Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

High Expression of miR-206 Predicts Adverse Outcomes: A Potential Therapeutic Target for Esophageal Cancer

Author(s): Guobo Du, Jing Zhou, Long Cheng, Xiaojie Ma, Yan Gui and Bangxian Tan*

Volume 22, Issue 9, 2019

Page: [599 - 611] Pages: 13

DOI: 10.2174/1386207322666191018145825

Price: $65

Abstract

Background: MicroRNA-206 (miR-206) inhibits cell proliferation, invasion and migration in a variety of tumors, but the prognostic value of its Esophageal Cancer (EC) remains unclear.

Objective: To study the role of miR-206 in EC.

Methods: The datasets of RNA-Seq, miRNA-Seq, methylation, copy number variation (CNV), and clinical follow-up information were download from The Cancer Genome Atlas (TCGA). After integration and standardization, the prognostic value and potential function of miR-206 were analyzed. The important roles of miR-206 expression in EC genetic and epigenetic mechanisms were analyzed by RNA-Seq, miRNA-Seq, and methylation data. The potential mechanism of CNV in different miR-206 expression groups was analyzed using GISTIC.

Results: High expression of miR-206 was associated with poor outcome of EC (OS: p=0.005, AUC=0.69, N=178). Transforming growth factor β (TGF-β) signaling pathway, Wnt signaling pathway, mitogen-activated protein kinases (MAPK) signaling pathway, mammalian target of rapamycin (mTOR) signaling pathway were inhibited in high expression group. the aberrant methylation sites in the high and low expression groups were mainly distributed in the promoter region containing CpG islands, and there were different copy number patterns in the H and L samples, and the genes in the differential copy number were mainly enriched in cancer-related pathways, such as thyroid cancer, central carbon metabolism.

Conclusion: This study explored the unique genomic and epigenetic landscape associated with the expression of miR-206, provided evidence of mir-206 as a prognostic biomarker or a potential therapeutic target for EC patients.

Keywords: Bioinformatics, miR-206, multi-omics analysis, CNV, esophageal cancer, the cancer genome atlas.

[1]
Simard, E.P.; Ward, E.M.; Siegel, R.; Jemal, A. Cancers with increasing incidence trends in the United States: 1999 through 2008. CA Cancer J. Clin., 2012, 62(2), 118-128.
[http://dx.doi.org/10.3322/caac.20141] [PMID: 22281605]
[2]
Pickens, A.; Orringer, M.B. Geographical distribution and racial disparity in esophageal cancer. Ann. Thorac. Surg., 2003, 76(4), S1367-S1369.
[http://dx.doi.org/10.1016/S0003-4975(03)01202-5] [PMID: 14530066]
[3]
Bosetti, C.; Levi, F.; Ferlay, J.; Garavello, W.; Lucchini, F.; Bertuccio, P.; Negri, E.; La Vecchia, C. Trends in oesophageal cancer incidence and mortality in Europe. Int. J. Cancer, 2008, 122(5), 1118-1129.
[http://dx.doi.org/10.1002/ijc.23232] [PMID: 17990321]
[4]
Jemal, A.; Bray, F.; Center, M.M.; Ferlay, J.; Ward, E.; Forman, D. Global cancer statistics. CA Cancer J. Clin., 2011, 61(2), 69-90.
[http://dx.doi.org/10.3322/caac.20107] [PMID: 21296855]
[5]
Huang, F.L.; Yu, S.J. Esophageal cancer: Risk factors, genetic association, and treatment. Asian J. Surg., 2018, 41(3), 210-215.
[http://dx.doi.org/10.1016/j.asjsur.2016.10.005] [PMID: 27986415]
[6]
Zhang, H.C.; Tang, K.F. Clinical value of integrated-signature miRNAs in esophageal cancer. Cancer Med., 2017, 6(8), 1893-1903.
[http://dx.doi.org/10.1002/cam4.1129] [PMID: 28707457]
[7]
Fan, Q.; Liu, B. Identification of a RNA-Seq based 8-long non-coding RNA signature predicting survival in esophageal cancer. Med. Sci. Monit., 2016, 22, 5163-5172.
[http://dx.doi.org/10.12659/MSM.902615] [PMID: 28028307]
[8]
Sharma, P.; Saraya, A.; Sharma, R. Serum-based six-miRNA signature as a potential marker for EC diagnosis: Comparison with TCGA miRNAseq dataset and identification of miRNA-mRNA target pairs by integrated analysis of TCGA miRNAseq and RNAseq datasets. Asia Pac. J. Clin. Oncol., 2018, 14(5), e289-e301.
[http://dx.doi.org/10.1111/ajco.12847] [PMID: 29380534]
[9]
Wang, J.; Aydoğdu, E.; Mukhopadhyay, S.; Helguero, L.A.; Williams, C. A miR-206 regulated gene landscape enhances mammary epithelial differentiation. J. Cell. Physiol., 2019, 234(12), 22220-22233.
[http://dx.doi.org/10.1002/jcp.28789] [PMID: 31069797]
[10]
Shao, H.J.; Li, Q.; Shi, T.; Zhang, G.Z.; Shao, F. LINC00707 promotes cell proliferation and invasion of colorectal cancer via miR-206/FMNL2 axis. Eur. Rev. Med. Pharmacol. Sci., 2019, 23(9), 3749-3759.
[PMID: 31115001]
[11]
Xue, K.; Li, J.; Nan, S.; Zhao, X.; Xu, C. Downregulation of LINC00460 decreases STC2 and promotes autophagy of head and neck squamous cell carcinoma by up-regulating microRNA-206. Life Sci., 2019, 231116459
[http://dx.doi.org/10.1016/j.lfs.2019.05.015] [PMID: 31075234]
[12]
Yang, Q.; Zhang, L.; Zhong, Y.; Lai, L.; Li, X. miR-206 inhibits cell proliferation, invasion, and migration by down-regulating PTP1B in hepatocellular carcinoma. Biosci. Rep., 2019, 39(5)BSR20181823
[http://dx.doi.org/10.1042/BSR20181823] [PMID: 31048362]
[13]
Wang, Y.; Tai, Q.; Zhang, J.; Kang, J.; Gao, F.; Zhong, F.; Cai, L.; Fang, F.; Gao, Y. MiRNA-206 inhibits hepatocellular carcinoma cell proliferation and migration but promotes apoptosis by modulating cMET expression. Acta Biochim. Biophys. Sin. (Shanghai), 2019, 51(3), 243-253.
[http://dx.doi.org/10.1093/abbs/gmy119] [PMID: 30805592]
[14]
Deng, M.; Qin, Y.; Chen, X.; Wang, Q.; Wang, J. MiR-206 inhibits proliferation, migration, and invasion of gastric cancer cells by targeting the MUC1 gene. OncoTargets Ther., 2019, 12, 849-859.
[http://dx.doi.org/10.2147/OTT.S180021] [PMID: 30774372]
[15]
Sheng, N.; Xu, Y.Z.; Xi, Q.H.; Jiang, H.Y.; Wang, C.Y.; Zhang, Y.; Ye, Q. Overexpression of KIF2A is suppressed by miR-206 and associated with poor prognosis in ovarian cancer. Cell. Physiol. Biochem., 2018, 50(3), 810-822.
[http://dx.doi.org/10.1159/000494467] [PMID: 30352438]
[16]
Chen, Y.A.; Lemire, M.; Choufani, S.; Butcher, D.T.; Grafodatskaya, D.; Zanke, B.W.; Gallinger, S.; Hudson, T.J.; Weksberg, R. Discovery of cross-reactive probes and polymorphic CpGs in the illumina infinium humanmethylation450 microarray. Epigenetics, 2013, 8(2), 203-209.
[http://dx.doi.org/10.4161/epi.23470] [PMID: 23314698]
[17]
Troyanskaya, O.; Cantor, M.; Sherlock, G.; Brown, P.; Hastie, T.; Tibshirani, R.; Botstein, D.; Altman, R.B. Missing value estimation methods for DNA microarrays. Bioinformatics, 2001, 17(6), 520-525.
[http://dx.doi.org/10.1093/bioinformatics/17.6.520] [PMID: 11395428]
[18]
Sticht, C.; De La Torre, C.; Parveen, A.; Gretz, N. miRWalk: An online resource for prediction of microRNA binding sites. PLoS One, 2018, 13(10)e0206239
[http://dx.doi.org/10.1371/journal.pone.0206239] [PMID: 30335862]
[19]
Subramanian, A.; Kuehn, H.; Gould, J.; Tamayo, P.; Mesirov, J.P. GSEA-P: A desktop application for gene set enrichment analysis. Bioinformatics, 2007, 23(23), 3251-3253.
[http://dx.doi.org/10.1093/bioinformatics/btm369] [PMID: 17644558]
[20]
Liberzon, A.; Subramanian, A.; Pinchback, R.; Thorvaldsdóttir, H.; Tamayo, P.; Mesirov, J.P. Molecular signatures database (MSigDB) 3.0. Bioinformatics, 2011, 27(12), 1739-1740.
[http://dx.doi.org/10.1093/bioinformatics/btr260] [PMID: 21546393]
[21]
Mermel, C.H.; Schumacher, S.E.; Hill, B.; Meyerson, M.L.; Beroukhim, R.; Getz, G. GISTIC2.0 facilitates sensitive and confident localization of the targets of focal somatic copy-number alteration in human cancers. Genome Biol., 2011, 12(4), R41.
[http://dx.doi.org/10.1186/gb-2011-12-4-r41] [PMID: 21527027]
[22]
Beroukhim, R.; Mermel, C.H.; Porter, D.; Wei, G.; Raychaudhuri, S.; Donovan, J.; Barretina, J.; Boehm, J.S.; Dobson, J.; Urashima, M.; Mc Henry, K.T.; Pinchback, R.M.; Ligon, A.H.; Cho, Y.J.; Haery, L.; Greulich, H.; Reich, M.; Winckler, W.; Lawrence, M.S.; Weir, B.A.; Tanaka, K.E.; Chiang, D.Y.; Bass, A.J.; Loo, A.; Hoffman, C.; Prensner, J.; Liefeld, T.; Gao, Q.; Yecies, D.; Signoretti, S.; Maher, E.; Kaye, F.J.; Sasaki, H.; Tepper, J.E.; Fletcher, J.A.; Tabernero, J.; Baselga, J.; Tsao, M.S.; Demichelis, F.; Rubin, M.A.; Janne, P.A.; Daly, M.J.; Nucera, C.; Levine, R.L.; Ebert, B.L.; Gabriel, S.; Rustgi, A.K.; Antonescu, C.R.; Ladanyi, M.; Letai, A.; Garraway, L.A.; Loda, M.; Beer, D.G.; True, L.D.; Okamoto, A.; Pomeroy, S.L.; Singer, S.; Golub, T.R.; Lander, E.S.; Getz, G.; Sellers, W.R.; Meyerson, M. The landscape of somatic copy-number alteration across human cancers. Nature, 2010, 463(7283), 899-905.
[http://dx.doi.org/10.1038/nature08822] [PMID: 20164920]
[23]
Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res., 2003, 13(11), 2498-2504.
[http://dx.doi.org/10.1101/gr.1239303] [PMID: 14597658]
[24]
Derynck, R.; Akhurst, R.J.; Balmain, A. TGF-beta signaling in tumor suppression and cancer progression. Nat. Genet., 2001, 29(2), 117-129.
[http://dx.doi.org/10.1038/ng1001-117] [PMID: 11586292]
[25]
Duchartre, Y.; Kim, Y.M.; Kahn, M. The Wnt signaling pathway in cancer. Crit. Rev. Oncol. Hematol., 2016, 99, 141-149.
[http://dx.doi.org/10.1016/j.critrevonc.2015.12.005] [PMID: 26775730]
[26]
Germann, U.A.; Furey, B.F.; Markland, W.; Hoover, R.R.; Aronov, A.M.; Roix, J.J.; Hale, M.; Boucher, D.M.; Sorrell, D.A.; Martinez-Botella, G.; Fitzgibbon, M.; Shapiro, P.; Wick, M.J.; Samadani, R.; Meshaw, K.; Groover, A.; DeCrescenzo, G.; Namchuk, M.; Emery, C.M.; Saha, S.; Welsch, D.J. Targeting the MAPK signaling pathway in cancer: Promising preclinical activity with the novel selective ERK1/2 inhibitor BVD-523 (ulixertinib). Mol. Cancer Ther., 2017, 16(11), 2351-2363.
[http://dx.doi.org/10.1158/1535-7163.MCT-17-0456] [PMID: 28939558]
[27]
Xu, K.; Liu, P.; Wei, W. mTOR signaling in tumorigenesis. Biochim. Biophys. Acta, 2014, 1846(2), 638-654.
[PMID: 25450580]
[28]
Zhai, H.; Fesler, A.; Ba, Y.; Wu, S.; Ju, J. Inhibition of colorectal cancer stem cell survival and invasive potential by hsa-miR-140-5p mediated suppression of Smad2 and autophagy. Oncotarget, 2015, 6(23), 19735-19746.
[http://dx.doi.org/10.18632/oncotarget.3771] [PMID: 25980495]
[29]
Zhang, W.; Zou, C.; Pan, L.; Xu, Y.; Qi, W.; Ma, G.; Hou, Y.; Jiang, P. MicroRNA-140-5p inhibits the progression of colorectal cancer by targeting VEGFA. Cell. Physiol. Biochem., 2015, 37(3), 1123-1133.
[http://dx.doi.org/10.1159/000430237] [PMID: 26402430]
[30]
Yang, P.; Xiong, J.; Zuo, L.; Liu, K.; Zhang, H. miR 140 5p regulates cell migration and invasion of non small cell lung cancer cells through targeting VEGFA. Mol. Med. Rep., 2018, 18(3), 2866-2872.
[http://dx.doi.org/10.3892/mmr.2018.9291] [PMID: 30015904]
[31]
Lu, Y.; Qin, T.; Li, J.; Wang, L.; Zhang, Q.; Jiang, Z.; Mao, J. MicroRNA-140-5p inhibits invasion and angiogenesis through targeting VEGF-A in breast cancer. Cancer Gene Ther., 2017, 24(9), 386-392.
[http://dx.doi.org/10.1038/cgt.2017.30] [PMID: 28752859]
[32]
Li, Y.L.; Wang, J.; Zhang, C.Y.; Shen, Y.Q.; Wang, H.M.; Ding, L.; Gu, Y.C.; Lou, J.T.; Zhao, X.T.; Ma, Z.L.; Jin, Y.X. MiR-146a-5p inhibits cell proliferation and cell cycle progression in NSCLC cell lines by targeting CCND1 and CCND2. Oncotarget, 2016, 7(37), 59287-59298.
[http://dx.doi.org/10.18632/oncotarget.11040] [PMID: 27494902]
[33]
Long, J.P.; Dong, L.F.; Chen, F.F.; Fan, Y.F. miR-146a-5p targets interleukin-1 receptor-associated kinase 1 to inhibit the growth, migration, and invasion of breast cancer cells. Oncol. Lett., 2019, 17(2), 1573-1580.
[PMID: 30675215]
[34]
Xing, Q.T.; Qu, C.M.; Wang, G. Overexpression of Abl2 predicts poor prognosis in hepatocellular carcinomas and is associated with cancer cell migration and invasion. OncoTargets Ther., 2014, 7, 881-885.
[http://dx.doi.org/10.2147/OTT.S62348] [PMID: 24940071]
[35]
Gil-Henn, H.; Patsialou, A.; Wang, Y.; Warren, M.S.; Condeelis, J.S.; Koleske, A.J. Arg/Abl2 promotes invasion and attenuates proliferation of breast cancer in vivo. Oncogene, 2013, 32(21), 2622-2630.
[http://dx.doi.org/10.1038/onc.2012.284] [PMID: 22777352]
[36]
Weber, A.; Marquardt, J.; Elzi, D.; Forster, N.; Starke, S.; Glaum, A.; Yamada, D.; Defossez, P.A.; Delrow, J.; Eisenman, R.N.; Christiansen, H.; Eilers, M. Zbtb4 represses transcription of P21CIP1 and controls the cellular response to p53 activation. EMBO J., 2008, 27(11), 1563-1574.
[http://dx.doi.org/10.1038/emboj.2008.85] [PMID: 18451802]
[37]
Yu, G.; Wang, L.G.; Han, Y.; He, Q.Y. clusterProfiler: An R package for comparing biological themes among gene clusters. OMICS, 2012, 16(5), 284-287.
[http://dx.doi.org/10.1089/omi.2011.0118] [PMID: 22455463]
[38]
Ritchie, M.E.; Phipson, B.; Wu, D.; Hu, Y.; Law, C.W.; Shi, W.; Smyth, G.K. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res., 2015, 43(7)e47
[http://dx.doi.org/10.1093/nar/gkv007] [PMID: 25605792]
[39]
Jones, P.A. Functions of DNA methylation: Islands, start sites, gene bodies and beyond. Nat. Rev. Genet., 2012, 13(7), 484-492.
[http://dx.doi.org/10.1038/nrg3230] [PMID: 22641018]
[40]
Deaton, A.M.; Bird, A. CpG islands and the regulation of transcription. Genes Dev., 2011, 25(10), 1010-1022.
[http://dx.doi.org/10.1101/gad.2037511] [PMID: 21576262]
[41]
Sengelaub, C.A.; Navrazhina, K.; Ross, J.B.; Halberg, N.; Tavazoie, S.F. PTPRN2 and PLCβ1 promote metastatic breast cancer cell migration through PI(4,5)P2-dependent actin remodeling. EMBO J., 2016, 35(1), 62-76.
[http://dx.doi.org/10.15252/embj.201591973] [PMID: 26620550]
[42]
Mazzocca, A.; Dituri, F.; De Santis, F.; Filannino, A.; Lopane, C.; Betz, R.C.; Li, Y.Y.; Mukaida, N.; Winter, P.; Tortorella, C.; Giannelli, G.; Sabbà, C. Lysophosphatidic acid receptor LPAR6 supports the tumorigenicity of hepatocellular carcinoma. Cancer Res., 2015, 75(3), 532-543.
[http://dx.doi.org/10.1158/0008-5472.CAN-14-1607] [PMID: 25589345]
[43]
Zhou, Y.; Zhou, B.; Pache, L.; Chang, M.; Khodabakhshi, A.H.; Tanaseichuk, O.; Benner, C.; Chanda, S.K. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat. Commun., 2019, 10(1), 1523.
[http://dx.doi.org/10.1038/s41467-019-09234-6] [PMID: 30944313]
[44]
Kim, H.K.; Lee, Y.S.; Sivaprasad, U.; Malhotra, A.; Dutta, A. Muscle-specific microRNA miR-206 promotes muscle differentiation. J. Cell Biol., 2006, 174(5), 677-687.
[http://dx.doi.org/10.1083/jcb.200603008] [PMID: 16923828]
[45]
Koshizuka, K.; Hanazawa, T.; Fukumoto, I.; Kikkawa, N.; Matsushita, R.; Mataki, H.; Mizuno, K.; Okamoto, Y.; Seki, N. Dual-receptor (EGFR and c-MET) inhibition by tumor-suppressive miR-1 and miR-206 in head and neck squamous cell carcinoma. J. Hum. Genet., 2017, 62(1), 113-121.
[http://dx.doi.org/10.1038/jhg.2016.47] [PMID: 27169691]
[46]
Amir, S.; Simion, C.; Umeh-Garcia, M.; Krig, S.; Moss, T.; Carraway, K.L., III; Sweeney, C. Regulation of the T-box transcription factor Tbx3 by the tumour suppressor microRNA-206 in breast cancer. Br. J. Cancer, 2016, 114(10), 1125-1134.
[http://dx.doi.org/10.1038/bjc.2016.73] [PMID: 27100732]
[47]
Liu, W.; Xu, C.; Wan, H.; Liu, C.; Wen, C.; Lu, H.; Wan, F. MicroRNA-206 overexpression promotes apoptosis, induces cell cycle arrest and inhibits the migration of human hepatocellular carcinoma HepG2 cells. Int. J. Mol. Med., 2014, 34(2), 420-428.
[http://dx.doi.org/10.3892/ijmm.2014.1800] [PMID: 24919811]
[48]
Liu, F.; Zhao, X.; Qian, Y.; Zhang, J.; Zhang, Y.; Yin, R. MiR-206 inhibits Head and neck squamous cell carcinoma cell progression by targeting HDAC6 via PTEN/AKT/mTOR pathway. Biomed. Pharmacother., 2017, 96, 229-237.
[http://dx.doi.org/10.1016/j.biopha.2017.08.145] [PMID: 28987947]
[49]
Hao, W.; Luo, W.; Bai, M.; Li, J.; Bai, X.; Guo, J.; Wu, J.; Wang, M. MicroRNA-206 inhibited the progression of glioblastoma through BCL-2. J. Mol. Neurosci., 2016, 60(4), 531-538.
[http://dx.doi.org/10.1007/s12031-016-0824-6] [PMID: 27558109]
[50]
Sun, P.; Sun, D.; Wang, X.; Liu, T.; Ma, Z.; Duan, L. miR-206 is an independent prognostic factor and inhibits tumor invasion and migration in colorectal cancer. Cancer Biomark., 2015, 15(4), 391-396.
[http://dx.doi.org/10.3233/CBM-150489] [PMID: 26406866]
[51]
Modena, P.; Lualdi, E.; Facchinetti, F.; Galli, L.; Teixeira, M.R.; Pilotti, S.; Sozzi, G. SMARCB1/INI1 tumor suppressor gene is frequently inactivated in epithelioid sarcomas. Cancer Res., 2005, 65(10), 4012-4019.
[http://dx.doi.org/10.1158/0008-5472.CAN-04-3050] [PMID: 15899790]
[52]
Sápi, Z.; Papp, G.; Szendrői, M.; Pápai, Z.; Plótár, V.; Krausz, T.; Fletcher, C.D. Epigenetic regulation of SMARCB1 By miR-206, -381 and -671-5p is evident in a variety of SMARCB1 immunonegative soft tissue sarcomas, while miR-765 appears specific for epithelioid sarcoma. A miRNA study of 223 soft tissue sarcomas. Genes Chromosomes Cancer, 2016, 55(10), 786-802.
[http://dx.doi.org/10.1002/gcc.22379] [PMID: 27223121]
[53]
Green, D.; Dalmay, T.; Fraser, W.D. Role of miR-140 in embryonic bone development and cancer. Clin. Sci. (Lond.), 2015, 129(10), 863-873.
[http://dx.doi.org/10.1042/CS20150230] [PMID: 26318829]
[54]
Yokota, T.; Serizawa, M.; Hosokawa, A.; Kusafuka, K.; Mori, K.; Sugiyama, T.; Tsubosa, Y.; Koh, Y. PIK3CA mutation is a favorable prognostic factor in esophageal cancer: molecular profile by next-generation sequencing using surgically resected formalin-fixed, paraffin-embedded tissue. BMC Cancer, 2018, 18(1), 826.
[http://dx.doi.org/10.1186/s12885-018-4733-7] [PMID: 30115035]
[55]
Li, J.; Liang, Y.; Lv, H.; Meng, H.; Xiong, G.; Guan, X.; Chen, X.; Bai, Y.; Wang, K. miR-26a and miR-26b inhibit esophageal squamous cancer cell proliferation through suppression of c-MYC pathway. Gene, 2017, 625, 1-9.
[http://dx.doi.org/10.1016/j.gene.2017.05.001] [PMID: 28476684]
[56]
Shi, H.; Zhou, S.; Liu, J.; Zhu, J.; Xue, J.; Gu, L.; Chen, Y. miR-34a inhibits the in vitro cell proliferation and migration in human esophageal cancer. Pathol. Res. Pract., 2016, 212(5), 444-449.
[http://dx.doi.org/10.1016/j.prp.2016.02.019] [PMID: 26944831]
[57]
Liu, L.; Zuo, L.F.; Guo, J.W. ABCG2 gene amplification and expression in esophageal cancer cells with acquired adriamycin resistance. Mol. Med. Rep., 2014, 9(4), 1299-1304.
[http://dx.doi.org/10.3892/mmr.2014.1949] [PMID: 24535197]
[58]
Michalk, M.; Meinrath, J.; Künstlinger, H.; Koitzsch, U.; Drebber, U.; Merkelbach-Bruse, S.; Bollschweiler, E.; Kloth, M.; Hartmann, W.; Hölscher, A.; Quaas, A.; Grimminger, P.P.; Odenthal, M. MDM2 gene amplification in esophageal carcinoma. Oncol. Rep., 2016, 35(4), 2223-2227.
[http://dx.doi.org/10.3892/or.2016.4578] [PMID: 26796597]
[59]
Jiang, S.; Linghu, E.; Zhan, Q.; Han, W.; Guo, M. Methylation of ZNF331 promotes cell invasion and migration in human esophageal cancer. Curr. Protein Pept. Sci., 2015, 16(4), 322-328.
[http://dx.doi.org/10.2174/138920371604150429155255] [PMID: 25929867]
[60]
Ai, R.; Sun, Y.; Guo, Z.; Wei, W.; Zhou, L.; Liu, F.; Hendricks, D.T.; Xu, Y.; Zhao, X. NDRG1 overexpression promotes the progression of esophageal squamous cell carcinoma through modulating Wnt signaling pathway. Cancer Biol. Ther., 2016, 17(9), 943-954.
[http://dx.doi.org/10.1080/15384047.2016.1210734] [PMID: 27414086]
[61]
Weyandt, J.D.; Thompson, C.B.; Giaccia, A.J.; Rathmell, W.K. Metabolic alterations in cancer and their potential as therapeutic targets. Am. Soc. Clin. Oncol. Educ. Book, 2017, 37, 825-832.
[http://dx.doi.org/10.14694/EDBK_175561] [PMID: 28561705]
[62]
Allison, K.E.; Coomber, B.L.; Bridle, B.W. Metabolic reprogramming in the tumour microenvironment: a hallmark shared by cancer cells and T lymphocytes. Immunology, 2017, 152(2), 175-184.
[http://dx.doi.org/10.1111/imm.12777] [PMID: 28621843]
[63]
Villacis, R.A.R.; Basso, T.R.; Canto, L.M.; Pinheiro, M.; Santiago, K.M.; Giacomazzi, J.; de Paula, C.A.A.; Carraro, D.M.; Ashton-Prolla, P.; Achatz, M.I.; Rogatto, S.R. Rare germline alterations in cancer-related genes associated with the risk of multiple primary tumor development. J. Mol. Med. (Berl.), 2017, 95(5), 523-533.
[http://dx.doi.org/10.1007/s00109-017-1507-7] [PMID: 28093616]
[64]
Kan, C.W.; Howell, V.M.; Hahn, M.A.; Marsh, D.J. Genomic alterations as mediators of miRNA dysregulation in ovarian cancer. Genes Chromosomes Cancer, 2015, 54(1), 1-19.
[http://dx.doi.org/10.1002/gcc.22221] [PMID: 25280227]
[65]
Haider, S.; McIntyre, A.; van Stiphout, R.G.; Winchester, L.M.; Wigfield, S.; Harris, A.L.; Buffa, F.M. Genomic alterations underlie a pan-cancer metabolic shift associated with tumour hypoxia. Genome Biol., 2016, 17(1), 140.
[http://dx.doi.org/10.1186/s13059-016-0999-8] [PMID: 27358048]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy