Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Research Article

Novel Quinolinyl-pyrrolo[3,4-d]pyrimidine-2,5-dione Derivatives Against Chloroquine-resistant Plasmodium falciparum

Author(s): Kamilla Rodrigues Rogerio, Cedric Stephan Graebin, Luiza Helena Pinto Domingues, Luana Santos Oliveira, Vitoria de Souza Fernandes da Silva, Claudio Tadeu Daniel-Ribeiro, Leonardo J.M. Carvalho* and Nubia Boechat*

Volume 20, Issue 2, 2020

Page: [99 - 110] Pages: 12

DOI: 10.2174/1568026619666191019100711

Price: $65

Abstract

Introduction: In this work DHPMs were combined with the quinoline nucleus to obtain new quinolinyl-pyrrolo[3,4-d]pyrimidine-2,5-dione compounds with improved antiplasmodial activity as well as decreased cytotoxicity. Nineteen quinolinyl-pyrrolo[3,4-d]pyrimidine-2,5-dione derivatives connected by a linker group to quinolone ring moieties with different substituents were synthesized and assayed against P. falciparum.

Materials and Methods: Nineteen quinolinyl-pyrrolo[3,4-d]pyrimidine-2,5-dione derivatives connected by a linker group to quinoline ring moieties with different substituents were synthesized and assayed against chloroquine-resistant Plasmodium falciparum, along with the reference drug chloroquine. Among these compounds, the derivatives with two methylene carbon spacers showed the best activity accompanied by low cytotoxicity.

Results: The derivative without substituents on the aromatic ring (2a) and the derivative with a chlorine group at position 4 (2d) provided the best results, with IC50 = 1.15 µM and 1.5 µM, respectively.

Conclusion: Compared to the parent drugs, these compounds presented marked decreases in cytotoxicity, with MDL50 values over 1,000 µM and selectivity indexes of >869.5 and >666.6, respectively. The quinolinyl-pyrrolo[3,4-d]pyrimidine-2,5-dione framework appears to be promising for further studies as an antimalarial for overcoming the burden of resistance in P. falciparum.

Keywords: Multicomponent reactions, Biginelli, Malaria, Plasmodium falciparum, Quinolinyl-pyrrolo[3, 4-d]pyrimidine-2, 5- dione, Plasmodium falciparum.

Graphical Abstract

[1]
World Health Organization (WHO), World Malaria Report 2018. Available at:. https://www.who.int/malaria/publications/world-malaria-report-2018/report/en/ Accessed: March 2019
[2]
BRASIL. Ministério da Saúde, 2019. Available at:.. https://public.tableau.com/profile/mal.ria.brasil#!/ Accessed: July 2019
[3]
Phyo, A.P.; Nosten, F. The Artemisinin Resistance in Southeast Asia: An Imminent Global Threat to Malalaria Elimination.Towards Malaria Elimination - A Leap Forward; Manguin, S; Dev, V., Ed.; IntechOpen: London, UK, 2018.
[http://dx.doi.org/10.5772/intechopen.76519]
[4]
Na-Bangchang, K.; Muhamad, P.; Ruaengweerayut, R.; Chaijaroenkul, W.; Karbwang, J. Identification of resistance of Plasmodium falciparum to artesunate-mefloquine combination in an area along the Thai-Myanmar border: integration of clinico-parasitological response, systemic drug exposure, and in vitro parasite sensitivity. Malar. J., 2013, 12, 263-276.
[http://dx.doi.org/10.1186/1475-2875-12-263] [PMID: 23898808]
[5]
Griffing, S.M.; Viana, G.M.; Mixson-Hayden, T.; Sridaran, S.; Alam, M.T.; de Oliveira, A.M.; Barnwell, J.W.; Escalante, A.A.; Povoa, M.M.; Udhayakumar, V. Historical shifts in Brazilian P. falciparum population structure and drug resistance alleles. PLoS One, 2013, 8(3)e58984
[http://dx.doi.org/10.1371/journal.pone.0058984] [PMID: 23554964]
[6]
Thriemer, K.; Bobogare, A.; Ley, B.; Gudo, C.S.; Alam, M.S.; Anstey, N.M.; Ashley, E.; Baird, J.K.; Gryseels, C.; Jambert, E.; Lacerda, M.; Laihad, F.; Marfurt, J.; Pasaribu, A.P.; Poespoprodjo, J.R.; Sutanto, I.; Taylor, W.R.; van den Boogaard, C.; Battle, K.E.; Dysoley, L.; Ghimire, P.; Hawley, B.; Hwang, J.; Khan, W.A.; Mudin, R.N.B.; Sumiwi, M.E.; Ahmed, R.; Aktaruzzaman, M.M.; Awasthi, K.R.; Bardaji, A.; Bell, D.; Boaz, L.; Burdam, F.H.; Chandramohan, D.; Cheng, Q.; Chindawongsa, K.; Culpepper, J.; Das, S.; Deray, R.; Desai, M.; Domingo, G.; Duoquan, W.; Duparc, S.; Floranita, R.; Gerth-Guyette, E.; Howes, R.E.; Hugo, C.; Jagoe, G.; Sariwati, E.; Jhora, S.T.; Jinwei, W.; Karunajeewa, H.; Kenangalem, E.; Lal, B.K.; Landuwulang, C.; Le Perru, E.; Lee, S.E.; Makita, L.S.; McCarthy, J.; Mekuria, A.; Mishra, N.; Naket, E.; Nambanya, S.; Nausien, J.; Duc, T.N.; Thi, T.N.; Noviyanti, R.; Pfeffer, D.; Qi, G.; Rahmalia, A.; Rogerson, S.; Samad, I.; Sattabongkot, J.; Satyagraha, A.; Shanks, D.; Sharma, S.N.; Sibley, C.H.; Sungkar, A.; Syafruddin, D.; Talukdar, A.; Tarning, J.; Ter Kuile, F.; Thapa, S.; Theodora, M.; Huy, T.T.; Waramin, E.; Waramori, G.; Woyessa, A.; Wongsrichanalai, C.; Xa, N.X.; Yeom, J.S.; Hermawan, L.; Devine, A.; Nowak, S.; Jaya, I.; Supargiyono, S.; Grietens, K.P.; Price, R.N. Quantifying primaquine effectiveness and improving adherence: a round table discussion of the APMEN Vivax Working Group. Malar. J., 2018, 17(1), 241.
[http://dx.doi.org/10.1186/s12936-018-2380-8] [PMID: 29925430]
[7]
Venanzi, E.; López-Vélez, R. Resistencia a los antimaláricos. Rev. Esp. Quimioter., 2016, 29(Suppl. 1), 72-75.
[PMID: 27608319]
[8]
Cowell, A.N.; Winzeler, E.A. The genomic architecture of antimalarial drug resistance. Brief. Funct. Genomics, 2019. elz008
[PMID: 31119263]
[9]
Ocan, M.; Akena, D.; Nsobya, S.; Kamya, M.R.; Senono, R.; Kinengyere, A.A.; Obuku, E.A. Persistence of chloroquine resistance alleles in malaria endemic countries: a systematic review of burden and risk factors. Malar. J., 2019, 18(1), 76.
[http://dx.doi.org/10.1186/s12936-019-2716-z] [PMID: 30871535]
[10]
Siqueira, A.M.; Alencar, A.C.; Melo, G.C.; Magalhaes, B.L.; Machado, K.; Alencar Filho, A.C.; Kuehn, A.; Marques, M.M.; Manso, M.C.; Felger, I.; Vieira, J.L.; Lameyre, V.; Daniel-Ribeiro, C.T.; Lacerda, M.V. Fixed-dose artesunate-amodiaquine combination vs chloroquine for treatment of uncomplicated blood stage P. vivax infection in the Brazilian Amazon: An open-label randomized, controlled trial. Clin Infect Dis., 2017, 15,64(2), 166-174.
[11]
Commons, R.J.; Simpson, J.A.; Thriemer, K.; Humphreys, G.S.; Abreha, T.; Alemu, S.G.; Añez, A.; Anstey, N.M.; Awab, G.R.; Baird, J.K.; Barber, B.E.; Borghini-Fuhrer, I.; Chu, C.S.; D’Alessandro, U.; Dahal, P.; Daher, A.; de Vries, P.J.; Erhart, A.; Gomes, M.S.M.; Gonzalez-Ceron, L.; Grigg, M.J.; Heidari, A.; Hwang, J.; Kager, P.A.; Ketema, T.; Khan, W.A.; Lacerda, M.V.G.; Leslie, T.; Ley, B.; Lidia, K.; Monteiro, W.M.; Nosten, F.; Pereira, D.B.; Phan, G.T.; Phyo, A.P.; Rowland, M.; Saravu, K.; Sibley, C.H.; Siqueira, A.M.; Stepniewska, K.; Sutanto, I.; Taylor, W.R.J.; Thwaites, G.; Tran, B.Q.; Tran, H.T.; Valecha, N.; Vieira, J.L.F.; Wangchuk, S.; William, T.; Woodrow, C.J.; Zuluaga-Idarraga, L.; Guerin, P.J.; White, N.J.; Price, R.N. The effect of chloroquine dose and primaquine on Plasmodium vivax recurrence: a WorldWide Antimalarial Resistance Network systematic review and individual patient pooled meta-analysis. Lancet Infect. Dis., 2018, 18(9), 1025-1034.
[http://dx.doi.org/10.1016/S1473-3099(18)30348-7] [PMID: 30033231]
[12]
Silva, S.R.; Almeida, A.C.G.; da Silva, G.A.V.; Ramasawmy, R.; Lopes, S.C.P.; Siqueira, A.M.; Costa, G.L.; Sousa, T.N.; Vieira, J.L.F.; Lacerda, M.V.G.; Monteiro, W.M.; de Melo, G.C. Chloroquine resistance is associated to multi-copy pvcrt-o gene in Plasmodium vivax malaria in the Brazilian Amazon. Malar. J., 2016, 17(1), 267.
[http://dx.doi.org/10.1186/s12936-018-2411-5]
[13]
de Pilla Varotti, F.; Botelho, A.C.C.; Andrade, A.A.; de Paula, R.C.; Fagundes, E.M.S.; Valverde, A.; Mayer, L.M.U.; Mendonça, J.S.; de Souza, M.V.; Boechat, N.; Krettli, A.U. Synthesis, antimalarial activity, and intracellular targets of MEFAS, a new hybrid compound derived from mefloquine and artesunate. Antimicrob. Agents Chemother., 2008, 52(11), 3868-3874.
[http://dx.doi.org/10.1128/AAC.00510-08] [PMID: 18710907]
[14]
Boechat, N.; Souza, M.V.N.; Valverde, A.L.; Krettli, A.U. Compounds derived from artesunate, preparation process, pharmaceutical composition and use of the respective medicine US Patent 8802701B2, 2014.
[15]
Boechat, N.; Pinheiro, L.C.S.; Silva, T.S.; Aguiar, A.C.; Carvalho, A.S.; Bastos, M.M.; Costa, C.C.P.; Pinheiro, S.; Pinto, A.C.; Mendonça, J.S.; Dutra, K.D.B.; Valverde, A.L.; Santos-Filho, O.A.; Ceravolo, I.P.; Krettli, A.U. New trifluoromethyl triazolopyrimidines as anti-Plasmodium falciparum agents. Molecules, 2012, 17(7), 8285-8302.
[http://dx.doi.org/10.3390/molecules17078285] [PMID: 22781441]
[16]
Boechat, N. Ferreira, Mde.L.; Pinheiro, L.C.S.; Jesus, A.M.L.; Leite, M.M.M.; Júnior, C.C.S.; Aguiar, A.C.C.; de Andrade, I.M.; Krettli, A.U. New compounds hybrids 1h-1,2,3-triazole-quinoline against Plasmodium falciparum. Chem. Biol. Drug Des., 2014, 84(3), 325-332.
[http://dx.doi.org/10.1111/cbdd.12321] [PMID: 24803084]
[17]
Pinheiro, L.C.S.; Boechat, N. Ferreira, Mde.L.; Júnior, C.C.S.; Jesus, A.M.L.; Leite, M.M.M.; Souza, N.B.; Krettli, A.U. Anti-Plasmodium falciparum activity of quinoline-sulfonamide hybrids. Bioorg. Med. Chem., 2015, 23(17), 5979-5984.
[http://dx.doi.org/10.1016/j.bmc.2015.06.056] [PMID: 26190461]
[18]
Carvalho, R.C.C.; Martins, W.A.; Silva, T.P.; Kaiser, C.R.; Bastos, M.M.; Pinheiro, L.C.S.; Krettli, A.U.; Boechat, N. New pentasubstituted pyrrole hybrid atorvastatin-quinoline derivatives with antiplasmodial activity. Bioorg. Med. Chem. Lett., 2016, 26(8), 1881-1884.
[http://dx.doi.org/10.1016/j.bmcl.2016.03.027] [PMID: 26988303]
[19]
Silva, T.B.; Bernardino, A.M.R.; Ferreira, M.L.G.; Rogerio, K.R.; Carvalho, L.J.M.; Boechat, N.; Pinheiro, L.C.S. Design, synthesis and anti-P. falciparum activity of pyrazolopyridine-sulfonamide derivatives. Bioorg. Med. Chem., 2016, 24(18), 4492-4498.
[http://dx.doi.org/10.1016/j.bmc.2016.07.049] [PMID: 27485600]
[20]
Azeredo, L.F.S.P.; Coutinho, J.P.; Jabor, V.A.P.; Feliciano, P.R.; Nonato, M.C.; Kaiser, C.R.; Menezes, C.M.S.; Hammes, A.S.O.; Caffarena, E.R.; Hoelz, L.V.B.; de Souza, N.B.; Pereira, G.A.N.; Cerávolo, I.P.; Krettli, A.U.; Boechat, N. Evaluation of 7-arylaminopyrazolo[1,5-a]pyrimidines as anti-Plasmodium falciparum, antimalarial, and Pf-dihydroorotate dehydrogenase inhibitors. Eur. J. Med. Chem., 2017, 126, 72-83.
[http://dx.doi.org/10.1016/j.ejmech.2016.09.073] [PMID: 27744189]
[21]
da Silva, R.M.R.J.; Gandi, M.O.; Mendonça, J.S.; Carvalho, A.S.; Coutinho, J.P.; Aguiar, A.C.C.; Krettli, A.U.; Boechat, N. New hybrid trifluoromethylquinolines as antiplasmodium agents. Bioorg. Med. Chem., 2019, 27(6), 1002-1008.
[http://dx.doi.org/10.1016/j.bmc.2019.01.044] [PMID: 30737133]
[22]
Teixeira, C.; Vale, N.; Pérez, B.; Gomes, A.; Gomes, J.R.B.; Gomes, P. “Recycling” classical drugs for malaria. Chem. Rev., 2014, 114(22), 11164-11220.
[http://dx.doi.org/10.1021/cr500123g] [PMID: 25329927]
[23]
Rajab, M. Investigating Calcium Channel Blockers as Antimalarials. PhD Thesis. University of Salford Salford, UK., 2018.
[24]
Kyle, D.E.; Oduola, A.M.J.; Martin, S.K.; Milhous, W.K. Plasmodium falciparum: modulation by calcium antagonists of resistance to chloroquine, desethylchloroquine, quinine, and quinidine in vitro. Trans. R. Soc. Trop. Med. Hyg., 1990, 84(4), 474-478.
[http://dx.doi.org/10.1016/0035-9203(90)90004-X] [PMID: 2091331]
[25]
Rogerio, K.R.; Carvalho, L.J.M.; Domingues, L.H.P.; Neves, B.J.; Moreira Filho, J.T.; Castro, R.N.; Bianco Júnior, C.; Daniel-Ribeiro, C.T.; Andrade, C.H.; Graebin, C.S. Synthesis and molecular modelling studies of pyrimidinones and pyrrolo[3,4-d]-pyrimidinodiones as new antiplasmodial compounds. Mem. Inst. Oswaldo Cruz, 2018, 113(8)e170452
[http://dx.doi.org/10.1590/0074-02760170452] [PMID: 29924131]
[26]
Egan, T.J. Structure-function relationships in chloroquine and related 4-aminoquinoline antimalarials. Mini Rev. Med. Chem., 2001, 1(1), 113-123.
[http://dx.doi.org/10.2174/1389557013407188] [PMID: 12369996]
[27]
Pérez, R.; Beryozkina, T.; Zbruyev, O.I.; Haas, W.; Kappe, C.O. Traceless solid-phase synthesis of bicyclic dihydropyrimidones using multidirectional cyclization cleavage. J. Comb. Chem., 2002, 4(5), 501-510.
[http://dx.doi.org/10.1021/cc0200181] [PMID: 12217023]
[28]
Bézivin, C.; Tomasi, S.; Lohézic-Le Dévéhat, F.; Boustie, J. Cytotoxic activity of some lichen extracts on murine and human cancer cell lines. Phytomedicine, 2003, 10(6-7), 499-503.
[http://dx.doi.org/10.1078/094471103322331458] [PMID: 13678234]
[29]
Trager, W.; Jensen, J.B. Human malaria parasites in continuous culture. Science, 1976, 193(4254), 673-675.
[http://dx.doi.org/10.1126/science.781840] [PMID: 781840]
[30]
Lambros, C.; Vanderberg, J.P. Synchronization of Plasmodium falciparum erythrocytic stages in culture. J. Parasitol., 1979, 65(3), 418-420.
[http://dx.doi.org/10.2307/3280287] [PMID: 383936]
[31]
Noedl, H.; Wongsrichanalai, C.; Miller, R.S.; Myint, K.S.; Looareesuwan, S.; Sukthana, Y.; Wongchotigul, V.; Kollaritsch, H.; Wiedermann, G.; Wernsdorfer, W.H. Plasmodium falciparum: effect of anti-malarial drugs on the production and secretion characteristics of histidine-rich protein II. Exp. Parasitol., 2002, 102(3-4), 157-163.
[http://dx.doi.org/10.1016/S0014-4894(03)00051-1] [PMID: 12856311]
[32]
Denizot, F.; Lang, R. Rapid colorimetric assay for cell growth and survival. Modifications to the tetrazolium dye procedure giving improved sensitivity and reliability. J. Immunol. Methods, 1986, 89(2), 271-277.
[http://dx.doi.org/10.1016/0022-1759(86)90368-6] [PMID: 3486233]
[33]
Wang, C.; Qin, X.; Huang, B.; He, F.; Zeng, C. Hemolysis of human erythrocytes induced by melamine-cyanurate complex. Biochem. Biophys. Res. Commun., 2010, 402(4), 773-777.
[http://dx.doi.org/10.1016/j.bbrc.2010.10.108] [PMID: 21036151]
[34]
Lucisano-Valim, Y.M.; Kabeya, L.M.; Kanashiro, A.; Russo-Carbolante, E.M.; Polizello, A.C.; Azzolini, A.E.; Silva, S.C.; Lopes, J.L.; de Oliveira, C.A.; Mantovani, B. A simple method to study the activity of natural compounds on the chemiluminescence of neutrophils upon stimulation by immune complexes. J. Pharmacol. Toxicol. Methods, 2002, 47(1), 53-58.
[http://dx.doi.org/10.1016/S1056-8719(02)00206-X] [PMID: 12387939]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy