Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

Activation of PI3K/Akt/NF-kB Signaling Mediates Swedish Snus Induced Proliferation and Apoptosis Evasion in the Rat Forestomach: Modulation by Blueberry

Author(s): Singaraj Ranjani, Jaganathan Kowshik, Josephraj Sophia, Ramesh Nivetha, Abdul B. Baba, Veeran Veeravarmal, Gordana Joksić, Lars E. Rutqvist, Robert Nilsson and Siddavaram Nagini*

Volume 20, Issue 1, 2020

Page: [59 - 69] Pages: 11

DOI: 10.2174/1871520619666191024115738

Price: $65

Abstract

Background and Objectives: The present study was undertaken to ascertain whether the modulatory effects of blueberries on cell proliferation induced by Swedish snus in the rat forestomach epithelium is mediated via abrogation of the PI3K/Akt/NFκB signaling axis that regulates cell fate decision.

Methods: The transcript and protein expression of genes involved in cell cycle progression and apoptosis, as well as canonical PI3K/Akt/NF-κB signaling pathways, were analyzed by qRT-PCR, immunoblotting and ELISA. Expression profiling of noncoding RNAs (ncRNAs) that influence PI3K/Akt/NF-κB signaling was undertaken. TUNEL assay was performed using flow cytometry.

Results: Administration of snus induced basal cell hyperplasia in the rat forestomach with increased cell proliferation and inhibition of apoptosis. This was associated with the activation of PI3K/Akt/NFκB signaling. Coadministration of blueberries significantly suppressed snus-induced hyperplasia. Analysis of the molecular mechanisms revealed that blueberries suppress the phosphorylation of Akt, NF-κB and IKKβ, prevent nuclear translocation of NF-κB and modulate the expression of microRNAs that influence PI3K/Akt/NF-κB signaling.

Conclusion: Taken together, the results of the current study provide compelling evidence that blueberries exert significant protective effects against snus-induced soft tissue changes in the rat forestomach epithelium mediated by inhibiting key molecular players in the PI3K/Akt/NF-κB signaling axis. Long-term studies on the impact of snus exposure on various cellular processes, signaling pathways, and the interplay between genetic and epigenetic mechanisms are however warranted. The results of this investigation may contribute to the development of protection against soft tissue changes induced by smokeless tobacco in the human oral cavity.

Keywords: Apoptosis, blueberry, cell proliferation, forestomach, noncoding RNA, PI3K/Akt/NF-κB signalling, snus.

Graphical Abstract

[1]
Stanfill, S.B.; Croucher, R.E.; Gupta, P.C.; Lisko, J.G.; Lawler, T.S.; Kuklenyik, P.; Dahiya, M.; Duncan, B.; Kimbrell, J.B.; Peuchen, E.H.; Watson, C.H. Chemical characterization of smokeless tobacco products from South Asia: Nicotine, unprotonated nicotine, tobacco-specific N′-Nitrosamines, and flavor compounds. Food Chem. Toxicol., 2018, 118, 626-634.
[http://dx.doi.org/10.1016/j.fct.2018.05.004] [PMID: 29746936]
[2]
Osterdahl, B.G.; Jansson, C.; Paccou, A. Decreased levels of tobacco-specific N-nitrosamines in moist snuff on the Swedish market. J. Agric. Food Chem., 2004, 52(16), 5085-5088.
[http://dx.doi.org/10.1021/jf049931a] [PMID: 15291479]
[3]
Rutqvist, L.E.; Curvall, M.; Hassler, T.; Ringberger, T.; Wahlberg, I. Swedish snus and the GothiaTek® standard. Harm Reduct. J., 2011, 8, 11.
[http://dx.doi.org/10.1186/1477-7517-8-11] [PMID: 21575206]
[4]
Schildt, E.B.; Eriksson, M.; Hardell, L.; Magnuson, A. Oral snuff, smoking habits and alcohol consumption in relation to oral cancer in a Swedish case-control study. Int. J. Cancer, , 1998, 77(3), 341-346.
[http://dx.doi.org/10.1002/(SICI)1097-0215(19980729)77:‹341::AID-IJC6›3.0.CO;2-O] [PMID: 9663593]
[5]
Bertuccio, P.; La Vecchia, C.; Silverman, D.T.; Petersen, G.M.; Bracci, P.M.; Negri, E.; Li, D.; Risch, H.A.; Olson, S.H.; Gallinger, S.; Miller, A.B.; Bueno-de-Mesquita, H.B.; Talamini, R.; Polesel, J.; Ghadirian, P.; Baghurst, P.A.; Zatonski, W.; Fontham, E.T.; Bamlet, W.R.; Holly, E.A.; Lucenteforte, E.; Hassan, M.; Yu, H.; Kurtz, R.C.; Cotterchio, M.; Su, J.; Maisonneuve, P.; Duell, E.J.; Bosetti, C.; Boffetta, P. Cigar and pipe smoking, smokeless tobacco use and pancreatic cancer: an analysis from the International Pancreatic Cancer Case-Control Consortium (PanC4). Ann. Oncol., 2011, 22(6), 1420-1426.
[http://dx.doi.org/10.1093/annonc/mdq613] [PMID: 21245160]
[6]
Araghi, M.; Rosaria Galanti, M.; Lundberg, M.; Lager, A.; Engström, G.; Alfredsson, L.; Knutsson, A.; Norberg, M.; Sund, M.; Wennberg, P.; Trolle Lagerros, Y.; Bellocco, R.; Pedersen, N.L.; Östergren, P.O.; Magnusson, C. Use of moist oral snuff (snus) and pancreatic cancer: Pooled analysis of nine prospective observational studies. Int. J. Cancer, 2017, 141(4), 687-693.
[http://dx.doi.org/10.1002/ijc.30773] [PMID: 28486772]
[7]
Lee, P.N. Epidemiological evidence relating snus to health--an updated review based on recent publications. Harm Reduct. J., 2013, 10, 36.
[http://dx.doi.org/10.1186/1477-7517-10-36] [PMID: 24314326]
[8]
Colilla, S.A. An epidemiologic review of smokeless tobacco health effects and harm reduction potential. Regul. Toxicol. Pharmacol., 2010, 56(2), 197-211.
[http://dx.doi.org/10.1016/j.yrtph.2009.09.017] [PMID: 19796662]
[9]
Lee, P.N. Summary of the epidemiological evidence relating snus to health. Regul. Toxicol. Pharmacol., 2011, 59(2), 197-214.
[http://dx.doi.org/10.1016/j.yrtph.2010.12.002] [PMID: 21163315]
[10]
Foulds, J.; Ramström, L.; Burke, M.; Fagerström, K. Effect of smokeless tobacco (snus) on smoking and public health in Sweden. Tob. Control, 2003, 12(4), 349-359.
[http://dx.doi.org/10.1136/tc.12.4.349] [PMID: 14660766]
[11]
WHO 2009. Report on the scientific basis of tobacco product regulation,Third Report of a WHO Study Group. WHO Study Group on Tobacco Product Regulation. WHO Technical Report Series.955, Geneva.
[12]
Larsson, A.; Axéll, T.; Andersson, G. Reversibility of snuff dippers’ lesion in Swedish moist snuff users: a clinical and histologic follow-up study. J. Oral Pathol. Med., 1991, 20(6), 258-264.
[http://dx.doi.org/10.1111/j.1600-0714.1991.tb00924.x] [PMID: 1890661]
[13]
Nilsson, R.; Mićić, M.; Filipović, J.; Šobot, A.V.; Drakulić, D.; Stanojlović, M.; Joksiċ, G. Inhibition by blueberries (bilberries) and extract from milk thistle of rat forestomach hyperplasia induced by oral smokeless tobacco (Swedish snus). Regul. Toxicol. Pharmacol., 2016, 76, 94-101.
[http://dx.doi.org/10.1016/j.yrtph.2016.01.017] [PMID: 26828024]
[14]
Jin, H.; Chen, J.X.; Wang, H.; Lu, G.; Liu, A.; Li, G.; Tu, S.; Lin, Y.; Yang, C.S. NNK-induced DNA methyltransferase 1 in lung tumorigenesis in A/J mice and inhibitory effects of (-)-epigallocatechin-3-gallate. Nutr. Cancer, 2015, 67(1), 167-176.
[http://dx.doi.org/10.1080/01635581.2015.976314] [PMID: 25437343]
[15]
Bear, W.L.; Teel, R.W. Effects of citrus phytochemicals on liver and lung cytochrome P450 activity and on the in vitro metabolism of the tobacco-specific nitrosamine NNK. Anticancer Res., 2000, 20(5A), 3323-3329.
[PMID: 11062760]
[16]
Fruman, D.A.; Chiu, H.; Hopkins, B.D.; Bagrodia, S.; Cantley, L.C.; Abraham, R.T. The PI3K pathway in human disease. Cell, 2017, 170(4), 605-635.
[http://dx.doi.org/10.1016/j.cell.2017.07.029] [PMID: 28802037]
[17]
Kavitha, K.; Thiyagarajan, P.; Rathna Nandhini, J.; Mishra, R.; Nagini, S. Chemopreventive effects of diverse dietary phytochemicals against DMBA-induced hamster buccal pouch carcinogenesis via the induction of Nrf2-mediated cytoprotective antioxidant, detoxification, and DNA repair enzymes. Biochimie, 2013, 95(8), 1629-1639.
[http://dx.doi.org/10.1016/j.biochi.2013.05.004] [PMID: 23707664]
[18]
Baba, A.B.; Kowshik, J.; Krishnaraj, J.; Sophia, J.; Dixit, M.; Nagini, S. Blueberry inhibits invasion and angiogenesis in 7,12-dimethylbenz[a]anthracene (DMBA)-induced oral squamous cell carcinogenesis in hamsters via suppression of TGF-β and NF-κB signaling pathways. J. Nutr. Biochem., 2016, 35, 37-47.
[http://dx.doi.org/10.1016/j.jnutbio.2016.06.002] [PMID: 27371785]
[19]
Baba, A.B.; Nivetha, R.; Chattopadhyay, I.; Nagini, S. Blueberry and malvidin inhibit cell cycle progression and induce mitochondrial-mediated apoptosis by abrogating the JAK/STAT-3 signalling pathway. Food Chem. Toxicol., 2017, 109(Pt 1), 534-543.
[http://dx.doi.org/10.1016/j.fct.2017.09.054] [PMID: 28974439]
[20]
Legrand-Poels, S.; Schoonbroodt, S.; Piette, J. Regulation of interleukin-6 gene expression by pro-inflammatory cytokines in a colon cancer cell line. Biochem. J., 2000, 349(Pt 3), 765-773.
[http://dx.doi.org/10.1042/bj3490765] [PMID: 10903137]
[21]
Ellerby, H.M.; Martin, S.J.; Ellerby, L.M.; Naiem, S.S.; Rabizadeh, S.; Salvesen, G.S.; Casiano, C.A.; Cashman, N.R.; Green, D.R.; Bredesen, D.E. Establishment of a cell-free system of neuronal apoptosis: comparison of premitochondrial, mitochondrial, and postmitochondrial phases. J. Neurosci., 1997, 17(16), 6165-6178.
[http://dx.doi.org/10.1523/JNEUROSCI.17-16-06165.1997] [PMID: 9236228]
[22]
Ramström, L.; Borland, R.; Wikmans, T. Patterns of smoking and snus use in Sweden: Implications for public health. Int. J. Environ. Res. Public Health, 2016, 13(11), 1110.
[http://dx.doi.org/10.3390/ijerph13111110] [PMID: 27834883]
[23]
Wilson, K.M.; Markt, S.C.; Fang, F.; Nordenvall, C.; Rider, J.R.; Ye, W.; Adami, H.O.; Stattin, P.; Nyrén, O.; Mucci, L.A. Snus use, smoking and survival among prostate cancer patients. Int. J. Cancer, 2016, 139(12), 2753-2759.
[http://dx.doi.org/10.1002/ijc.30411] [PMID: 27582277]
[24]
Hirsch, J.M.; Johansson, S.L. Effect of long-term application of snuff on the oral mucosa: an experimental study in the rat. J. Oral Pathol., 1983, 12(3), 187-198.
[http://dx.doi.org/10.1111/j.1600-0714.1983.tb00332.x] [PMID: 6410027]
[25]
Hirsch, J.M.; Johansson, S.L.; Thilander, H.; Vahlne, A. Effect of long-term application of snuff and herpes simplex virus 1 on rat oral mucosa. Possible association with development of oral cancer. IARC Sci. Publ., 1984, 57(57), 829-836.
[PMID: 6099829]
[26]
Joksić, G.; Rutqvist, L.E.; Mićić, M.; Tričković, J.F.; Nilsson, R. Factors effecting the induction of rat forestomach hyperplasia induced by Swedish oral smokeless tobacco (snus). Regul. Toxicol. Pharmacol., 2019, 104, 21-28.
[http://dx.doi.org/10.1016/j.yrtph.2019.02.015] [PMID: 30844416]
[27]
Jia, Y.; Sun, H.; Wu, H.; Zhang, H.; Zhang, X.; Xiao, D.; Ma, X.; Wang, Y. Nicotine inhibits cisplatin-induced apoptosis via regulating α5-nAChR/AKT signaling in human gastric cancer cells. PLoSOne, , 2016, 11(2) e0149120
[http://dx.doi.org/10.1371/journal.pone.0149120] [PMID: 26909550]
[28]
Jin, Z.; Gao, F.; Flagg, T.; Deng, X. Tobacco-specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone promotes functional cooperation of Bcl2 and c-Myc through phosphorylation in regulating cell survival and proliferation. J. Biol. Chem., 2004, 279(38), 40209-40219.
[http://dx.doi.org/10.1074/jbc.M404056200] [PMID: 15210690]
[29]
Weber, S.M.; Bornstein, S.; Li, Y.; Malkoski, S.P.; Wang, D.; Rustgi, A.K.; Kulesz-Martin, M.F.; Wang, X.J.; Lu, S.L. Tobacco-specific carcinogen nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone induces AKT activation in head and neck epithelia. Int. J. Oncol., 2011, 39(5), 1193-1198.
[PMID: 21822536]
[30]
Sundkvist, A.; Myte, R.; Bodén, S.; Enroth, S.; Gyllensten, U.; Harlid, S.; van Guelpen, B. Targeted plasma proteomics identifies a novel, robust association between cornulin and Swedish moist snuff. Sci. Rep., 2018, 8(1), 2320.
[http://dx.doi.org/10.1038/s41598-018-20794-3] [PMID: 29396534]
[31]
Macha, M.A.; Matta, A.; Chauhan, S.S.; Siu, K.W.; Ralhan, R. Guggulsterone targets smokeless tobacco induced PI3K/Akt pathway in head and neck cancer cells. PLoS One, , 2011, 6(2) e14728
[http://dx.doi.org/10.1371/journal.pone.0014728] [PMID: 21383988]
[32]
Li, L.; Zhou, X.; Wang, Y. Smokeless tobacco extract inhibits proliferation and promotes apoptosis in oral mucous fibroblasts. Oncol. Lett., 2018, 16(4), 5066-5074.
[http://dx.doi.org/10.3892/ol.2018.9252] [PMID: 30250574]
[33]
Wang, C.; Gu, W.; Zhang, Y.; Ji, Y.; Wen, Y.; Xu, X. Nicotine promotes cervical carcinoma cell line HeLa migration and invasion by activating PI3k/Akt/NF-κB pathway in vitro. Exp. Toxicol. Pathol., 2017, 69(6), 402-407.
[http://dx.doi.org/10.1016/j.etp.2017.03.006] [PMID: 28385482]
[34]
Yuge, K.; Kikuchi, E.; Hagiwara, M.; Yasumizu, Y.; Tanaka, N.; Kosaka, T.; Miyajima, A.; Oya, M. Nicotine induces tumor growth and chemoresistance through activation of the PI3K/Akt/MTOR pathway in bladder cancer. Mol. Cancer Ther., 2015, 14(9), 2112-2120.
[http://dx.doi.org/10.1158/1535-7163.MCT-15-0140] [PMID: 26184482]
[35]
Roosaar, A.; Johansson, A.L.; Sandborgh-Englund, G.; Nyrén, O.; Axéll, T. A long-term follow-up study on the natural course of snus-induced lesions among Swedish snus users. Int. J. Cancer, 2006, 119(2), 392-397.
[http://dx.doi.org/10.1002/ijc.21841] [PMID: 16470839]
[36]
Afrin, S.; Giampieri, F.; Gasparrini, M.; Forbes-Hernandez, T.Y.; Varela-López, A.; Quiles, J.L.; Mezzetti, B.; Battino, M. Chemopreventive and therapeutic effects of edible berries: A focus on colon cancer prevention and treatment. Molecules, 2016, 21(2), 169.
[http://dx.doi.org/10.3390/molecules21020169] [PMID: 26840292]
[37]
Seeram, N.P.; Adams, L.S.; Zhang, Y.; Lee, R.; Sand, D.; Scheuller, H.S.; Heber, D. Blackberry, black raspberry, blueberry, cranberry, red raspberry, and strawberry extracts inhibit growth and stimulate apoptosis of human cancer cells in vitro. J. Agric. Food Chem., 2006, 54(25), 9329-9339.
[http://dx.doi.org/10.1021/jf061750g] [PMID: 17147415]
[38]
Zu, X.Y.; Zhang, Z.Y.; Zhang, X.W.; Yoshioka, M.; Yang, Y.N.; Li, J. Anthocyanins extracted from Chinese blueberry (Vaccinium uliginosum L.) and its anticancer effects on DLD-1 and COLO205 cells. Chin. Med. J. (Engl.), 2010, 123(19), 2714-2719.
[PMID: 21034658]
[39]
Boivin, D.; Blanchette, M.; Barrette, S.; Moghrabi, A.; Béliveau, R. Inhibition of cancer cell proliferation and suppression of TNF-induced activation of NFkappaB by edible berry juice. Anticancer Res., 2007, 27(2), 937-948.
[PMID: 17465224]
[40]
Adams, L.S.; Phung, S.; Yee, N.; Seeram, N.P.; Li, L.; Chen, S. Blueberry phytochemicals inhibit growth and metastatic potential of MDA-MB-231 breast cancer cells through modulation of the phosphatidylinositol 3-kinase pathway. Cancer Res., 2010, 70(9), 3594-3605.
[http://dx.doi.org/10.1158/0008-5472.CAN-09-3565] [PMID: 20388778]
[41]
Lin, Y.; Li, B.; Zhao, J.; Wei, L.; Wang, Y.; Wang, M.; Dia, V.P.; Meng, X. Combinatorial effect of blueberry extracts and oxaliplatin in human colon cancer cells. J. Cell. Physiol., 2019, 234(10), 17242-17253.
[http://dx.doi.org/10.1002/jcp.28341] [PMID: 30784064]
[42]
Alkhalf, M.I.; Khalifa, F.K. Blueberry extract attenuates γ-radiation-induced hepatocyte damage by modulating oxidative stress and suppressing NF-κB in male rats. Saudi J. Biol. Sci., 2018, 25(7), 1272-1277.
[http://dx.doi.org/10.1016/j.sjbs.2018.07.002] [PMID: 30505169]
[43]
Wang, Y.; Lin, J.; Tian, J.; Si, X.; Jiao, X.; Zhang, W.; Gong, E.; Li, B. Blueberry malvidin-3-galactoside suppresses hepatocellular carcinoma by regulating apoptosis, proliferation, and metastasis pathways in vivo and in vitro. J. Agric. Food Chem., 2019, 67(2), 625-636.
[http://dx.doi.org/10.1021/acs.jafc.8b06209] [PMID: 30586992]
[44]
Ma, L.; Sun, Z.; Zeng, Y.; Luo, M.; Yang, J. Molecular mechanism and health role of functional ingredients in blueberry for chronic disease in human beings. Int. J. Mol. Sci., 2018, 19(9)E2785.
[http://dx.doi.org/10.3390/ijms19092785 ] [PMID: 30223619]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy