PP, Lassance-Soares RM, Shao H, et al. Intramuscular E-selectin/adeno-associated virus gene therapy promotes wound healing in an ischemic mouse model. J Surg Res 2018; 228: 68-76.
[http://dx.doi.org/10.1016/j.jss.2018.02.061] [PMID: 29907232]
[92]
Cochrane A, Kelaini S, Tsifaki M, et al. Quaking Is a Key Regulator of Endothelial Cell Differentiation, Neovascularization, and Angiogenesis. Stem Cells 2017; 35(4): 952-66.
[http://dx.doi.org/10.1002/stem.2594] [PMID: 28207177]
[93]
Kelaini S, Vilà-González M, Caines R, et al. Follistatin-like 3 enhances the function of endothelial cells derived from pluripotent stem cells by facilitating β-catenin nuclear translocation through inhibition of glycogen synthase kinase-3β activity. Stem Cells 2018; 36(7): 1033-44.
[http://dx.doi.org/10.1002/stem.2820] [PMID: 29569797]
[94]
Hadjizadeh A, Ghasemkhah F, Ghasemzaie N. Polymeric scaffold based gene delivery strategies to improve angiogenesis in tissue engineering: A review. Polym Rev (Phila Pa) 2017; 57(3): 505-56.
[http://dx.doi.org/10.1080/15583724.2017.1292402]
[95]
Jeong IS, Park Y, Ryu HA, An HS, Han JH, Kim S-W. Dual chemotactic factors-secreting human amniotic mesenchymal stem cells via TALEN-mediated gene editing enhanced angiogenesis. Int J Cardiol 2018; 260: 156-62.
[http://dx.doi.org/10.1016/j.ijcard.2018.02.043] [PMID: 29506937]
[96]
Min Y, Han S, Aae Ryu H, Kim S-W. Human adipose mesenchymal stem cells overexpressing dual chemotactic gene showed enhanced angiogenic capacity in ischaemic hindlimb model. Cardiovasc Res 2018; 114(10): 1400-9.
[http://dx.doi.org/10.1093/cvr/cvy086] [PMID: 29659744]
[97]
Wang KAI, Dai X, Chen J, et al. CXCR7 Agonist TC14012 Improves Angiogenic Function of Endothelial Progenitor Cells in Diabetic Limb Ischemia Diabetes 2018; 67(Supplement 1)
[http://dx.doi.org/10.2337/db18-471-P]
[98]
Hsieh KF, Shih JM, Shih YM, Pai MH, Yeh SL. Arginine administration increases circulating endothelial progenitor cells and attenuates tissue injury in a mouse model of hind limb ischemia/reperfusion. Nutrition 2018; 55-56: 29-35.
[http://dx.doi.org/10.1016/j.nut.2018.02.019] [PMID: 29960153]
[99]
Guo D, Murdoch CE, Xu H, et al. Vascular endothelial growth factor signaling requires glycine to promote angiogenesis. Sci Rep 2017; 7(1): 14749.
[http://dx.doi.org/10.1038/s41598-017-15246-3] [PMID: 29116138]
[100]
Pfaff MJ, Mukhopadhyay S, Hoofnagle M, Chabasse C, Sarkar R. Tumor suppressor protein p53 negatively regulates ischemiainduced angiogenesis and arteriogenesis. J Vasc Surg 2018; 68(6S): 222S-. e1
[http://dx.doi.org/10.1016/j.jvs.2018.02.055] [PMID: 30126780]
[101]
Lu Q, Xie Z, Yan C, et al. SNRK (sucrose nonfermenting 1-related kinase) promotes angiogenesis in vivo. Arterioscler Thromb Vasc Biol 2018; 38(2): 373-85.
[http://dx.doi.org/10.1161/ATVBAHA.117.309834] [PMID: 29242271]
[102]
Shah P. 149 Insulin-like growth factor binding protein-2, via its arginine-glycine-aspartate (RGD) domain exhibits potential as a therapeutic angiogenesis agent. Heart 2017; 104(Suppl. 6): A106-7.
[103]
Tsumaru S, Masumoto H, Minakata K, et al. Therapeutic angiogenesis by local sustained release of microRNA-126 using poly lactic-co-glycolic acid nanoparticles in murine hindlimb ischemia. J Vasc Surg 2018; 68(4): 1209-15.
[http://dx.doi.org/10.1016/j.jvs.2017.08.097] [PMID: 29242072]
[104]
Felice F, Piras AM, Rocchiccioli S, et al. Endothelial progenitor cell secretome delivered by novel polymeric nanoparticles in ischemic hindlimb. Int J Pharm 2018; 542(1-2): 82-9.
[http://dx.doi.org/10.1016/j.ijpharm.2018.03.015] [PMID: 29526620]
[105]
Gupta R, Mackie AR, Misener S, Liu L, Losordo DW, Kishore R. Endothelial smoothened-dependent hedgehog signaling is not required for sonic hedgehog induced angiogenesis or ischemic tissue repair. Lab Invest 2018; 98(5): 682-91.
[http://dx.doi.org/10.1038/s41374-018-0028-5] [PMID: 29453401]
[106]
Park HS, Choi GH, Kim D, et al. Use of self-assembling peptides to enhance stem cell function for therapeutic angiogenesis. Stem Cells Int 2018. 20184162075
[http://dx.doi.org/10.1155/2018/4162075] [PMID: 30008751]
[107]
Oikawa S, Wada S, Lee M, Maeda S, Akimoto T. Role of endothelial microRNA-23 clusters in angiogenesis in vivo. Am J Physiol Heart Circ Physiol 2018; 315(4): H838-46.
[http://dx.doi.org/10.1152/ajpheart.00742.2017] [PMID: 29906231]
[108]
Martello A, Mellis D, Meloni M, et al. Phenotypic miRNA Screen Identifies miR-26b to Promote the Growth and Survival of Endothelial Cells. Mol Ther Nucleic Acids 2018; 13: 29-43.
[http://dx.doi.org/10.1016/j.omtn.2018.08.006] [PMID: 30227275]
[109]
Todorova D, Simoncini S, Lacroix R, Sabatier F, Dignat-George F. Extracellular Vesicles in Angiogenesis. Circ Res 2017; 120(10): 1658-73.
[http://dx.doi.org/10.1161/CIRCRESAHA.117.309681] [PMID: 28495996]
[110]
Li H, Liao Y, Gao L, et al. Coronary Serum Exosomes Derived from Patients with Myocardial Ischemia Regulate Angiogenesis through the miR-939-mediated Nitric Oxide Signaling Pathway. Theranostics 2018; 8(8): 2079-93.
[http://dx.doi.org/10.7150/thno.21895] [PMID: 29721064]
[111]
Gonzalez-King H. GarcÃa NA, Ontoria-Oviedo I, Ciria M, Montero JA, Sepúlveda P. Hypoxia Inducible Factor-1α Potentiates Jagged 1-Mediated Angiogenesis by Mesenchymal Stem Cell-Derived Exosomes. Stem Cells 2017; 35(7): 1747-59.
[http://dx.doi.org/10.1002/stem.2618] [PMID: 28376567]
[112]
Zheng Z, Liu L, Zhan Y, Yu S, Kang T. Adipose-derived stem cell-derived microvesicle-released miR-210 promoted proliferation, migration and invasion of endothelial cells by regulating RUNX3. Cell Cycle 2018; 17(8): 1026-33.
[http://dx.doi.org/10.1080/15384101.2018.1480207] [PMID: 29912616]
[113]
Zhu Q, Li Q, Niu X, et al. Extracellular Vesicles Secreted by Human Urine-Derived Stem Cells Promote Ischemia Repair in a Mouse Model of Hind-Limb Ischemia. Cell Physiol Biochem 2018; 47(3): 1181-92.
[http://dx.doi.org/10.1159/000490214] [PMID: 30041250]
[114]
Mathiyalagan P, Liang Y, Kim D, et al. Angiogenic Mechanisms of Human CD34+ Stem Cell Exosomes in the Repair of Ischemic Hindlimb. Circ Res 2017; 120(9): 1466-76.
[http://dx.doi.org/10.1161/CIRCRESAHA.116.310557] [PMID: 28298297]
[115]
Tsumaru S, Masumoto H, Yoshioka M, Yoshizawa K, Kawatou M, Ikuno T, et al. P2559Transplantation of human iPS cell-derived endothelial and mural cells incorporated with gelatin sponge scaffold increased the blood perfusion in a murine hindlimb ischemia model. Europ Heart J 2017; 38(suppl_1)
[http://dx.doi.org/10.1093/eurheartj/ehx502.P2559]
[116]
Anderson EM, Silva EA, Hao Y, et al. VEGF and IGF Delivered from Alginate Hydrogels Promote Stable Perfusion Recovery in Ischemic Hind Limbs of Aged Mice and Young Rabbits. J Vasc Res 2017; 54(5): 288-98.
[http://dx.doi.org/10.1159/000479869] [PMID: 28930755]
[117]
Gangadaran P, Rajendran RL, Lee HW, et al. Extracellular vesicles from mesenchymal stem cells activates VEGF receptors and accelerates recovery of hindlimb ischemia. J Control Release 2017; 264: 112-26.
[http://dx.doi.org/10.1016/j.jconrel.2017.08.022] [PMID: 28837823]
[118]
Van Pham P, Vu NB, Dao TT-T, et al. Extracellular vesicles of ETV2 transfected fibroblasts stimulate endothelial cells and improve neovascularization in a murine model of hindlimb ischemia. Cytotechnology 2017; 69(5): 801-14.
[http://dx.doi.org/10.1007/s10616-017-0095-2] [PMID: 28466428]
[119]
Cavallari C, Ranghino A, Tapparo M, et al. Serum-derived extracellular vesicles (EVs) impact on vascular remodeling and prevent muscle damage in acute hind limb ischemia. Sci Rep 2017; 7(1): 8180.
[http://dx.doi.org/10.1038/s41598-017-08250-0] [PMID: 28811546]
[120]
Bae M, Chung SW, Lee CW, Choi J, Song S, Kim SP. Upper Limb Ischemia: Clinical Experiences of Acute and Chronic Upper Limb Ischemia in a Single Center. Korean J Thorac Cardiovasc Surg 2015; 48(4): 246-51.
[http://dx.doi.org/10.5090/kjtcs.2015.48.4.246] [PMID: 26290835]
[121]
Elshaer SL, Lorys RE, El-Remessy AB. Cell therapy and critical limb ischemia: Evidence and window of opportunity in obesity. Obes Control Ther 2016; 3(1): 121.
[PMID: 28979948]
[122]
Filipowska J, Tomaszewski KA, Niedźwiedzki Ł, Walocha JA, Niedźwiedzki T. The role of vasculature in bone development, regeneration and proper systemic functioning. Angiogenesis 2017; 20(3): 291-302.
[http://dx.doi.org/10.1007/s10456-017-9541-1] [PMID: 28194536]
[123]
Chen W, Liu X, Chen Q, et al. Angiogenic and osteogenic regeneration in rats via calcium phosphate scaffold and endothelial cell co-culture with human bone marrow mesenchymal stem cells (MSCs), human umbilical cord MSCs, human induced pluripotent stem cell-derived MSCs and human embryonic stem cell-derived MSCs. J Tissue Eng Regen Med 2018; 12(1): 191-203.
[http://dx.doi.org/10.1002/term.2395] [PMID: 28098961]
[124]
Cao C, Huang Y, Tang Q, et al. Bidirectional juxtacrine ephrinB2/Ephs signaling promotes angiogenesis of ECs and maintains self-renewal of MSCs. Biomaterials 2018; 172: 1-13.
[http://dx.doi.org/10.1016/j.biomaterials.2018.04.042] [PMID: 29709731]
[125]
Ogata K, Osugi M, Kawai T, Wakayama Y, Sakaguchi K, Nakamura S, et al. Secretomes of mesenchymal stem cells induce early bone regeneration by accelerating migration of stem cells. J Oral Maxillofac Surg Med Pathol 2018; 30(5): 445-51.
[http://dx.doi.org/10.1016/j.ajoms.2018.04.002]
[126]
Kuttappan S, Mathew D, Jo JI, et al. Dual release of growth factor from nanocomposite fibrous scaffold promotes vascularisation and bone regeneration in rat critical sized calvarial defect. Acta Biomater 2018; 78: 36-47.
[http://dx.doi.org/10.1016/j.actbio.2018.07.050] [PMID: 30067947]
[127]
Pan Y, Chen J, Yu Y, Dai K, Wang J, Liu C. Enhancement of BMP-2-mediated angiogenesis and osteogenesis by 2-N,6-O-sulfated chitosan in bone regeneration. Biomater Sci 2018; 6(2): 431-9.
[http://dx.doi.org/10.1039/C7BM01006K] [PMID: 29340375]
[128]
Yang F, Xue F, Guan J, Zhang Z, Yin J, Kang Q. Stromal-Cell-Derived Factor (SDF) 1-Alpha Overexpression Promotes Bone Regeneration by Osteogenesis and Angiogenesis in Osteonecrosis of the Femoral Head. Cell Physiol Biochem 2018; 46(6): 2561-75.
[http://dx.doi.org/10.1159/000489684] [PMID: 29758548]
[129]
Laiva AL, Raftery RM, Keogh MB, O’Brien FJ. Pro-angiogenic impact of SDF-1α gene-activated collagen-based scaffolds in stem cell driven angiogenesis. Int J Pharm 2018; 544(2): 372-9.
[http://dx.doi.org/10.1016/j.ijpharm.2018.03.032] [PMID: 29555441]
[130]
Raftery RM, Mencía Castaño I, Chen G, et al. Translating the role of osteogenic-angiogenic coupling in bone formation: Highly efficient chitosan-pDNA activated scaffolds can accelerate bone regeneration in critical-sized bone defects. Biomaterials 2017; 149: 116-27.
[http://dx.doi.org/10.1016/j.biomaterials.2017.09.036] [PMID: 29024837]
[131]
Sun T, Liu M, Yao S, et al. Biomimetic composite scaffold containing small intestinal submucosa and mesoporous bioactive glass exhibits high osteogenic and angiogenic capacity. Tissue Eng Part A 2018; 24(13-14): 1044-56.
[http://dx.doi.org/10.1089/ten.tea.2017.0398] [PMID: 29350101]
[132]
Lü L, Deegan A, Musa F, Xu T, Yang Y. The effects of biomimetically conjugated VEGF on osteogenesis and angiogenesis of MSCs (human and rat) and HUVECs co-culture models. Colloids Surf B Biointerfaces 2018; 167: 550-9.
[http://dx.doi.org/10.1016/j.colsurfb.2018.04.060] [PMID: 29730577]
[133]
Oryan A, Baghaban Eslaminejad M, Kamali A, Hosseini S, Moshiri A, Baharvand H. Mesenchymal stem cells seeded onto tissue-engineered osteoinductive scaffolds enhance the healing process of critical-sized radial bone defects in rat. Cell Tissue Res 2018; 374(1): 63-81.
[http://dx.doi.org/10.1007/s00441-018-2837-7] [PMID: 29717356]
[134]
Bose S, Sarkar N, Banerjee D. Effects of PCL, PEG and PLGA polymers on curcumin release from calcium phosphate matrix for in vitro and in vivo bone regeneration. Mater Today Chem 2018; 8: 110-20.
[http://dx.doi.org/10.1016/j.mtchem.2018.03.005] [PMID: 30480167]
[135]
Yu W-L, Sun T-W, Qi C, et al. Enhanced osteogenesis and angiogenesis by mesoporous hydroxyapatite microspheres-derived simvastatin sustained release system for superior bone regeneration. Sci Rep 2017; 7: 44129.
[http://dx.doi.org/10.1038/srep44129] [PMID: 28287178]
[136]
Zhang W, Feng C, Yang G, et al. 3D-printed scaffolds with synergistic effect of hollow-pipe structure and bioactive ions for vascularized bone regeneration. Biomaterials 2017; 135: 85-95.
[http://dx.doi.org/10.1016/j.biomaterials.2017.05.005] [PMID: 28499127]
[137]
Tang K, Wu J, Xiong Z, Ji Y, Sun T, Guo X. Human acellular amniotic membrane: A potential osteoinductive biomaterial for bone regeneration. J Biomater Appl 2018; 32(6): 754-64.
[http://dx.doi.org/10.1177/0885328217739753] [PMID: 29105544]
[138]
Xie H, Wang Z, Zhang L, et al. Extracellular Vesicle-functionalized Decalcified Bone Matrix Scaffolds with Enhanced Pro-angiogenic and Pro-bone Regeneration Activities. Sci Rep 2017; 7: 45622.
[http://dx.doi.org/10.1038/srep45622] [PMID: 28367979]
[139]
Shapiro G, Lieber R, Gazit D, Pelled G. Recent advances and future of gene therapy for bone regeneration. Curr Osteoporos Rep 2018; 16(4): 504-11.
[http://dx.doi.org/10.1007/s11914-018-0459-3] [PMID: 29909597]
[140]
Liao H, Zhong Z, Liu Z, Li L, Ling Z, Zou X. Bone mesenchymal stem cells co-expressing VEGF and BMP-6 genes to combat avascular necrosis of the femoral head. Exp Ther Med 2018; 15(1): 954-62.
[PMID: 29399103]
[141]
Grol MW, Lee BH. Gene therapy for repair and regeneration of bone and cartilage. Curr Opin Pharmacol 2018; 40: 59-66.
[http://dx.doi.org/10.1016/j.coph.2018.03.005] [PMID: 29621661]
[142]
Zhang S, Chu WC, Lai RC, Lim SK, Hui JH, Toh WS. Exosomes derived from human embryonic mesenchymal stem cells promote osteochondral regeneration. Osteoarthritis Cartilage 2016; 24(12): 2135-40.
[http://dx.doi.org/10.1016/j.joca.2016.06.022] [PMID: 27390028]
[143]
Yuan FL, Wu QY, Miao ZN, et al. Osteoclast-derived extracellular vesicles: Novel regulators of osteoclastogenesis and osteoclast-osteoblasts communication in bone remodeling. Front Physiol 2018; 9: 628.
[http://dx.doi.org/10.3389/fphys.2018.00628] [PMID: 29910740]
[144]
Behera J, Tyagi N. Exosomes: mediators of bone diseases, protection, and therapeutics potential. Oncoscience 2018; 5(5-6): 181-95.
[PMID: 30035185]
[145]
Li W, Liu Y, Zhang P, et al. Tissue-engineered bone immobilized with human adipose stem cells-derived exosomes promotes bone regeneration. ACS Appl Mater Interfaces 2018; 10(6): 5240-54.
[http://dx.doi.org/10.1021/acsami.7b17620] [PMID: 29359912]
[146]
Pethő A, Chen Y, George A. Exosomes in Extracellular Matrix Bone Biology. Curr Osteoporos Rep 2018; 16(1): 58-64.
[http://dx.doi.org/10.1007/s11914-018-0419-y] [PMID: 29372401]
[147]
Deng H, Sun C, Sun Y, et al. Lipid, protein, and microRNA composition within mesenchymal stem cell-derived exosomes. Cell Reprogram 2018; 20(3): 178-86.
[http://dx.doi.org/10.1089/cell.2017.0047] [PMID: 29782191]
[148]
Zhao M, Li P, Xu H, et al. Dexamethasone-activated MSCs release MVs for stimulating osteogenic response. Stem Cells Int 2018. 20187231739
[http://dx.doi.org/10.1155/2018/7231739] [PMID: 29760734]
[149]
Sui L, Wang M, Han Q, et al. A novel Lipidoid-MicroRNA formulation promotes calvarial bone regeneration. Biomaterials 2018; 177: 88-97.
[http://dx.doi.org/10.1016/j.biomaterials.2018.05.038] [PMID: 29886386]
[150]
Chang C-C, Venø MT, Chen L, et al. Global microRNA profiling in human bone marrow skeletal-stromal or mesenchymal-stem cells identified candidates for bone regeneration. Mol Ther 2018; 26(2): 593-605.
[http://dx.doi.org/10.1016/j.ymthe.2017.11.018] [PMID: 29331291]
[151]
Zhang B, Li Y, Yu Y, et al. MicroRNA-378 Promotes Osteogenesis-Angiogenesis Coupling in BMMSCs for Potential Bone Regeneration. Anal Cell Pathol (Amst) 2018. 20188402390
[http://dx.doi.org/10.1155/2018/8402390] [PMID: 29686962]
[152]
Balagangadharan K, Viji Chandran S, Arumugam B, Saravanan S, Devanand Venkatasubbu G, Selvamurugan N. Chitosan/nano-hydroxyapatite/nano-zirconium dioxide scaffolds with miR-590-5p for bone regeneration. Int J Biol Macromol 2018; 111: 953-8.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.01.122] [PMID: 29415417]
[153]
Mahboudi H, Soleimani M, Hanaee-Ahvaz H, et al. New approach for differentiation of bone marrow mesenchymal stem cells toward chondrocyte cells with overexpression of microRNA-140. ASAIO J 2018; 64(5): 662-72.
[http://dx.doi.org/10.1097/MAT.0000000000000688] [PMID: 29040159]
[154]
Zhu X-B, Lin W-J, Lv C, et al. MicroRNA-539 promotes osteoblast proliferation and differentiation and osteoclast apoptosis through the AXNA-dependent Wnt signaling pathway in osteoporotic rats. J Cell Biochem 2018; 119(10): 8346-58.
[http://dx.doi.org/10.1002/jcb.26910] [PMID: 29893431]
[155]
Saferding V, Hofmann M, Brunner JS, Militaru MF, Puchner A, Hayer S, et al. SAT0072 Mirna-146a is a key player in bone metabolism and osteoporosis. Ann Rheum Dis 2018; 77(Suppl. 2): 898-9.
[156]
MencÃa Castaño I, Curtin Caroline M, Duffy Garry P, O’Brien Fergal J. Harnessing a novel inhibitory role of miR-16 in osteogenesis by human mesenchymal stem cells for advanced scaffold-based bone tissue engineering. Tissue Eng Part A 2019; 25(1-2): 24-33.
[157]
Wu G, Feng C, Quan J, et al. In situ controlled release of stromal cell-derived factor-1α and antimiR-138 for on-demand cranial bone regeneration. Carbohydr Polym 2018; 182: 215-24.
[http://dx.doi.org/10.1016/j.carbpol.2017.10.090] [PMID: 29279118]
[158]
Saferding V, Hofmann M, Brunner JS, Militaru MF, Puchner A, Hayer S, et al. MIR-146A an important key player in bone metabolism. Annals of the Rheumatic Diseases 2018; 77(Suppl 1): A5-A.
[159]
Janko M, Dietz K, Rachor J, et al. Improvement of bone healing by neutralization of microRNA-335-5p, but not by neutralization of microRNA-92A in bone marrow mononuclear cells transplanted into a large femur defect of the rat. Tissue Eng Part A 2019; 25(1-2): 55-68.
[160]
Tang Y, Zhang L, Tu T, et al. MicroRNA-99a is a novel regulator of KDM6B-mediated osteogenic differentiation of BMSCs. J Cell Mol Med 2018; 22(4): 2162-76.
[http://dx.doi.org/10.1111/jcmm.13490] [PMID: 29377540]
[161]
Yao C-J, Lv Y, Zhang C-J, et al. MicroRNA-185 inhibits the growth and proliferation of osteoblasts in fracture healing by targeting PTH gene through down-regulating Wnt/β -catenin axis: In an animal experiment. Biochem Biophys Res Commun 2018; 501(1): 55-63.
[http://dx.doi.org/10.1016/j.bbrc.2018.04.138] [PMID: 29678580]
[162]
Qu B, Gong K, Yang H-S, et al. MiR-449 overexpression inhibits osteogenic differentiation of bone marrow mesenchymal stem cells via suppressing Sirt1/Fra-1 pathway in high glucose and free fatty acids microenvironment. Biochem Biophys Res Commun 2018; 496(1): 120-6.
[http://dx.doi.org/10.1016/j.bbrc.2018.01.009] [PMID: 29305863]
[163]
Li X, Ji J, Wei W, Liu L. MiR-25 promotes proliferation, differentiation and migration of osteoblasts by up-regulating Rac1 expression. Biomed Pharmacother 2018; 99: 622-8.
[http://dx.doi.org/10.1016/j.biopha.2018.01.103] [PMID: 29710460]
[164]
Zhang N, Zhang RF, Zhang AN, et al. MiR-204 promotes fracture healing via enhancing cell viability of osteoblasts. Eur Rev Med Pharmacol Sci 2018; 22(1)(Suppl.): 29-35.
[PMID: 30004567]
[165]
Teng JW, Ji PF, Zhao ZG. MiR-214-3p inhibits β-catenin signaling pathway leading to delayed fracture healing. Eur Rev Med Pharmacol Sci 2018; 22(1): 17-24.
[PMID: 29364467]
[166]
Fan L, Fan J, Liu Y, et al. miR-450b Promotes Osteogenic Differentiation In vitro and Enhances Bone Formation In vivo by Targeting BMP3. Stem Cells Dev 2018; 27(9): 600-11.
[http://dx.doi.org/10.1089/scd.2017.0276] [PMID: 29649414]
[167]
Baek D, Lee K-M, Park KW, et al. Inhibition of miR-449a Promotes Cartilage Regeneration and Prevents Progression of Osteoarthritis in In vivo Rat Models. Mol Ther Nucleic Acids 2018; 13: 322-33.
[http://dx.doi.org/10.1016/j.omtn.2018.09.015] [PMID: 30326428]
[168]
Sun X, Zhang P, Zhang L, Zhao J, Zhou L. MicroRNA-564 promotes the differentiation and proliferation of synovial mesenchymal stem cells into chondrocytes by targeting transforming growth factor beta 1. Translational Surgery 2018; 3(1): 6-11.
[http://dx.doi.org/10.4103/ts.ts_23_17]
[169]
Arfat Y, Basra MAR, Shahzad M, Majeed K, Mahmood N, Munir H. miR-208a-3p Suppresses Osteoblast Differentiation and Inhibits Bone Formation by Targeting ACVR1. Mol Ther Nucleic Acids 2018; 11: 323-36.
[http://dx.doi.org/10.1016/j.omtn.2017.11.009] [PMID: 29858067]
[170]
Wang G, Zhao F, Yang D, Wang J, Qiu L, Pang X. Human amniotic epithelial cells regulate osteoblast differentiation through the secretion of TGFβ1 and microRNA-34a-5p. Int J Mol Med 2018; 41(2): 791-9.
[PMID: 29207015]
[171]
Hao W, Liu H, Zhou L, et al. MiR-145 regulates osteogenic differentiation of human adipose-derived mesenchymal stem cells through targeting FoxO1. Exp Biol Med (Maywood) 2018; 243(4): 386-93.
[http://dx.doi.org/10.1177/1535370217746611] [PMID: 29249185]
[172]
Yan J, Chang B, Hu X, Cao C, Zhao L, Zhang Y. Titanium implant functionalized with antimiR-138 delivered cell sheet for enhanced peri-implant bone formation and vascularization. Mater Sci Eng C 2018; 89: 52-64.
[http://dx.doi.org/10.1016/j.msec.2018.03.011] [PMID: 29752119]
[173]
Bjørge IM, Kim SY, Mano JF, Kalionis B, Chrzanowski W. Extracellular vesicles, exosomes and shedding vesicles in regenerative medicine - a new paradigm for tissue repair. Biomater Sci 2017; 6(1): 60-78.
[http://dx.doi.org/10.1039/C7BM00479F] [PMID: 29184934]
[174]
Peng S, Cao L, He S, et al. An Overview of Long Noncoding RNAs Involved in Bone Regeneration from Mesenchymal Stem Cells. Stem Cells Int 2018; 2018 8273648
[http://dx.doi.org/10.1155/2018/8273648] [PMID: 29535782]
[175]
Yang Q, Jia L, Li X, et al. Long noncoding RNAs: New players in the osteogenic differentiation of bone marrow- and adipose-derived mesenchymal stem cells. Stem Cell Rev 2018; 14(3): 297-308.
[http://dx.doi.org/10.1007/s12015-018-9801-5] [PMID: 29464508]
[176]
Abdelfattah NS, Amgad M, Zayed AA, et al. Clinical correlates of common corneal neovascular diseases: A literature review. Int J Ophthalmol 2015; 8(1): 182-93.
[PMID: 25709930]
[177]
Guo P, Sun H, Zhang Y, et al. Limbal niche cells are a potent resource of adult mesenchymal progenitors. J Cell Mol Med 2018; 22(7): 3315-22.
[http://dx.doi.org/10.1111/jcmm.13635] [PMID: 29679460]
[178]
Song HB, Park SY, Ko JH, et al. Mesenchymal stromal cells inhibit inflammatory lymphangiogenesis in the cornea by suppressing macrophage in a TSG-6-dependent manner. Mol Ther 2018; 26(1): 162-72.
[http://dx.doi.org/10.1016/j.ymthe.2017.09.026] [PMID: 29301108]
[179]
Eslani M, Putra I, Shen X, et al. Cornea-derived mesenchymal stromal cells therapeutically modulate macrophage immunophenotype and angiogenic function. Stem Cells 2018; 36(5): 775-84.
[http://dx.doi.org/10.1002/stem.2781] [PMID: 29341332]
[180]
Simmons AB, Bretz CA, Wang H, et al. Gene therapy knockdown of VEGFR2 in retinal endothelial cells to treat retinopathy. Angiogenesis 2018; 21(4): 751-64.
[181]
Mukwaya A, Lennikov A, Xeroudaki M, et al. Time-dependent LXR/RXR pathway modulation characterizes capillary remodeling in inflammatory corneal neovascularization. Angiogenesis 2018; 21(2): 395-413.
[http://dx.doi.org/10.1007/s10456-018-9604-y] [PMID: 29445990]
[182]
Tu L, Wang JH, Barathi VA, et al. AAV-mediated gene delivery of the calreticulin anti-angiogenic domain inhibits ocular neovascularization. Angiogenesis 2018; 21(1): 95-109.
[http://dx.doi.org/10.1007/s10456-017-9591-4] [PMID: 29318471]
[183]
Lennikov A, Mirabelli P, Mukwaya A, et al. Selective IKK2 inhibitor IMD0354 disrupts NF-κB signaling to suppress corneal inflammation and angiogenesis. Angiogenesis 2018; 21(2): 267-85.
[http://dx.doi.org/10.1007/s10456-018-9594-9] [PMID: 29332242]
[184]
Dubrac A, Künzel SE, Künzel SH, et al. NCK-dependent pericyte migration promotes pathological neovascularization in ischemic retinopathy. Nat Commun 2018; 9(1): 3463.
[http://dx.doi.org/10.1038/s41467-018-05926-7] [PMID: 30150707]
[185]
Muchen D, Lingling Y, Mingli Q, Xiaoli H, Haoyun D, Xiaoping Z, et al. Autocrine IL-1Î2 mediates the promotion of senescent fibroblasts on corneal neovascularization. Am J Physiol Cell Physiol 2018.
[186]
Sun JX, Chang TF, Li MH, Sun LJ, Yan XC, Yang ZY, et al. SNAI1, an endothelial-mesenchymal transition transcription factor, promotes the early phase of ocular neovascularization. Angiogenesis 21(3): 635-52.
[http://dx.doi.org/10.1007/s10456-018-9614-9]
[187]
Wang W, LeBlanc ME, Chen X, et al. Pathogenic role and therapeutic potential of pleiotrophin in mouse models of ocular vascular disease. Angiogenesis 2017; 20(4): 479-92.
[http://dx.doi.org/10.1007/s10456-017-9557-6] [PMID: 28447229]
[188]
Zhu L, Xu J, Liu Y, et al. Prion protein is essential for diabetic retinopathy-associated neovascularization. Angiogenesis 2018; 21(4): 767-75.
[http://dx.doi.org/10.1007/s10456-018-9619-4] [PMID: 29846863]
[189]
Bremond-Gignac D, Copin H, Benkhalifa M. Corneal epithelial stem cells for corneal injury. Expert Opin Biol Ther 2018; 18(9): 997-1003.
[http://dx.doi.org/10.1080/14712598.2018.1508443] [PMID: 30092649]
[190]
Isaacson A, Swioklo S, Connon CJ. 3D bioprinting of a corneal stroma equivalent. Exp Eye Res 2018; 173: 188-93.
[http://dx.doi.org/10.1016/j.exer.2018.05.010] [PMID: 29772228]
[191]
Le VNH, Schneider A-C, Scholz R, Bock F, Cursiefen C. Fine needle-diathermy regresses pathological corneal (lymph) angiogenesis and promotes high-risk corneal transplant survival. Sci Rep 2018; 8(1): 5707.
[http://dx.doi.org/10.1038/s41598-018-24037-3] [PMID: 29632336]
[192]
Zaitoun IS, Cikla U, Zafer D, et al. Attenuation of Retinal Vascular Development in Neonatal Mice Subjected to Hypoxic-Ischemic Encephalopathy. Sci Rep 2018; 8(1): 9166.
[http://dx.doi.org/10.1038/s41598-018-27525-8] [PMID: 29907863]
[193]
Kumar P, Satyam A, Cigognini D, Pandit A, Zeugolis DI. Low oxygen tension and macromolecular crowding accelerate extracellular matrix deposition in human corneal fibroblast culture. J Tissue Eng Regen Med 2018; 12(1): 6-18.
[http://dx.doi.org/10.1002/term.2283] [PMID: 27592127]
[194]
Baradaran-Rafii A, Asl NS, Ebrahimi M, et al. The role of amniotic membrane extract eye drop (AMEED) in in vivo cultivation of limbal stem cells. Ocul Surf 2018; 16(1): 146-53.
[http://dx.doi.org/10.1016/j.jtos.2017.11.001] [PMID: 29104070]
[195]
Kowtharapu BS, Murín R, Jünemann AGM, Stachs O. Role of Corneal Stromal Cells on Epithelial Cell Function during Wound Healing. Int J Mol Sci 2018; 19(2): 464.
[http://dx.doi.org/10.3390/ijms19020464] [PMID: 29401709]
[196]
Nasser W, Amitai-Lange A, Soteriou D, et al. Corneal-committed cells restore the stem cell pool and tissue boundary following injury. Cell Rep 2018; 22(2): 323-31.
[http://dx.doi.org/10.1016/j.celrep.2017.12.040] [PMID: 29320729]
[197]
Yu Y, Zhou X-Z, Ye L, Yuan Q, Freeberg S, Shi C, et al. Rhamnazin attenuates inflammation and inhibits alkali burn-induced corneal neovascularization in rats. RSC Advances 2018; 8(47): 26696-706.
[http://dx.doi.org/10.1039/C8RA03159B]
[198]
Zhang Z, Hu X, Qi X, et al. Resolvin D1 promotes corneal epithelial wound healing and restoration of mechanical sensation in diabetic mice. Mol Vis 2018; 24: 274-85.
[PMID: 29643724]
[199]
Kandeel S, Balaha M. Olopatadine enhances recovery of alkali-induced corneal injury in rats. Life Sci 2018; 207: 499-507.
[http://dx.doi.org/10.1016/j.lfs.2018.07.002] [PMID: 30056863]
[200]
Gurung HR, Carr MM, Bryant K, Chucair-Elliott AJ, Carr DJ. Fibroblast growth factor-2 drives and maintains progressive corneal neovascularization following HSV-1 infection. Mucosal Immunol 2018; 11(1): 172-85.
[http://dx.doi.org/10.1038/mi.2017.26] [PMID: 28378806]
[201]
Nourinia R, Nakao S, Zandi S, Safi S, Hafezi-Moghadam A, Ahmadieh H. ROCK inhibitors for the treatment of ocular diseases. Br J Ophthalmol 2018; 102(1): 1-5.
[http://dx.doi.org/10.1136/bjophthalmol-2017-310378] [PMID: 30401675]
[202]
Yang Q, Wang P, Du X, Wang W, Zhang T, Chen Y. Direct repression of IGF2 is implicated in the anti-angiogenic function of microRNA-210 in human retinal endothelial cells. Angiogenesis 21(2): 313-23.
[http://dx.doi.org/10.1007/s10456-018-9597-6]
[203]
Zhang X, Di G, Dong M, et al. Epithelium-derived miR-204 inhibits corneal neovascularization. Exp Eye Res 2018; 167: 122-7.
[http://dx.doi.org/10.1016/j.exer.2017.12.001] [PMID: 29246498]
[204]
Cakmak H, Gokmen E, Bozkurt G, Kocaturk T, Ergin K. Effects of sunitinib and bevacizumab on VEGF and miRNA levels on corneal neovascularization. Cutan Ocul Toxicol 2018; 37(2): 191-5.
[http://dx.doi.org/10.1080/15569527.2017.1375943] [PMID: 28874077]
[205]
Wu D, Qian T, Hong J, Li G, Shi W, Xu J. MicroRNA-494 inhibits nerve growth factor-induced cell proliferation by targeting cyclin D1 in human corneal epithelial cells. Mol Med Rep 2017; 16(4): 4133-42.
[http://dx.doi.org/10.3892/mmr.2017.7083] [PMID: 28765880]
[206]
Zhang Y, Cai S, Jia Y, et al. Decoding Noncoding RNAs: Role of MicroRNAs and Long Noncoding RNAs in Ocular Neovascularization. Theranostics 2017; 7(12): 3155-67.
[http://dx.doi.org/10.7150/thno.19646] [PMID: 28839470]
[207]
Shen T, Zheng Q-Q, Shen J, et al. Effects of adipose-derived mesenchymal stem cell exosomes on corneal stromal fibroblast viability and extracellular matrix synthesis. Chin Med J (Engl) 2018; 131(6): 704-12.
[http://dx.doi.org/10.4103/0366-6999.226889] [PMID: 29521294]
[208]
Ludwig PE, Huff TJ, Zuniga JM. The potential role of bioengineering and three-dimensional printing in curing global corneal blindness. J Tissue Eng 2018. 92041731418769863
[http://dx.doi.org/10.1177/2041731418769863] [PMID: 29686829]
[209]
Sous Naasani LI, Rodrigues C, Azevedo JG, Damo Souza AF, Buchner S, Wink MR. Comparison of human denuded amniotic membrane and porcine small intestine submucosa as scaffolds for limbal mesenchymal stem cells. Stem Cell Rev 2018; 14(5): 744-54.
[http://dx.doi.org/10.1007/s12015-018-9819-8] [PMID: 29707747]
[210]
Al-Jaibaji O, Swioklo S, Gijbels K, Vaes B, Figueiredo FC, Connon CJ. Alginate encapsulated multipotent adult progenitor cells promote corneal stromal cell activation via release of soluble factors. PLoS One 2018; 13(9) e0202118
[http://dx.doi.org/10.1371/journal.pone.0202118] [PMID: 30192833]
[211]
Karimi F, O’Connor AJ, Qiao GG, Heath DE. Integrin Clustering Matters: A Review of Biomaterials Functionalized with Multivalent Integrin-Binding Ligands to Improve Cell Adhesion, Migration, Differentiation, Angiogenesis, and Biomedical Device Integration. Adv Healthc Mater 2018; 7(12)e1701324
[http://dx.doi.org/10.1002/adhm.201701324] [PMID: 29577678]
[212]
Tan RP, Chan AHP, Lennartsson K, et al. Integration of induced pluripotent stem cell-derived endothelial cells with polycaprolactone/gelatin-based electrospun scaffolds for enhanced therapeutic angiogenesis. Stem Cell Res Ther 2018; 9(1): 70.
[http://dx.doi.org/10.1186/s13287-018-0824-2] [PMID: 29562916]
[213]
Wang X, Wang G, Zingales S, Zhao B. Biomaterials Enabled Cell-Free Strategies for Endogenous Bone Regeneration. Tissue Eng Part B Rev 2018.
[http://dx.doi.org/10.1089/ten.teb.2018.0012]
[214]
Mirabella T, MacArthur JW, Cheng D, Ozaki CK, Woo YJ, Yang MT, et al. 3D-printed vascular networks direct therapeutic angiogenesis in ischaemia. Nature Biomedical Engineering 2017; 1 0083
[215]
Kreimendahl F, Köpf M, Thiebes AL, et al. Three-Dimensional Printing and Angiogenesis: Tailored Agarose-Type I Collagen Blends Comprise Three-Dimensional Printability and Angiogenesis Potential for Tissue-Engineered Substitutes. Tissue Eng Part C Methods 2017; 23(10): 604-15.
[http://dx.doi.org/10.1089/ten.tec.2017.0234] [PMID: 28826357]
[216]
Sarker MD, Naghieh S, Sharma NK, Chen X. 3D biofabrication of vascular networks for tissue regeneration: A report on recent advances. J Pharm Anal 2018; 8(5): 277-96.
[http://dx.doi.org/10.1016/j.jpha.2018.08.005] [PMID: 30345141]
[217]
Potjewyd G, Moxon S, Wang T, Domingos M, Hooper NM. Tissue Engineering 3D Neurovascular Units: A Biomaterials and Bioprinting Perspective. Trends Biotechnol 2018; 36(4): 457-72.
[http://dx.doi.org/10.1016/j.tibtech.2018.01.003] [PMID: 29422410]
[218]
Xu Y, Hu Y, Liu C, Yao H, Liu B, Mi S. A Novel Strategy for Creating Tissue-Engineered Biomimetic Blood Vessels Using 3D Bioprinting Technology. Materials (Basel) 2018; 11(9) E1581
[http://dx.doi.org/10.3390/ma11091581] [PMID: 30200455]
[219]
Zhu W, Qu X, Zhu J, et al. Direct 3D bioprinting of prevascularized tissue constructs with complex microarchitecture. Biomaterials 2017; 124: 106-15.
[http://dx.doi.org/10.1016/j.biomaterials.2017.01.042] [PMID: 28192772]
[220]
Schneider KH, Enayati M, Grasl C, et al. Acellular vascular matrix grafts from human placenta chorion: Impact of ECM preservation on graft characteristics, protein composition and in vivo performance. Biomaterials 2018; 177: 14-26.
[http://dx.doi.org/10.1016/j.biomaterials.2018.05.045] [PMID: 29885585]
[221]
Hussey GS, Dziki JL, Badylak SF. Extracellular matrix-based materials for regenerative medicine. Nat Rev Mater 2018; 3(7): 159-73.
[http://dx.doi.org/10.1038/s41578-018-0023-x]
[222]
Gilpin A, Yang Y. Decellularization Strategies for Regenerative Medicine: From Processing Techniques to Applications. BioMed Res Int 2017; 2017 9831534
[http://dx.doi.org/10.1155/2017/9831534] [PMID: 28540307]
[223]
Colao IL, Corteling R, Bracewell D, Wall I. Manufacturing Exosomes: A Promising Therapeutic Platform. Trends Mol Med 2018; 24(3): 242-56.
[http://dx.doi.org/10.1016/j.molmed.2018.01.006] [PMID: 29449149]
[224]
Mitrousis N, Fokina A, Shoichet MS. Biomaterials for cell transplantation. Nat Rev Mater 2018.
[http://dx.doi.org/10.1038/s41578-018-0057-0]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy