Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Review Article

Polymer-Graphene Nanoassemblies and their Applications in Cancer Theranostics

Author(s): Ponnurengam M. Sivakumar, Matin Islami, Ali Zarrabi*, Arezoo Khosravi and Shohreh Peimanfard

Volume 20, Issue 11, 2020

Page: [1340 - 1351] Pages: 12

DOI: 10.2174/1871520619666191028112258

Price: $65

Abstract

Background and Objective: Graphene-based nanomaterials have received increasing attention due to their unique physical-chemical properties including two-dimensional planar structure, large surface area, chemical and mechanical stability, superconductivity and good biocompatibility. On the other hand, graphene-based nanomaterials have been explored as theranostics agents, the combination of therapeutics and diagnostics. In recent years, grafting hydrophilic polymer moieties have been introduced as an efficient approach to improve the properties of graphene-based nanomaterials and obtain new nanoassemblies for cancer therapy.

Methods and Results: This review would illustrate biodistribution, cellular uptake and toxicity of polymergraphene nanoassemblies and summarize part of successes achieved in cancer treatment using such nanoassemblies.

Conclusion: The observations showed successful targeting functionality of the polymer-GO conjugations and demonstrated a reduction of the side effects of anti-cancer drugs for normal tissues.

Keywords: Cancer, graphene nanoassemblies, drug delivery, polymer, theranostics agents, polymer moieties.

Graphical Abstract

[1]
Eding, J.E.C.; van Rooij, E. Keeping the Heart Fitm2 during Chemotherapy. Mol. Ther., 2019, 27(1), 10-12.
[http://dx.doi.org/10.1016/j.ymthe.2018.12.002] [PMID: 30551984]
[2]
Bansal, R.; Acharya, P.C. Man-made cytotoxic steroids: Exemplary agents for cancer therapy. Chem. Rev., 2014, 114(14), 6986-7005.
[http://dx.doi.org/10.1021/cr4002935] [PMID: 24869712]
[3]
Oun, R.; Moussa, Y.E.; Wheate, N.J. The side effects of platinum-based chemotherapy drugs: a review for chemists. Dalton Trans., 2018, 47(19), 6645-6653.
[http://dx.doi.org/10.1039/C8DT00838H] [PMID: 29632935]
[4]
Siegel, R.; Naishadham, D.; Jemal, A. Cancer statistics, 2013. CA Cancer J. Clin., 2013, 63(1), 11-30.
[http://dx.doi.org/10.3322/caac.21166] [PMID: 23335087]
[5]
Song, E.; Han, W.; Li, C.; Cheng, D.; Li, L.; Liu, L.; Zhu, G.; Song, Y.; Tan, W. Hyaluronic acid-decorated graphene oxide nanohybrids as nanocarriers for targeted and pH-responsive anticancer drug delivery. ACS Appl. Mater. Interfaces, 2014, 6(15), 11882-11890.
[http://dx.doi.org/10.1021/am502423r] [PMID: 25000539]
[6]
Dharap, S.S.; Wang, Y.; Chandna, P.; Khandare, J.J.; Qiu, B.; Gunaseelan, S.; Sinko, P.J.; Stein, S.; Farmanfarmaian, A.; Minko, T. Tumor-specific targeting of an anticancer drug delivery system by LHRH peptide. Proc. Natl. Acad. Sci. USA, 2005, 102(36), 12962-12967.
[http://dx.doi.org/10.1073/pnas.0504274102] [PMID: 16123131]
[7]
Hicks, M.; Hu, Q.; Macrae, E.; DeWille, J. JUNB promotes the survival of Flavopiridol treated human breast cancer cells. Biochem. Biophys. Res. Commun., 2014, 450(1), 19-24.
[http://dx.doi.org/10.1016/j.bbrc.2014.05.057] [PMID: 24858691]
[8]
Cao, Y.; He, Y.; Liu, H.; Luo, Y.; Shen, M.; Xia, J.; Shi, X. Targeted CT imaging of human hepatocellular carcinoma using low-generation dendrimer-entrapped gold nanoparticles modified with lactobionic acid. J. Mater. Chem. B Mater. Biol. Med., 2015, 3(2), 286-295.
[http://dx.doi.org/10.1039/C4TB01542H] [PMID: 32261949]
[9]
Sinha, V.R.; Srivastava, S.; Goel, H.; Jindal, V. Solid lipid nanoparticles (SLN’S)–trends and implications in drug targeting. Int. J. Adv. Pharm. Sci., 2010, 1, 212-238.
[10]
Khorrami, S.; Zarrabi, A.; Khaleghi, M.; Danaei, M.; Mozafari, M.R. Selective cytotoxicity of green synthesized silver nanoparticles against the MCF-7 tumor cell line and their enhanced antioxidant and antimicrobial properties. Int. J. Nanomedicine, 2018, 13, 8013-8024.
[http://dx.doi.org/10.2147/IJN.S189295] [PMID: 30568442]
[11]
Jahandar, M.; Zarrabi, A.; Shokrgozar, M.A.; Mousavi, H. Synthesis, characterization and application of polyglycerol coated Fe3O4 nanoparticles as a nano-theranostics agent. Mater. Res. Express, 2015, 2(12), 5002.
[http://dx.doi.org/10.1088/2053-1591/2/12/125002]
[12]
Mostaghasi, E.; Zarepour, A.; Zarrabi, A. Folic acid armed Fe3O4-HPG nanoparticles as a safe nano vehicle for biomedical theranostics. J. Taiwan. Inst. Chem. E., 2018, 82, 33-41.
[13]
Pattni, B.S.; Chupin, V.V.; Torchilin, V.P. New developments in liposomal drug delivery. Chem. Rev., 2015, 115(19), 10938-10966.
[http://dx.doi.org/10.1021/acs.chemrev.5b00046] [PMID: 26010257]
[14]
Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric field effect in atomically thin carbon films. Science, 2004, 306(5696), 666-669.
[http://dx.doi.org/10.1126/science.1102896] [PMID: 15499015]
[15]
Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Katsnelson, M.I.; Grigorieva, I.V.; Dubonos, S.V.; Firsov, A.A. Two-dimensional gas of massless Dirac fermions in graphene. Nature, 2005, 438(7065), 197-200.
[http://dx.doi.org/10.1038/nature04233] [PMID: 16281030]
[16]
Goenka, S.; Sant, V.; Sant, S. Graphene-based nanomaterials for drug delivery and tissue engineering. J. Control. Release, 2014, 173, 75-88.
[http://dx.doi.org/10.1016/j.jconrel.2013.10.017] [PMID: 24161530]
[17]
Geim, A.K. Graphene: Status and prospects. Science, 2009, 324(5934), 1530-1534.
[http://dx.doi.org/10.1126/science.1158877] [PMID: 19541989]
[18]
Kakran, M.; Li, L. Carbon nanomaterials for drug delivery. Key Eng. Mater., 2012, 508, 76-80.
[http://dx.doi.org/10.4028/www.scientific.net/KEM.508.76]
[19]
Geim, A.K.; Novoselov, K.S. The rise of graphene. Nat. Mater., 2007, 6(3), 183-191.
[http://dx.doi.org/10.1038/nmat1849] [PMID: 17330084]
[20]
Kopelevich, Y.; Esquinazi, P. Graphene physics in graphite. Adv. Mater., 2007, 19, 4559-4563.
[http://dx.doi.org/10.1002/adma.200702051]
[21]
Rao, C.N.; Sood, A.K.; Subrahmanyam, K.S.; Govindaraj, A. Graphene: The new two-dimensional nanomaterial. Angew. Chem. Int. Ed. Engl., 2009, 48(42), 7752-7777.
[http://dx.doi.org/10.1002/anie.200901678] [PMID: 19784976]
[22]
Abbasi, E.; Akbarzadeh, A.; Kouhi, M.; Milani, M. Graphene: Synthesis, bio-applications, and properties. Artif. Cells Nanomed. Biotechnol., 2016, 44(1), 150-156.
[http://dx.doi.org/10.3109/21691401.2014.927880] [PMID: 24978443]
[23]
Shen, J.; Li, N.; Shi, M.; Hu, Y.; Ye, M. Covalent synthesis of organophilic chemically functionalized graphene sheets. J. Colloid Interface Sci., 2010, 348(2), 377-383.
[http://dx.doi.org/10.1016/j.jcis.2010.04.055] [PMID: 20494367]
[24]
Yang, K.; Zhang, S.; Zhang, G.; Sun, X.; Lee, S.T.; Liu, Z. Graphene in mice: Ultrahigh in vivo tumor uptake and efficient photothermal therapy. Nano Lett., 2010, 10(9), 3318-3323.
[http://dx.doi.org/10.1021/nl100996u] [PMID: 20684528]
[25]
Yang, X.; Zhang, X.; Liu, Z.; Ma, Y.; Huang, Y.; Chen, Y. High-efficiency loading and controlled release of doxorubicin hydrochloride on graphene oxide. J. Phys. Chem. C, 2008, 112, 17554-17558.
[http://dx.doi.org/10.1021/jp806751k]
[26]
Agarwal, S.; Zhou, X.; Ye, F.; He, Q.; Chen, G.C.; Soo, J.; Boey, F.; Zhang, H.; Chen, P. Interfacing live cells with nanocarbon substrates. Langmuir, 2010, 26(4), 2244-2247.
[http://dx.doi.org/10.1021/la9048743] [PMID: 20099791]
[27]
Kim, H.; Namgung, R.; Singha, K.; Oh, I.K.; Kim, W.J. Graphene oxide-polyethylenimine nanoconstruct as a gene delivery vector and bioimaging tool. Bioconjug. Chem., 2011, 22(12), 2558-2567.
[http://dx.doi.org/10.1021/bc200397j] [PMID: 22034966]
[28]
Zhang, L.; Xia, J.; Zhao, Q.; Liu, L.; Zhang, Z. Functional graphene oxide as a nanocarrier for controlled loading and targeted delivery of mixed anticancer drugs. Small, 2010, 6(4), 537-544.
[http://dx.doi.org/10.1002/smll.200901680] [PMID: 20033930]
[29]
Zhang, L.; Lu, Z.; Zhao, Q.; Huang, J.; Shen, H.; Zhang, Z. Enhanced chemotherapy efficacy by sequential delivery of siRNA and anticancer drugs using PEI-grafted graphene oxide. Small, 2011, 7(4), 460-464.
[http://dx.doi.org/10.1002/smll.201001522] [PMID: 21360803]
[30]
Yang, X.; Zhang, X.; Liu, Z.; Ma, Y.; Huang, Y.; Chen, Y. High efficiency loading and controlled release of doxorubicin hydrochloride on graphene oxide. J. Phys. Chem. C, 2008, 112, 17554-17558.
[http://dx.doi.org/10.1021/jp806751k]
[31]
Yang, X.; Wang, Y.; Huang, X.; Ma, Y.; Huang, Y.; Yang, R.; Duan, H.; Chen, Y. Multifunctionalized graphene oxide based anti-cancer drug-carrier with dual-targeting function and pH-sensitivity. J. Mater. Chem., 2011, 21, 3448-3454.
[http://dx.doi.org/10.1039/C0JM02494E]
[32]
Kim, K.S.; Zhao, Y.; Jang, H.; Lee, S.Y.; Kim, J.M.; Kim, K.S.; Ahn, J.H.; Kim, P.; Choi, J.Y.; Hong, B.H. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature, 2009, 457(7230), 706-710.
[http://dx.doi.org/10.1038/nature07719] [PMID: 19145232]
[33]
Berger, C.; Song, Z.; Li, X.; Wu, X.; Brown, N.; Naud, C.; Mayou, D.; Li, T.; Hass, J.; Marchenkov, A.N.; Conrad, E.H.; First, P.N.; de Heer, W.A. Electronic confinement and coherence in patterned epitaxial graphene. Science, 2006, 312(5777), 1191-1196.
[http://dx.doi.org/10.1126/science.1125925] [PMID: 16614173]
[34]
Li, X.; Wang, X.; Zhang, L.; Lee, S.; Dai, H. Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science, 2008, 319(5867), 1229-1232.
[http://dx.doi.org/10.1126/science.1150878] [PMID: 18218865]
[35]
Kim, H.; Abdala, A.A.; Macosko, C.W. Graphene/polymer nanocomposites. Macromolecules, 2010, 43, 6515-6530.
[http://dx.doi.org/10.1021/ma100572e]
[36]
Shi, Y.; Fang, W.; Zhang, K.; Zhang, W.; Li, L.J. Photoelectrical response in single-layer graphene transistors. Small, 2009, 5(17), 2005-2011.
[http://dx.doi.org/10.1002/smll.200900294] [PMID: 19492352]
[37]
Bonaccorso, F.; Colombo, L.; Yu, G.; Stoller, M.; Tozzini, V.; Ferrari, A.C.; Ruoff, R.S.; Pellegrini, V. 2D materials. Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage. Science, 2015, 347(6217) 1246501
[http://dx.doi.org/10.1126/science.1246501] [PMID: 25554791]
[38]
Cui, Y.; Kim, S.N.; Naik, R.R.; McAlpine, M.C. Biomimetic peptide nanosensors. Acc. Chem. Res., 2012, 45(5), 696-704.
[http://dx.doi.org/10.1021/ar2002057] [PMID: 22292890]
[39]
Li, C.; Adamcik, J.; Mezzenga, R. Biodegradable nanocomposites of amyloid fibrils and graphene with shape-memory and enzyme-sensing properties. Nat. Nanotechnol., 2012, 7(7), 421-427.
[http://dx.doi.org/10.1038/nnano.2012.62] [PMID: 22562038]
[40]
Zuchowska, A.; Chudy, M.; Dybko, A.; Brzozka, Z. Graphene as a new material in anticancer therapy in vitro studies. Sens. Actuators B Chem., 2017, 243, 152-165.
[http://dx.doi.org/10.1016/j.snb.2016.11.105]
[41]
Feng, L.; Wu, L.; Qu, X. New horizons for diagnostics and therapeutic applications of graphene and graphene oxide. Adv. Mater., 2013, 25(2), 168-186.
[http://dx.doi.org/10.1002/adma.201203229] [PMID: 23161646]
[42]
Foo, M.E.; Gopinath, S.C.B. Feasibility of graphene in biomedical applications. Biomed. Pharmacother., 2017, 94, 354-361.
[http://dx.doi.org/10.1016/j.biopha.2017.07.122] [PMID: 28772213]
[43]
Bidram, E.; Sulistio, A.; Cho, H.J.; Amini, A.; Harris, T.; Zarrabi, A.; Qiao, G.; Stewart, A.; Dunstan, D.E. Targeted graphene oxide networks: Cytotoxicity and synergy with anticancer agents. ACS Appl. Mater. Interfaces, 2018, 10(50), 43523-43532.
[http://dx.doi.org/10.1021/acsami.8b17531] [PMID: 30495922]
[44]
Islami, M.; Zarrabi, A.; Tada, S.; Kawamoto, M.; Isoshima, T.; Ito, Y. Controlled quercetin release from high-capacity-loading hyperbranched polyglycerol-functionalized graphene oxide. Int. J. Nanomedicine, 2018, 13, 6059-6071.
[http://dx.doi.org/10.2147/IJN.S178374] [PMID: 30323593]
[45]
Martín, C.; Kostarelos, K.; Prato, M.; Bianco, A. Biocompatibility and biodegradability of 2D materials: Graphene and beyond. Chem. Commun. (Camb.), 2019, 55(39), 5540-5546.
[http://dx.doi.org/10.1039/C9CC01205B] [PMID: 31033990]
[46]
Haque, F.; Li, J.; Wu, H.C.; Liang, X.J.; Guo, P. Solid-state and biological nanopore for real-time sensing of single chemical and sequencing of DNA. Nano Today, 2013, 8(1), 56-74.
[http://dx.doi.org/10.1016/j.nantod.2012.12.008] [PMID: 23504223]
[47]
Singh, S.K.; Singh, M.K.; Nayak, M.K.; Kumari, S.; Grácio, J.J.; Dash, D. Characterization of graphene oxide by flow cytometry and assessment of its cellular toxicity. J. Biomed. Nanotechnol., 2011, 7(1), 30-31.
[http://dx.doi.org/10.1166/jbn.2011.1186] [PMID: 21485788]
[48]
Yang, W.; Ratinac, K.R.; Ringer, S.P.; Thordarson, P.; Gooding, J.J.; Braet, F. Carbon nanomaterials in biosensors: Should you use nanotubes or graphene? Angew. Chem. Int. Ed. Engl., 2010, 49(12), 2114-2138.
[http://dx.doi.org/10.1002/anie.200903463] [PMID: 20187048]
[49]
Yang, K.; Wan, J.; Zhang, S.; Tian, B.; Zhang, Y.; Liu, Z. The influence of surface chemistry and size of nanoscale graphene oxide on photothermal therapy of cancer using ultra-low laser power. Biomaterials, 2012, 33(7), 2206-2214.
[http://dx.doi.org/10.1016/j.biomaterials.2011.11.064] [PMID: 22169821]
[50]
Wang, Y.; Li, Z.; Wang, J.; Li, J.; Lin, Y. Graphene and graphene oxide: Biofunctionalization and applications in biotechnology. Trends Biotechnol., 2011, 29(5), 205-212.
[http://dx.doi.org/10.1016/j.tibtech.2011.01.008] [PMID: 21397350]
[51]
Li, D.; Müller, M.B.; Gilje, S.; Kaner, R.B.; Wallace, G.G. Processable aqueous dispersions of graphene nanosheets. Nat. Nanotechnol., 2008, 3(2), 101-105.
[http://dx.doi.org/10.1038/nnano.2007.451] [PMID: 18654470]
[52]
Enayati, M.; Nemati, A.; Zarrabi, A.; Shokrgozar, M.A. The role of oxygen defects in magnetic properties of gamma-irradiated reduced graphene oxide. J. Alloys Compd., 2019, 784, 134-148.
[http://dx.doi.org/10.1016/j.jallcom.2018.12.363]
[53]
Park, S.; An, J.; Jung, I.; Piner, R.D.; An, S.J.; Li, X.; Velamakanni, A.; Ruoff, R.S. Colloidal suspensions of highly reduced graphene oxide in a wide variety of organic solvents. Nano Lett., 2009, 9(4), 1593-1597.
[http://dx.doi.org/10.1021/nl803798y] [PMID: 19265429]
[54]
Roy, S.; Sarkar, A.; Jaiswal, A. Poly(allylamine hydrochloride)-functionalized reduced graphene oxide for synergistic chemophotothermal therapy. Nanomedicine (Lond.), 2019, 14(3), 255-274.
[http://dx.doi.org/10.2217/nnm-2018-0320] [PMID: 30676277]
[55]
Taherian, F.; Marcon, V.; van der Vegt, N.F.; Leroy, F. What is the contact angle of water on graphene? Langmuir, 2013, 29(5), 1457-1465.
[http://dx.doi.org/10.1021/la304645w] [PMID: 23320893]
[56]
Gao, W.; Alemany, L.B.; Ci, L.; Ajayan, P.M. New insights into the structure and reduction of graphite oxide. Nat. Chem., 2009, 1(5), 403-408.
[http://dx.doi.org/10.1038/nchem.281] [PMID: 21378895]
[57]
Enayati, M.; Nemati, A.; Zarrabi, A.; Shokrgozar, M.A. Reduced graphene oxide: An alternative for magnetic resonance imaging contrast agent. Mater. Lett., 2018, 233, 363-366.
[http://dx.doi.org/10.1016/j.matlet.2018.09.044]
[58]
Ma, J.; Liu, J.; Zhu, W.; Qin, W. Solubility study on the surfactants functionalized reduced graphene oxide. Colloids Surf. A Physicochem. Eng. Asp., 2018, 538, 79-85.
[http://dx.doi.org/10.1016/j.colsurfa.2017.10.071]
[59]
Park, S.; Ruoff, R.S. Chemical methods for the production of graphenes. Nat. Nanotechnol., 2009, 4(4), 217-224.
[http://dx.doi.org/10.1038/nnano.2009.58] [PMID: 19350030]
[60]
Chan, P.; Kurisawa, M.; Chung, J.E.; Yang, Y.Y. Synthesis and characterization of chitosan-g-poly(ethylene glycol)-folate as a non-viral carrier for tumor-targeted gene delivery. Biomaterials, 2007, 28(3), 540-549.
[http://dx.doi.org/10.1016/j.biomaterials.2006.08.046] [PMID: 16999995]
[61]
Zhou, T.; Zhou, X.; Xing, D. Controlled release of doxorubicin from graphene oxide based charge-reversal nanocarrier. Biomaterials, 2014, 35(13), 4185-4194.
[http://dx.doi.org/10.1016/j.biomaterials.2014.01.044] [PMID: 24513318]
[62]
Kim, J.; Cote, L.J.; Kim, F.; Yuan, W.; Shull, K.R.; Huang, J. Graphene oxide sheets at interfaces. J. Am. Chem. Soc., 2010, 132(23), 8180-8186.
[http://dx.doi.org/10.1021/ja102777p] [PMID: 20527938]
[63]
Shih, C.J.; Lin, S.; Sharma, R.; Strano, M.S.; Blankschtein, D. Understanding the pH-dependent behavior of graphene oxide aqueous solutions: a comparative experimental and molecular dynamics simulation study. Langmuir, 2012, 28(1), 235-241.
[http://dx.doi.org/10.1021/la203607w] [PMID: 22039913]
[64]
Liu, Z.; Robinson, J.T.; Sun, X.; Dai, H. PEGylated nanographene oxide for delivery of water-insoluble cancer drugs. J. Am. Chem. Soc., 2008, 130(33), 10876-10877.
[http://dx.doi.org/10.1021/ja803688x] [PMID: 18661992]
[65]
Zhang, Y.; Chan, H.F.; Leong, K.W. Advanced materials and processing for drug delivery: The past and the future. Adv. Drug Deliv. Rev., 2013, 65(1), 104-120.
[http://dx.doi.org/10.1016/j.addr.2012.10.003] [PMID: 23088863]
[66]
Zhang, D.; Zhang, Z.; Liu, Y.; Chu, M.; Yang, C.; Li, W.; Shao, Y.; Yue, Y.; Xu, R. The short- and long-term effects of orally administered high-dose reduced graphene oxide nanosheets on mouse behaviors. Biomaterials, 2015, 68, 100-113.
[http://dx.doi.org/10.1016/j.biomaterials.2015.07.060] [PMID: 26276695]
[67]
Wan, Q.; Mao, L.; Liu, M.; Wang, K.; Zeng, G.; Xu, D.; Huang, H.; Zhang, X.; Wei, Y. Towards development of a versatile and efficient strategy for fabrication of GO based polymer nanocomposites. Polym. Chem., 2015, 6, 7211-7218.
[http://dx.doi.org/10.1039/C5PY01238D]
[68]
Hu, K.; Kulkarni, D.D.; Choi, I.; Tsukruk, V.V. Graphene-polymer nanocomposites for structural and functional applications. Prog. Polym. Sci., 2014, 39, 1934-1972.
[http://dx.doi.org/10.1016/j.progpolymsci.2014.03.001]
[69]
Xu, Z.; Wang, S.; Li, Y.; Wang, M.; Shi, P.; Huang, X. Covalent functionalization of graphene oxide with biocompatible poly(ethylene glycol) for delivery of paclitaxel. ACS Appl. Mater. Interfaces, 2014, 6(19), 17268-17276.
[http://dx.doi.org/10.1021/am505308f] [PMID: 25216036]
[70]
Gurunathan, S.; Han, J.W.; Dayem, A.A.; Eppakayala, V.; Kim, J.H. Oxidative stress-mediated antibacterial activity of graphene oxide and reduced graphene oxide in Pseudomonas aeruginosa. Int. J. Nanomedicine, 2012, 7, 5901-5914.
[http://dx.doi.org/10.2147/IJN.S37397] [PMID: 23226696]
[71]
Sanchez, V.C.; Jachak, A.; Hurt, R.H.; Kane, A.B. Biological interactions of graphene-family nanomaterials: An interdisciplinary review. Chem. Res. Toxicol., 2012, 25(1), 15-34.
[http://dx.doi.org/10.1021/tx200339h] [PMID: 21954945]
[72]
Zhang, Y.; Ali, S.F.; Dervishi, E.; Xu, Y.; Li, Z.; Casciano, D.; Biris, A.S. Cytotoxicity effects of graphene and single-wall carbon nanotubes in neural phaeochromocytoma-derived PC12 cells. ACS Nano, 2010, 4(6), 3181-3186.
[http://dx.doi.org/10.1021/nn1007176] [PMID: 20481456]
[73]
Servant, A.; Bianco, A.; Prato, M.; Kostarelos, K. Graphene for multi-functional synthetic biology: the last ‘zeitgeist’ in nanomedicine. Bioorg. Med. Chem. Lett., 2014, 24(7), 1638-1649.
[http://dx.doi.org/10.1016/j.bmcl.2014.01.051] [PMID: 24594351]
[74]
Chang, Y.; Yang, S.T.; Liu, J.H.; Dong, E.; Wang, Y.; Cao, A.; Liu, Y.; Wang, H. In vitro toxicity evaluation of graphene oxide on A549 cells. Toxicol. Lett., 2011, 200(3), 201-210.
[http://dx.doi.org/10.1016/j.toxlet.2010.11.016] [PMID: 21130147]
[75]
Akhavan, O.; Ghaderi, E. Toxicity of graphene and graphene oxide nanowalls against bacteria. ACS Nano, 2010, 4(10), 5731-5736.
[http://dx.doi.org/10.1021/nn101390x] [PMID: 20925398]
[76]
Hu, W.; Peng, C.; Luo, W.; Lv, M.; Li, X.; Li, D.; Huang, Q.; Fan, C. Graphene-based antibacterial paper. ACS Nano, 2010, 4(7), 4317-4323.
[http://dx.doi.org/10.1021/nn101097v] [PMID: 20593851]
[77]
Singh, S.K.; Singh, M.K.; Nayak, M.K.; Kumari, S.; Shrivastava, S.; Grácio, J.J.; Dash, D. Thrombus inducing property of atomically thin graphene oxide sheets. ACS Nano, 2011, 5(6), 4987-4996.
[http://dx.doi.org/10.1021/nn201092p] [PMID: 21574593]
[78]
Zhang, X.; Yin, J.; Peng, C.; Hu, W.; Zhu, Z.; Li, W.; Fan, C.; Huang, Q. Distribution and biocompatibility studies of graphene oxide in mice after intravenous administration. Carbon, 2010, 49, 986-995.
[http://dx.doi.org/10.1016/j.carbon.2010.11.005]
[79]
Kalman, J.; Merino, C.; Fernández-Cruz, M.L.; Navas, J.M. Usefulness of fish cell lines for the initial characterization of toxicity and cellular fate of graphene-related materials (carbon nanofibers and graphene oxide). Chemosphere, 2019, 218, 347-358.
[http://dx.doi.org/10.1016/j.chemosphere.2018.11.130] [PMID: 30476766]
[80]
Chen, J.Y.; Xi, P.; Zhang, Z.P. Reduced graphene oxide/polyacrylamide composite hydrogel scaffold as biocompatible anode for microbial fuel cell. Chem. Eng. J., 2019, 361, 615-624.
[http://dx.doi.org/10.1016/j.cej.2018.12.116]
[81]
Singh, S.K.; Singh, M.K.; Kulkarni, P.P.; Sonkar, V.K.; Grácio, J.J.; Dash, D. Amine-modified graphene: Thrombo-protective safer alternative to graphene oxide for biomedical applications. ACS Nano, 2012, 6(3), 2731-2740.
[http://dx.doi.org/10.1021/nn300172t] [PMID: 22376049]
[82]
Fan, H.; Wang, L.; Zhao, K.; Li, N.; Shi, Z.; Ge, Z.; Jin, Z. Fabrication, mechanical properties, and biocompatibility of graphene-reinforced chitosan composites. Biomacromolecules, 2010, 11(9), 2345-2351.
[http://dx.doi.org/10.1021/bm100470q] [PMID: 20687549]
[83]
Wu, H.Y.; Lin, K.J.; Wang, P.Y.; Lin, C.W.; Yang, H.W.; Ma, C.C.; Lu, Y.J.; Jan, T.R. Polyethylene glycol-coated graphene oxide attenuates antigen-specific IgE production and enhanced antigen-induced T-cell reactivity in ovalbumin-sensitized BALB/c mice. Int. J. Nanomedicine, 2014, 9, 4257-4266.
[PMID: 25228804]
[84]
Zhou, T.; Zhang, B.; Wei, P.; Du, Y.; Zhou, H.; Yu, M.; Yan, L.; Zhang, W.; Nie, G.; Chen, C.; Tu, Y.; Wei, T. Energy metabolism analysis reveals the mechanism of inhibition of breast cancer cell metastasis by PEG-modified graphene oxide nanosheets. Biomaterials, 2014, 35(37), 9833-9843.
[http://dx.doi.org/10.1016/j.biomaterials.2014.08.033] [PMID: 25212524]
[85]
Zhao, X.; Liu, L.; Li, X.; Zeng, J.; Jia, X.; Liu, P. Biocompatible graphene oxide nanoparticle-based drug delivery platform for tumor microenvironment-responsive triggered release of doxorubicin. Langmuir, 2014, 30(34), 10419-10429.
[http://dx.doi.org/10.1021/la502952f] [PMID: 25109617]
[86]
Zhang, S.; Yang, K.; Feng, L.; Liu, Z. In vitro and in vivo behaviors of dextran functionalized graphene. Carbon, 2011, 49, 4040-4049.
[http://dx.doi.org/10.1016/j.carbon.2011.05.056]
[87]
Yang, K.; Wan, J.; Zhang, S.; Zhang, Y.; Lee, S.T.; Liu, Z. In vivo pharmacokinetics, long-term biodistribution, and toxicology of PEGylated graphene in mice. ACS Nano, 2011, 5(1), 516-522.
[http://dx.doi.org/10.1021/nn1024303] [PMID: 21162527]
[88]
Zhang, Y.; Nayak, T.R.; Hong, H.; Cai, W. Graphene: A versatile nanoplatform for biomedical applications. Nanoscale, 2012, 4(13), 3833-3842.
[http://dx.doi.org/10.1039/c2nr31040f] [PMID: 22653227]
[89]
Sasidharan, A.; Panchakarla, L.S.; Chandran, P.; Menon, D.; Nair, S.; Rao, C.N.; Koyakutty, M. Differential nano-bio interactions and toxicity effects of pristine versus functionalized graphene. Nanoscale, 2011, 3(6), 2461-2464.
[http://dx.doi.org/10.1039/c1nr10172b] [PMID: 21562671]
[90]
Yang, K.; Feng, L.; Shi, X.; Liu, Z. Nano-graphene in biomedicine: Theranostic applications. Chem. Soc. Rev., 2013, 42(2), 530-547.
[http://dx.doi.org/10.1039/C2CS35342C] [PMID: 23059655]
[91]
Bianco, A. Graphene: Safe or toxic? The two faces of the medal. Angew. Chem. Int. Ed. Engl., 2013, 52(19), 4986-4997.
[http://dx.doi.org/10.1002/anie.201209099] [PMID: 23580235]
[92]
Zalipsky, S. Chemistry of polyethylene glycol conjugates with biologically active molecules. Adv. Drug Deliv. Rev., 1995, 16, 157-182.
[http://dx.doi.org/10.1016/0169-409X(95)00023-Z]
[93]
Yang, K.; Gong, H.; Shi, X.; Wan, J.; Zhang, Y.; Liu, Z. In vivo biodistribution and toxicology of functionalized nano-graphene oxide in mice after oral and intraperitoneal administration. Biomaterials, 2013, 34(11), 2787-2795.
[http://dx.doi.org/10.1016/j.biomaterials.2013.01.001] [PMID: 23340196]
[94]
Cote, L.J.; Kim, F.; Huang, J. Langmuir-Blodgett assembly of graphite oxide single layers. J. Am. Chem. Soc., 2009, 131(3), 1043-1049.
[http://dx.doi.org/10.1021/ja806262m] [PMID: 18939796]
[95]
Kuila, T.; Bose, S.; Khanra, P.; Mishra, A.K.; Kim, N.H.; Lee, J.H. Recent advances in graphene-based biosensors. Biosens. Bioelectron., 2011, 26(12), 4637-4648.
[http://dx.doi.org/10.1016/j.bios.2011.05.039] [PMID: 21683572]
[96]
Calderón, M.; Quadir, M.A.; Sharma, S.K.; Haag, R. Dendritic polyglycerols for biomedical applications. Adv. Mater., 2010, 22(2), 190-218.
[http://dx.doi.org/10.1002/adma.200902144] [PMID: 20217684]
[97]
Zhao, X.; Peng, L. Biocompatible graphene oxide as a folate receptor-targeting drug delivery system for the controlled release of anti-cancer drugs. RSC Advances, 2014, 4, 24232-24239.
[http://dx.doi.org/10.1039/C4RA02466D]
[98]
Torchilin, V.P.; Omelyanenko, V.G.; Papisov, M.I.; Bogdanov, A.A., Jr; Trubetskoy, V.S.; Herron, J.N.; Gentry, C.A. Poly(ethylene glycol) on the liposome surface: On the mechanism of polymer-coated liposome longevity. Biochim. Biophys. Acta, 1994, 1195(1), 11-20.
[http://dx.doi.org/10.1016/0005-2736(94)90003-5] [PMID: 7918551]
[99]
Bidram, E.; Esmaeili, Y.; Ranji-Burachaloo, H.; Al-Zaubai, N.; Zarrabi, A.; Stewart, A.; Dunstan, D.E. A concise review on cancer treatment methods and delivery systems. J. Drug Deliv. Sci. Technol., 2019, 54 101350
[http://dx.doi.org/10.1016/j.jddst.2019.101350]
[100]
Leung, H.W.; Ballantyne, B.; Hermansky, S.J.; Franta, S.W. Peroral subchronic, chronic toxicity, and pharmacokinetic studies of a 100-kilo dalton polymer of ethylene oxide (Polyox N-10) in the Fischer 344 rat. Int. J. Toxicol., 2000, 19, 305-312.
[http://dx.doi.org/10.1080/10915810050178752]
[101]
Yamaoka, T.; Tabata, Y.; Ikada, Y. Distribution and tissue uptake of poly(ethylene glycol) with different molecular weights after intravenous administration to mice. J. Pharm. Sci., 1994, 83(4), 601-606.
[http://dx.doi.org/10.1002/jps.2600830432] [PMID: 8046623]
[102]
Movahedi, S.; Adeli, M.; Fard, A.K.; Maleki, M.; Sadeghizadeh, M.; Bani, F. Edge-functionalization of graphene by polyglycerol; A way to change its flat topology. Polymer (Guildf.), 2013, 54, 2917-2925.
[http://dx.doi.org/10.1016/j.polymer.2013.04.014]
[103]
Nurunnabi, M.; Khatun, Z.; Reeck, G.R.; Lee, D.Y.; Lee, Y.K. Near infra-red photoluminescent graphene nanoparticles greatly expand their use in noninvasive biomedical imaging. Chem. Commun. (Camb.), 2013, 49(44), 5079-5081.
[http://dx.doi.org/10.1039/c3cc42334d] [PMID: 23624441]
[104]
Xu, Z.; Zhu, S.; Wang, M.; Li, Y.; Shi, P.; Huang, X. Delivery of paclitaxel using PEGylated graphene oxide as a nanocarrier. ACS Appl. Mater. Interfaces, 2015, 7(2), 1355-1363.
[http://dx.doi.org/10.1021/am507798d] [PMID: 25546399]
[105]
Liu, J.; Cui, L.; Losic, D. Graphene and graphene oxide as new nanocarriers for drug delivery applications. Acta Biomater., 2013, 9(12), 9243-9257.
[http://dx.doi.org/10.1016/j.actbio.2013.08.016] [PMID: 23958782]
[106]
Torchilin, V. Tumor delivery of macromolecular drugs based on the EPR effect. Adv. Drug Deliv. Rev., 2011, 63(3), 131-135.
[http://dx.doi.org/10.1016/j.addr.2010.03.011] [PMID: 20304019]
[107]
Wei, G.; Yan, M.; Dong, R.; Wang, D.; Zhou, X.; Chen, J.; Hao, J. Covalent modification of reduced graphene oxide by means of diazonium chemistry and use as a drug-delivery system. Chemistry, 2012, 18(46), 14708-14716.
[http://dx.doi.org/10.1002/chem.201200843] [PMID: 23018420]
[108]
Murphy, R.F.; Powers, S.; Cantor, C.R. Endosome pH measured in single cells by dual fluorescence flow cytometry: Rapid acidification of insulin to pH 6. J. Cell Biol., 1984, 98(5), 1757-1762.
[http://dx.doi.org/10.1083/jcb.98.5.1757] [PMID: 6144684]
[109]
Go, Y.M.; Jones, D.P. Redox compartmentalization in eukaryotic cells. Biochim. Biophys. Acta, 2008, 1780(11), 1273-1290.
[http://dx.doi.org/10.1016/j.bbagen.2008.01.011] [PMID: 18267127]
[110]
Wate, P.S.; Banerjee, S.S.; Jalota-Badhwar, A.; Mascarenhas, R.R.; Zope, K.R.; Khandare, J.; Misra, R.D. Cellular imaging using biocompatible dendrimer-functionalized graphene oxide-based fluorescent probe anchored with magnetic nanoparticles. Nanotechnology, 2012, 23(41) 415101
[http://dx.doi.org/10.1088/0957-4484/23/41/415101] [PMID: 23010805]
[111]
Dong, H.; Li, Y.; Yu, J.; Song, Y.; Cai, X.; Liu, J.; Zhang, J.; Ewing, R.C.; Shi, D. A versatile multicomponent assembly via β-cyclodextrin host-guest chemistry on graphene for biomedical applications. Small, 2013, 9(3), 446-456.
[http://dx.doi.org/10.1002/smll.201201003] [PMID: 23047287]
[112]
Morales-Narváez, E.; Merkoçi, A. Graphene oxide as an optical biosensing platform: A progress report. Adv. Mater., 2019, 31(6) e1805043
[PMID: 30549101]
[113]
Feng, D.; Song, Y.; Shi, W.; Li, X.; Ma, H. Distinguishing folate-receptor-positive cells from folate-receptor-negative cells using a fluorescence off-on nanoprobe. Anal. Chem., 2013, 85(13), 6530-6535.
[http://dx.doi.org/10.1021/ac401377n] [PMID: 23751075]
[114]
Gao, Y.; Zou, X.; Zhao, J.X.; Li, Y.; Su, X. Graphene oxide-based magnetic fluorescent hybrids for drug delivery and cellular imaging. Colloids Surf. B Biointerfaces, 2013, 112, 128-133.
[http://dx.doi.org/10.1016/j.colsurfb.2013.07.020] [PMID: 23973670]
[115]
Rong, P.; Yang, K.; Srivastan, A.; Kiesewetter, D.O.; Yue, X.; Wang, F.; Nie, L.; Bhirde, A.; Wang, Z.; Liu, Z.; Niu, G.; Wang, W.; Chen, X. Photosensitizer loaded nano-graphene for multimodality imaging guided tumor photodynamic therapy. Theranostics, 2014, 4(3), 229-239.
[http://dx.doi.org/10.7150/thno.8070] [PMID: 24505232]
[116]
Kosuge, H.; Sherlock, S.P.; Kitagawa, T.; Terashima, M.; Barral, J.K.; Nishimura, D.G.; Dai, H.; McConnell, M.V. FeCo/graphite nanocrystals for multi-modality imaging of experimental vascular inflammation. PLoS One, 2011, 6(1) e14523
[http://dx.doi.org/10.1371/journal.pone.0014523] [PMID: 21264237]
[117]
Wu, X.; Tian, F.; Wang, W.; Chen, J.; Wu, M.; Zhao, J.X. Fabrication of highly fluorescent graphene quantum dots using L-glutamic acid for in vitro/in vivo imaging and sensing. J. Mater. Chem. C Mater., 2013, 1(31), 4676-4684.
[http://dx.doi.org/10.1039/c3tc30820k] [PMID: 23997934]
[118]
Wang, Y.; Wang, H.; Liu, D.; Song, S.; Wang, X.; Zhang, H. Graphene oxide covalently grafted upconversion nanoparticles for combined NIR mediated imaging and photothermal/photodynamic cancer therapy. Biomaterials, 2013, 34(31), 7715-7724.
[http://dx.doi.org/10.1016/j.biomaterials.2013.06.045] [PMID: 23859660]
[119]
Sun, Z.; Huang, P.; Tong, G.; Lin, J.; Jin, A.; Rong, P.; Zhu, L.; Nie, L.; Niu, G.; Cao, F.; Chen, X. VEGF-loaded graphene oxide as theranostics for multi-modality imaging-monitored targeting therapeutic angiogenesis of ischemic muscle. Nanoscale, 2013, 5(15), 6857-6866.
[http://dx.doi.org/10.1039/c3nr01573d] [PMID: 23770832]
[120]
Hong, H.; Yang, K.; Zhang, Y.; Engle, J.W.; Feng, L.; Yang, Y.; Nayak, T.R.; Goel, S.; Bean, J.; Theuer, C.P.; Barnhart, T.E.; Liu, Z.; Cai, W. In vivo targeting and imaging of tumor vasculature with radiolabeled, antibody-conjugated nanographene. ACS Nano, 2012, 6(3), 2361-2370.
[http://dx.doi.org/10.1021/nn204625e] [PMID: 22339280]
[121]
Shi, S.; Yang, K.; Hong, H.; Valdovinos, H.F.; Nayak, T.R.; Zhang, Y.; Theuer, C.P.; Barnhart, T.E.; Liu, Z.; Cai, W. Tumor vasculature targeting and imaging in living mice with reduced graphene oxide. Biomaterials, 2013, 34(12), 3002-3009.
[http://dx.doi.org/10.1016/j.biomaterials.2013.01.047] [PMID: 23374706]
[122]
Zhang, M.; Cao, Y.; Chong, Y.; Ma, Y.; Zhang, H.; Deng, Z.; Hu, C.; Zhang, Z. Graphene oxide based theranostic platform for T1-weighted magnetic resonance imaging and drug delivery. ACS Appl. Mater. Interfaces, 2013, 5(24), 13325-13332.
[http://dx.doi.org/10.1021/am404292e] [PMID: 24313343]
[123]
Gizzatov, A.; Keshishian, V.; Guven, A.; Dimiev, A.M.; Qu, F.; Muthupillai, R.; Decuzzi, P.; Bryant, R.G.; Tour, J.M.; Wilson, L.J. Enhanced MRI relaxivity of aquated Gd3+ ions by carboxyphenylated water-dispersed graphene nanoribbons. Nanoscale, 2014, 6(6), 3059-3063.
[http://dx.doi.org/10.1039/C3NR06026H] [PMID: 24504060]
[124]
Yang, K.; Hu, L.; Ma, X.; Ye, S.; Cheng, L.; Shi, X.; Li, C.; Li, Y.; Liu, Z. Multimodal imaging guided photothermal therapy using functionalized graphene nanosheets anchored with magnetic nanoparticles. Adv. Mater., 2012, 24(14), 1868-1872.
[http://dx.doi.org/10.1002/adma.201104964] [PMID: 22378564]
[125]
Yang, X.; Zhang, X.; Ma, Y.; Huang, Y.; Wang, Y.; Chen, Y. Superparamagnetic graphene oxide-Fe3O4 nanoparticles hybrid for controlled targeted drug carriers. J. Mater. Chem., 2009, 19, 2710-2714.
[http://dx.doi.org/10.1039/b821416f]
[126]
Cong, H.P.; He, J.J.; Lu, Y.; Yu, S.H. Water-soluble magnetic-functionalized reduced graphene oxide sheets: In situ synthesis and magnetic resonance imaging applications. Small, 2010, 6(2), 169-173.
[http://dx.doi.org/10.1002/smll.200901360] [PMID: 19885891]
[127]
He, H.; Gao, C. Supraparamagnetic, conductive, and processable multifunctional graphene nanosheets coated with high-density Fe3O4 nanoparticles. ACS Appl. Mater. Interfaces, 2010, 2(11), 3201-3210.
[http://dx.doi.org/10.1021/am100673g] [PMID: 20958021]
[128]
Welsher, K.; Liu, Z.; Sherlock, S.P.; Robinson, J.T.; Chen, Z.; Daranciang, D.; Dai, H. A route to brightly fluorescent carbon nanotubes for near-infrared imaging in mice. Nat. Nanotechnol., 2009, 4(11), 773-780.
[http://dx.doi.org/10.1038/nnano.2009.294] [PMID: 19893526]
[129]
Wu, C.; He, Q.; Zhu, A.; Li, D.; Xu, M.; Yang, H.; Liu, Y. Synergistic anticancer activity of photo- and chemoresponsive nanoformulation based on polylysine-functionalized graphene. ACS Appl. Mater. Interfaces, 2014, 6(23), 21615-21623.
[http://dx.doi.org/10.1021/am5066128] [PMID: 25370358]
[130]
Conte, C.; Ungaro, F.; Maglio, G.; Tirino, P.; Siracusano, G.; Sciortino, M.T.; Leone, N.; Palma, G.; Barbieri, A.; Arra, C.; Mazzaglia, A.; Quaglia, F. Biodegradable core-shell nanoassemblies for the delivery of docetaxel and Zn(II)-phthalocyanine inspired by combination therapy for cancer. J. Control. Release, 2013, 167(1), 40-52.
[http://dx.doi.org/10.1016/j.jconrel.2012.12.026] [PMID: 23298613]
[131]
Bai, D.; Xia, X.; Yow, C.M.; Chu, E.S.; Xu, C. Hypocrellin B-encapsulated nanoparticle-mediated rev-caspase-3 gene transfection and photodynamic therapy on tumor cells. Eur. J. Pharmacol., 2011, 650(2-3), 496-500.
[http://dx.doi.org/10.1016/j.ejphar.2010.10.017] [PMID: 20970418]
[132]
Lu, W.; Zhang, G.; Zhang, R.; Flores, L.G., II; Huang, Q.; Gelovani, J.G.; Li, C. Tumor site-specific silencing of NF-kappaB p65 by targeted hollow gold nanosphere-mediated photothermal transfection. Cancer Res., 2010, 70(8), 3177-3188.
[http://dx.doi.org/10.1158/0008-5472.CAN-09-3379] [PMID: 20388791]
[133]
You, J.; Zhang, R.; Zhang, G.; Zhong, M.; Liu, Y.; Van Pelt, C.S.; Liang, D.; Wei, W.; Sood, A.K.; Li, C. Photothermal-chemotherapy with doxorubicin-loaded hollow gold nanospheres: A platform for near-infrared light-trigged drug release. J. Control. Release, 2012, 158(2), 319-328.
[http://dx.doi.org/10.1016/j.jconrel.2011.10.028] [PMID: 22063003]
[134]
Jang, B.; Park, J.Y.; Tung, C.H.; Kim, I.H.; Choi, Y. Gold nanorod-photosensitizer complex for near-infrared fluorescence imaging and photodynamic/photothermal therapy in vivo. ACS Nano, 2011, 5(2), 1086-1094.
[http://dx.doi.org/10.1021/nn102722z] [PMID: 21244012]
[135]
Liang, X.; Li, X.; Jing, L.; Yue, X.; Dai, Z. Theranostic porphyrin dyad nanoparticles for magnetic resonance imaging guided photodynamic therapy. Biomaterials, 2014, 35(24), 6379-6388.
[http://dx.doi.org/10.1016/j.biomaterials.2014.04.094] [PMID: 24818886]
[136]
Liang, X.; Li, X.; Yue, X.; Dai, Z. Conjugation of porphyrin to nanohybrid cerasomes for photodynamic diagnosis and therapy of cancer. Angew. Chem. Int. Ed. Engl., 2011, 50(49), 11622-11627.
[http://dx.doi.org/10.1002/anie.201103557] [PMID: 22002770]
[137]
Dong, H.Q.; Zhao, Z.L.; Wen, H.Y.; Li, Y.Y.; Guo, F.F.; Shen, A.J.; Frank, P.; Lin, C.; Shi, D.L. Poly(ethylene glycol) conjugated nano-graphene oxide for photodynamic therapy. Sci. China Chem., 2010, 53, 2265-2271.
[http://dx.doi.org/10.1007/s11426-010-4114-9]
[138]
Huang, P.; Xu, C.; Lin, J.; Wang, C.; Wang, X.; Zhang, C.; Zhou, X.; Guo, S.; Cui, D. Folic acid-conjugated graphene oxide loaded with photosensitizers for targeting photodynamic therapy. Theranostics, 2011, 1, 240-250.
[http://dx.doi.org/10.7150/thno/v01p0240] [PMID: 21562631]
[139]
Shi, S.; Chen, F.; Ehlerding, E.B.; Cai, W. Surface engineering of graphene-based nanomaterials for biomedical applications. Bioconjug. Chem., 2014, 25(9), 1609-1619.
[http://dx.doi.org/10.1021/bc500332c] [PMID: 25117569]
[140]
Samia, A.C.; Chen, X.; Burda, C. Semiconductor quantum dots for photodynamic therapy. J. Am. Chem. Soc., 2003, 125(51), 15736-15737.
[http://dx.doi.org/10.1021/ja0386905] [PMID: 14677951]
[141]
Konovalova, T.A.; Lawrence, J.; Kispert, L.D. Generation of superoxide anion and most likely singlet oxygen in irradiated TiO2 nanoparticles modified by carotenoids. J. Photochem. Photobiol. Chem., 2004, 162, 1-8.
[http://dx.doi.org/10.1016/S1010-6030(03)00313-7]
[142]
Prat, F.; Marti, C.; Nonell, S.; Zhang, X.; Foote, C.S.; Moreno, R.G.; Bourdelande, J.L.; Font, J.C. 60 Fullerene-based materials as singlet oxygen O2(1[capital Delta]g) photosensitizers: A time-resolved near-IR luminescence and optoacoustic study. Phys. Chem. Chem. Phys., 2001, 3, 1638-1643.
[http://dx.doi.org/10.1039/b009484f]
[143]
Taylor, A.B.; Siddiquee, A.M.; Chon, J.W. Below melting point photothermal reshaping of single gold nanorods driven by surface diffusion. ACS Nano, 2014, 8(12), 12071-12079.
[http://dx.doi.org/10.1021/nn5055283] [PMID: 25405517]
[144]
Horiguchi, Y.; Honda, K.; Kato, Y.; Nakashima, N.; Niidome, Y. Photothermal reshaping of gold nanorods depends on the passivating layers of the nanorod surfaces. Langmuir, 2008, 24(20), 12026-12031.
[http://dx.doi.org/10.1021/la800811j] [PMID: 18759472]
[145]
Robinson, J.T.; Tabakman, S.M.; Liang, Y.; Wang, H.; Casalongue, H.S.; Vinh, D.; Dai, H. Ultrasmall reduced graphene oxide with high near-infrared absorbance for photothermal therapy. J. Am. Chem. Soc., 2011, 133(17), 6825-6831.
[http://dx.doi.org/10.1021/ja2010175] [PMID: 21476500]
[146]
Su, S.; Wang, J.; Wei, J.; Martinez-Zaguilan, R.; Qiu, J.; Wang, S. Efficient photothermal therapy of brain cancer through porphyrin functionalized graphene oxide. New J. Chem., 2015, 39, 5743-5749.
[http://dx.doi.org/10.1039/C5NJ00122F]
[147]
Li, J.L.; Hou, X.L.; Bao, H.C.; Sun, L.; Tang, B.; Wang, J.F.; Wang, X.G.; Gu, M. Graphene oxide nanoparticles for enhanced photothermal cancer cell therapy under the irradiation of a femtosecond laser beam. J. Biomed. Mater. Res. A, 2014, 102(7), 2181-2188.
[http://dx.doi.org/10.1002/jbm.a.34871] [PMID: 23852749]
[148]
Kalluru, P.; Vankayala, R.; Chiang, C.S.; Hwang, K.C. Nano-graphene oxide-mediated In vivo fluorescence imaging and bimodal photodynamic and photothermal destruction of tumors. Biomaterials, 2016, 95, 1-10.
[http://dx.doi.org/10.1016/j.biomaterials.2016.04.006] [PMID: 27108401]
[149]
Sun, X.; Liu, Z.; Welsher, K.; Robinson, J.T.; Goodwin, A.; Zaric, S.; Dai, H. Nano-graphene oxide for cellular imaging and drug delivery. Nano Res., 2008, 1(3), 203-212.
[http://dx.doi.org/10.1007/s12274-008-8021-8] [PMID: 20216934]
[150]
Tian, J.; Luo, Y.; Huang, L.; Feng, Y.; Ju, H.; Yu, B.Y. Pegylated folate and peptide-decorated graphene oxide nanovehicle for in vivo targeted delivery of anticancer drugs and therapeutic self-monitoring. Biosens. Bioelectron., 2016, 80, 519-524.
[http://dx.doi.org/10.1016/j.bios.2016.02.018] [PMID: 26890827]
[151]
Tajon, C.A.; Seo, D.; Asmussen, J.; Shah, N.; Jun, Y.W.; Craik, C.S. Sensitive and selective plasmon ruler nanosensors for monitoring the apoptotic drug response in leukemia. ACS Nano, 2014, 8(9), 9199-9208.
[http://dx.doi.org/10.1021/nn502959q] [PMID: 25166742]
[152]
Gillies, E.R.; Fréchet, J.M. pH-Responsive copolymer assemblies for controlled release of doxorubicin. Bioconjug. Chem., 2005, 16(2), 361-368.
[http://dx.doi.org/10.1021/bc049851c] [PMID: 15769090]
[153]
Lynch, D.R.; Snyder, S.H. Neuropeptides: Multiple molecular forms, metabolic pathways, and receptors. Annu. Rev. Biochem., 1986, 55, 773-799.
[http://dx.doi.org/10.1146/annurev.bi.55.070186.004013] [PMID: 3017197]
[154]
Jiang, T.; Sun, W.; Zhu, Q.; Burns, N.A.; Khan, S.A.; Mo, R.; Gu, Z. Furin-mediated sequential delivery of anticancer cytokine and small-molecule drug shuttled by graphene. Adv. Mater., 2015, 27(6), 1021-1028.
[http://dx.doi.org/10.1002/adma.201404498] [PMID: 25504623]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy