Generic placeholder image

Mini-Reviews in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-193X
ISSN (Online): 1875-6298

Review Article

Synthesis Procedure and Industrial Applications of NaY Zeolite for Various Processes: A Review

Author(s): Mahjoobeh Hajitabar Firouzjaee and Majid Taghizadeh*

Volume 17, Issue 7, 2020

Page: [795 - 804] Pages: 10

DOI: 10.2174/1570193X16666191014164246

Price: $65

Abstract

Faujasite Y zeolites, due to their outstanding properties, have numerous applications in the chemical industries like petroleum refining, adsorption, FCC, petrochemical, aromatic alkylation, natural gas dehydration, separation, and environmental protection. The astonishing properties include high surface area, high porosity, high thermal stability and large ion-exchange capacity. In this review study, a summary of different synthesis techniques of this type of zeolite has been addressed. Different kinds of techniques like seeding, free template, organic template, increasing the alkali treatment and temperature control methods are described. Subsequently, because of its important role as a catalyst for different processes, the application of this zeolite was reviewed for different chemical processes.

Keywords: Applications, NaY, processes, synthesis, template, zeolite.

Graphical Abstract

[1]
Murphy, D.; Massiani, P.; Franck, R.; Barthomeuf, D. Basic site heterogeneity and location in alkali cation exchanged EMT zeolite. An IR study using adsorbed pyrrole. Sci. Eng., 1996, 38(4), 521-612.
[http://dx.doi.org/10.1021/jp953383+]
[2]
Weitkamp, J.; Weiss, U.; Ernst, S. New aspects and trends in zeolite catalysis. Surf. Sci. Catal., 1995, 94, 363-380.
[http://dx.doi.org/10.1016/S0167-2991(06)81244-9]
[3]
Smirniotis, P.G.; Davydov, L.; Ruckenstein, E. Composite zeolite based catalysts and sorbents. Catal. Rev., Sci. Eng., 1999, 41(1), 43-113.
[http://dx.doi.org/10.1081/CR-100101949]
[4]
Mintova, S.; Valtchev, V. Synthesis of nanosized FAU-Type zeolite. Stud. Surf. Sci. Catal., 1999, 125, 141-148.
[http://dx.doi.org/10.1016/S0167-2991(99)80207-9]
[5]
Morales-Pacheco, P.; Alvarez, F.; Bucio, L.; Domı’nguez, J.M. Synthesis and structural properties of zeolitic nanocrystals II: FAU-Type zeolites. J. Phys. Chem. C, 2009, 113, 2247-2255.
[http://dx.doi.org/10.1021/jp8070713]
[6]
Kuzniatsova, T.; Kim, Y.; Shqau, K.; Dutta, P.K.; Verweij, H. Zeta potential measurements of zeolite Y: Application in homogeneous deposition of particle coatings. Microporous Mesoporous Mater., 2007, 103, 102-107.
[http://dx.doi.org/10.1016/j.micromeso.2007.01.042]
[7]
Fathizadeh, M.; Ordou, N. Controlling yield of NaY zeolite synthesis by hydrothermal method. Int. J. Ind. Chem, 2011, 2, 190-195.
[8]
Nouri, A.; Jafari, M.; Kazemimoghadam, M.; Mohammadi, T. Effects of hydrothermal parameters on the synthesis of nano-crystalline zeolite NaY. Clays Clay Miner., 2012, 60(6), 610-615.
[http://dx.doi.org/10.1346/CCMN.2012.0600606]
[9]
Larsen, S.C. Nanocrystalline zeolites and zeolite structures: Synthesis, characterization and application. J. Phys. Chem. C, 2007, 111, 18464-18474.
[http://dx.doi.org/10.1021/jp074980m]
[10]
Auerbach, S.M.; Carrado, K.A.; Dutta, P.K. Handbook of Zeolite Science and Technology, 1st ed; CRC Press: Boca Raton, 2003.
[http://dx.doi.org/10.1201/9780203911167]
[11]
Li, G.; Jones, C.A.; Grassian, V.H.; Larsen, S.C. Selective catalytic reduction of NO2 with urea in nanocrystalline NaY zeolite. J. Catal., 2005, 234, 401-413.
[http://dx.doi.org/10.1016/j.jcat.2005.06.025]
[12]
Li, Q.; Creaser, D.; Sterte, J. An investigation of the nuclea-tion/crystallization kinetics of nanosized colloidal faujasite zeolites. Chem. Mater., 2002, 14, 1319-1324.
[http://dx.doi.org/10.1021/cm011242g]
[13]
Lutz, W.; Zeolite, Y. Synthesis, modification, and properties- A case revisited. Adv. Mater. Sci. Eng., 2014, 2014724248
[14]
Isa, M.A.; Chew, T.L.; Yeong, Y.F. Zeolite NaY synthesis by using sodium silicate and colloidal silica as silica source. IOP Conf. Ser. Mater. Sci. Eng., 2018, 458, 012001.
[15]
Cundy, C.S.; Cox, P.A. The hydrothermal synthesis of zeolite: Precursors, intermediates and reaction mechanism. Microporous Mesoporous Mater., 2005, 82, 1-78.
[http://dx.doi.org/10.1016/j.micromeso.2005.02.016]
[16]
Firouzjaee, M.H.; Taghizadeh, M. Optimization of process variables for biodiesel production using the nanomagnetic catalyst CaO/NaY-Fe3O4. Chem. Eng. Technol., 2017, 40(6), 1-10.
[http://dx.doi.org/10.1002/ceat.201600406]
[17]
Caro, J.; Noack, M. Zeolite membranes-recent developments and progress. Microporous Mesoporous Mater., 2008, 115, 215-233.
[http://dx.doi.org/10.1016/j.micromeso.2008.03.008]
[18]
Shirani, M.; Semnani, A.; Haddadi, H.; Habibollahi, S. Opti-mization of simultaneous removal of methylene blue, crystal violet and fuchsine from aqueous solutions by magnetic NaY zeolite composite. Water Air Soil Pollut., 2014, 225(8), 2054.
[http://dx.doi.org/10.1007/s11270-014-2054-2]
[19]
Ramezani, H.; Azizi, S.N.; Hosseini, S.R. NaY zeolite as a platform for preparation of Ag nanoparticles arrays in order to construction of H2O2 sensor. Sens. Actuators B Chem., 2017, 248, 571-579.
[http://dx.doi.org/10.1016/j.snb.2017.04.005]
[20]
Wang, W.; Kong, S.; Zhou, X.; Yuan, D.; Li, H.; Ren, S.; Shen, B. Perlite template Y zeolite assembly and its potential as an efficient catalytic cracking catalyst. Microporous Mesoporous Mater., 2017, 243, 130-134.
[http://dx.doi.org/10.1016/j.micromeso.2017.02.018]
[21]
Katada, N.; Kageyama, Y.; Takahara, K.; Kanai, T.; Begum, H.A.; Niwa, M. Acidic property of modified ultra stable Y zeolite: increase in catalytic activity for alkane cracking by treatment with ethylenediaminetetra acetic acid salt. J. Mol. Catal. Chem., 2004, 211, 119-130.
[http://dx.doi.org/10.1016/j.molcata.2003.10.001]
[22]
Rana, M.S.; Samano, V.; Ancheyta, J.; Diaz, J.A.I. A review of recent advances on process technologies for upgrading of heavy oils and residua. Fuel, 2007, 86, 1216-1231.
[http://dx.doi.org/10.1016/j.fuel.2006.08.004]
[23]
Sadeghbeigi, R. Fluid Catalytic Cracking Handbook: Design, Operation and Troubleshooting of FCC Facilities, 2nd ed; Gulf Publishing Company: Austin, 2000.
[24]
Andreu, P. Development of catalysts for the fluid catalytic cracking process: An example of CYTED-D program. Catal. Lett., 1993, 22, 135-146.
[http://dx.doi.org/10.1007/BF00811774]
[25]
Brown, S.M.; Durante, V.A.; Reagan, W.J.; Speronello, B.K. Fluid catalytic cracking catalyst comprising microspheres containing more than about 40 percent by weight Y-faujasite and methods for making. U.S. Patent 4,493,902, January 15, 1985.
[26]
Liu, H.; Zhao, H.; Gao, X.; Ma, J. A novel FCC catalyst syn-thesized via in situ overgrowth of NaY zeolite on kaolin mi-crospheres for maximizing propylene yield. Catal. Today, 2007, 125, 163-168.
[http://dx.doi.org/10.1016/j.cattod.2007.05.005]
[27]
Alkemade, U.; Paloumbis, S. Novel FCC catalyst systems for resid processing. Stud. Surf. Sci. Catal., 1996, 100, 339-354.
[http://dx.doi.org/10.1016/S0167-2991(96)80034-6]
[28]
Krisnandi, Y.K.; Saragi, I.R.; Sihombing, R.; Ekananda, R.; Sari, I.P.; Griffith, B.E.; Hanna, J.V. Synthesis and characterization of crystalline NaY zeolite from Belitung kaolin as catalyst for n-hexadecane cracking. Cryst., 2019, 9(8), 404.
[http://dx.doi.org/10.3390/cryst9080404]
[29]
Xin-Mei, L.; Zi-Feng, Y. Optimization of nanopores and acidity of USY zeolite by citric modification. Catal. Today, 2001, 68, 145-154.
[http://dx.doi.org/10.1016/S0920-5861(01)00275-9]
[30]
Hosseinpour, N.; Mortazavi, Y.; Bazyari, A.; Khodadadi, A.A. Synergetic effects of Y-zeolite and amorphous silica-alumina as main FCC catalyst components on triisopropylbenzene cracking and coke formation. Fuel Process. Technol., 2009, 90, 171-179.
[http://dx.doi.org/10.1016/j.fuproc.2008.08.013]
[31]
Triantafillidis, C.S.; Vlessidis, A.G.; Evmiridis, N.P. Dealu-minated H-Y zeolites: influence of the degree and the type of dealumination method on the structural and acidic characteristics of H-Y zeolites. Ind. Eng. Chem. Res., 2000, 39, 307-319.
[http://dx.doi.org/10.1021/ie990568k]
[32]
Tonetto, G.; Atias, J.; de Lasa, H. FCC catalysts with different zeolite crystallite sizes: Acidity, structural properties and reactivity. Appl. Catal. A Gen., 2004, 270, 9-25.
[http://dx.doi.org/10.1016/j.apcata.2004.03.042]
[33]
Song, W.; Li, G.; Grassian, V.H.; Larsen, S.C. Development of improved materials for environmental applications: Nanocrystalline NaY zeolites. Environ. Sci. Technol., 2005, 39(5), 1214-1220.
[http://dx.doi.org/10.1021/es049194z] [PMID: 15787359]
[34]
Lehman, S.E.; Larsen, S.C. Zeolite and mesoporous silica nanomaterials: Greener syntheses, environmental applications and biological toxicity. Environ. Sci. Nano, 2014, 1, 200-213.
[http://dx.doi.org/10.1039/C4EN00031E]
[35]
Larlus, O.; Mintova, S.; Bein, T. Environmental syntheses of nanosized zeolites with high yieldand monomodal particle size distribution. Microporous Mesoporous Mater., 2006, 96, 405-412.
[http://dx.doi.org/10.1016/j.micromeso.2006.07.024]
[36]
Oliveira, L.C.A.; Petkowicz, D.I.; Smaniotto, A.; Pergher, S.B.C. Magnetic zeolites: A new adsorbent for removal of metallic contaminants from water. Water Res., 2004, 38(17), 3699-3704.
[http://dx.doi.org/10.1016/j.watres.2004.06.008] [PMID: 15350421]
[37]
Shariatinia, Z.; Bagherpour, A. Synthesis of zeolite NaY and its nanocomposites with chitosan as adsorbents for lead(II) removal from aqueous solution. Powder Technol., 2018, 338, 744-763.
[http://dx.doi.org/10.1016/j.powtec.2018.07.082]
[38]
Katoh, M.; Kimura, M.; Sugino, M.; Horikawa, T.; Nakagawa, K.; Sugiyama, S. Modification of commercial NaY zeolite to give high water diffusivity and adsorb a large amount of water. J. Colloid Interface Sci., 2015, 455, 220-225.
[http://dx.doi.org/10.1016/j.jcis.2015.05.050] [PMID: 26072446]
[39]
Muhammad, S.; Munawar, E. Nanocrystalline zeolite Y: synthesis and heavy metal removal. J. Rekayasa Kimia dan Lingkungan, 2007, 6(2), 55-62.
[40]
El-Bahy, Z.M.; Hanafy, A.; El-Bahy, S.M. Preparation of Pt, Pd and Cu nano single and bimetallic systems-supported NaY zeolite and test their activity in p-nitrophenol reduction and as anticancer agents. J. Environ. Eng., 2019, 7(3), 103-117.
[41]
Lee, H.W. jeon, J.K.; Jeong, K.E.; Kim, C.U.; Jeong, S.Y.; Han, J.; Park, Y.K. Hydroisomerization of n-dodecane over Pt/Y zeolites with different acid characteristics. Chem. Eng. J., 2013, 232, 111-117.
[http://dx.doi.org/10.1016/j.cej.2013.07.071]
[42]
Wu, H.; Zhang, J.; Wei, Q.; Zheng, J.; Zhang, J. Transestrifica-tion of soybean oil to biodiesel using zeolite supported CaO as strong base catalysts. Fuel Process. Technol., 2013, 109, 13-18.
[http://dx.doi.org/10.1016/j.fuproc.2012.09.032]
[43]
Li, Z.; Ding, S.; Chen, C.; Qu, S. Recyclable Li/NaY zeolite as a heterogeneous alkaline catalyst for biodiesel production: Process optimization and kinetics study. Energy Convers. Manage., 2019, 192, 335-345.
[http://dx.doi.org/10.1016/j.enconman.2019.04.053]
[44]
Soh, J.C.; Chong, S.L.; Hossain, S.S.; Cheng, C.K. Catalytic ethylene production from ethanol dehydration over non-modified and phosphoric acid modified zeolite HY (80) catalysts. Fuel Process. Technol., 2017, 158, 85-95.
[http://dx.doi.org/10.1016/j.fuproc.2016.12.012]
[45]
Gu, X.; Dong, J.; Nenoff, T.M. Sythesis of defect-free FAU-type zeolite membranes and separation for dry and moist CO2/N2 mixture. Ind. Eng. Chem., 2005, 44, 937-944.
[http://dx.doi.org/10.1021/ie049263i]
[46]
Tosheva, L.; Valtchev, V.P. Nanozeolites: Synthesis, Crystal-lization mechanism and applications. Am. Chem. Soc., 2005, 17, 2494-2513.
[47]
Verboekend, D.; Vile, G.; Ramirez, J.P. Hierarchical Y and USY zeolites designed by post-synthetic strategies. Adv. Funct. Mater., 2012, 22, 916-928.
[http://dx.doi.org/10.1002/adfm.201102411]
[48]
Karami, D.; Mahinpey, N. The synthesis of novel zeolite Y nanoparticles using mesoporous silica with a temperature controlling method. Can. J. Chem. Eng., 2014, 92, 671-675.
[http://dx.doi.org/10.1002/cjce.21902]
[49]
Mastropietro, T.F.; Drioli, E.; Poerio, T. Low temperature synthesis of nanosized NaY zeolite crystals from organic-free gel by using supported seeds. Roy. Soc. Chem, 2014, 4, 21951-21957.
[http://dx.doi.org/10.1039/C4RA03376K]
[50]
Lassinantti, M.; Hedlund, J.; Sterte, J. Faujasite-type films synthesized by seeding. Microporous Mesoporous Mater., 2000, 38, 25-34.
[http://dx.doi.org/10.1016/S1387-1811(99)00296-6]
[51]
Wittayakun, J.; Khemthong, P.; Prayoonpokarach, S. Synthesis and characterization of zeolite NaY from rice husk silica. Korean J. Chem. Eng., 2008, 25, 861-864.
[http://dx.doi.org/10.1007/s11814-008-0142-y]
[52]
Kim, D.S.; Kim, J.M.; Chang, J.S.; Park, S.E. Rapid and mass production of porous materials using a continuous microwave equipment. Stud. Surf. Sci. Catal., 2001, 135, 333.
[53]
Mu, L.; Feng, W.; Zhang, H.; Hu, X.; Cui, Q. Synthesis and catalytic performance of a small crystal NaY zeolite with high SiO2/Al2O3 ratio. Roy. Soc. Chem., 2019, 9, 20528-20535.
[http://dx.doi.org/10.1039/C9RA03324F]
[54]
Blatter, F.; Schumacher, E. The preparation of pure zeolite NaY and its conversion to high-silica faujasite. J. Chem. Educ., 1990, 67, 519-521.
[http://dx.doi.org/10.1021/ed067p519]
[55]
Li, G. FT-IR studies of zeolite materials: Characterization and environmental applications. PhD thesis, University of Iowa; Spring,. 2005.
[http://dx.doi.org/10.17077/etd.ij6d1nc6]
[56]
Holmberg, B.A.; Wang, H.; Norbeck, J.M.; Yan, Y. Control-ling size and yield of zeolite Y nanocrystals using tetramethyl-ammonium bromide. Microporous Mesoporous Mater., 2003, 59, 13-28.
[http://dx.doi.org/10.1016/S1387-1811(03)00271-3]
[57]
Zeng, Y.; Walker, H.; Zhu, Q. Reduction of nitrate by NaY zeolite supported Fe, Cu/Fe and Mn/Fe nanoparticles. J. Hazard. Mater., 2017, 324(Pt B), 605-616.
[http://dx.doi.org/10.1016/j.jhazmat.2016.11.032] [PMID: 27856053]
[58]
Kuzniarska-Biernacka, I.; Raposo, M.M.M.; Batista, R.; Parpot, P.; Biernacki, K.; Magalhaes, A.L.; Fonseca, A.M.; Neves, I.C. Highly efficient heterogeneous catalysts for phe-nol oxidation: Binuclear pyrrolyl-azine metal complexes en-capsulated in NaY zeolite. Microporous Mesoporous Mater., 2016, 227, 272-280.
[http://dx.doi.org/10.1016/j.micromeso.2016.03.003]
[59]
Dong, H.; Zhao, L.; Zhang, L.; Chen, H.; Gao, C.; Ho, W.S.W. High-flux reverse osmosis membranes incorporated with NaY zeolite nanoparticles for brackish water desalination. J. Membr. Sci., 2015, 476, 373-383.
[http://dx.doi.org/10.1016/j.memsci.2014.11.054]
[60]
Zhou, R.; Zhang, Q.; Shao, J.; Wang, Z.; Chen, X.; Kita, H. Optimization of NaY zeolite membrane preparation for the separation of methanol/methyl methacrylate mixtures. Desalination, 2012, 291, 41-47.
[http://dx.doi.org/10.1016/j.desal.2012.01.023]
[61]
Rasouli, M.; Yaghobi, N.; Chitsazan, S.; Sayyar, M.H. Effect of nanocrystalline zeolite NaY on meta-xylene separation. Microporous Mesoporous Mater., 2012, 152, 141-147.
[http://dx.doi.org/10.1016/j.micromeso.2011.11.045]
[62]
Derekaya, F.B.; Yaşar, G. The CO methanation over NaY zeolite supported Ni/Co3O4, Ni/ZrO2, Co3O4/ZrO2 and Ni/Co3O4/ZrO2. Catal. Commun., 2011, 13, 73-77.
[http://dx.doi.org/10.1016/j.catcom.2011.06.024]
[63]
Larsen, S.C.; Grassian, V.H. Enhanced activity of nanocrystalline zeolites for selective catalytic reduction of NOx. U.S. Department Energy Office of Scientific and Technical Information, 2006, 12-31.
[64]
Asadollahi, M.; Bastania, D.; Kazemian, H. Permeation of single gases through TEG liquid membranes modified by NaY nano zeolite particles. Separ. Purif. Tech., 2010, 76, 120-125.
[http://dx.doi.org/10.1016/j.seppur.2010.09.029]
[65]
Hosseinpour, N.; Mortazavi, Y.; Bazyari, A.; Khodadadi, A.A. Synergetic effects of Y zeolite and amorphous silica-alumina as main FCC catalyst components on triisopropylbenzene cracking and coke formation. Fuel Process. Technol., 2009, 90, 171-179.
[http://dx.doi.org/10.1016/j.fuproc.2008.08.013]
[66]
Karami, D.; Rohani, S. The effect of particle size reduction of zeolite Y on catalytic cracking of bulky hydrocarbons. Petrol. Sci. Technol., 2013, 31, 1625-1632.
[http://dx.doi.org/10.1080/10916466.2010.551231]
[67]
Taufiqurrahmi, N.; Mohamed, A.R.; Bhatia, S. Nanocrystalline zeolite beta and zeolite Y as catalysts in used palm oil cracking for the production of biofuel. J. Nanopart. Res., 2011, 13, 3177-3189.
[http://dx.doi.org/10.1007/s11051-010-0216-8]
[68]
Premakshi, H.G.; Ramesh, K.; Kariduraganavar, M.Y. Modifi-cation of cross linked chitosan membrane using NaY zeolite for pervaporation separation of water-isopropanol mixtures. Chem. Eng. Res. Des., 2014, 94, 32-43.
[http://dx.doi.org/10.1016/j.cherd.2014.11.014]
[69]
Lin, K.Y.A.; Wu, C.H.; Jochems, A.P. Adsorptive behaviors of methylimidazolium ionic liquids to a Y type zeolite in water: Kinetic, isotherms, thermodynamics and interferences. J. Mol. Liq., 2017, 232, 269-276.
[http://dx.doi.org/10.1016/j.molliq.2017.02.057]
[70]
Osakoo, N.; Pansakdanon, C.; Sosa, N.; Deekamwong, K.; Keawkumay, C.; Rongchapo, W.; Chanlek, N.; Jitcharoen, J.; Prayoonpokarach, S.; Wittayakun, J. Characterization and comprehension of zeolite NaY/mesoporous SBA-15 composite as adsorbent for paraquat. Mater. Chem. Phys., 2017, 193, 470-476.
[http://dx.doi.org/10.1016/j.matchemphys.2017.03.002]
[71]
Graca, I.; Iruretagoyena, D.; Chadwick, D. Glucose isomerisation into fructose over magnesium-impregnated NaY zeolite catalysts. Appl. Catal. B, 2017, 206, 234-243.
[http://dx.doi.org/10.1016/j.apcatb.2017.01.037]
[72]
Zhao, Q.; Qin, B.; Zheng, J.; Du, Y.; Sun, W.; Ling, F.; Zhang, X.; Li, R. Core-shell structured zeolite-zeolite composites comprising Y zeolite cores and nano-β zeolite shells: Synthesis and application in hydrocracking of VGO oil. Chem. Eng. J., 2014, 257, 262-272.
[http://dx.doi.org/10.1016/j.cej.2014.07.056]
[73]
Sue-aok, N.; Srithanratana, T.; Rangsriwatananon, K.; Hengrasme, S. Study of ethylene adsorption on zeolite NaY modified with group I metal ions. Appl. Surf. Sci., 2010, 256, 3997-4002.
[http://dx.doi.org/10.1016/j.apsusc.2010.01.065]
[74]
Shi, Y.; Yang, X.; Tian, F.; Jia, C.; Chen, Y. Effect of toluene on thiophene adsorption over NaY and Ce (IV) Y zeolites. J. Nat. Gas Chem., 2012, 21, 421-425.
[http://dx.doi.org/10.1016/S1003-9953(11)60385-X]
[75]
Nunes-Pereira, J.; Lopes, A.C.; Costa, C.M.; Rodrigues, L.C.; Silva, M.M.; Lanceros-Méndez, S. Microporous membranes of NaY zeolite/poly (vinylidene fluoride-trifluoroethylene) for Li-ion battery separators. J. Electroanal. Chem. (Lausanne Switz.), 2013, 689, 223-232.
[http://dx.doi.org/10.1016/j.jelechem.2012.10.030]
[76]
Sato, K.; Sugimoto, K.; Nakane, T. Mass-production of tubular NaY zeolite membranes for industrial purpose and their application to ethanol dehydration by vapor permeation. J. Membr. Sci., 2008, 319, 244-255.
[http://dx.doi.org/10.1016/j.memsci.2008.03.041]
[77]
Ebadi Amooghin, A.; Omidkhah, M.; Kargari, A. The effects of aminosilane grafting on NaY zeolite-Matrimid 5218 mixed matrix membranes for CO2/CH4 separation. J. Membr. Sci., 2015, 490, 364-379.
[http://dx.doi.org/10.1016/j.memsci.2015.04.070]
[78]
Ozorio, L.P.; Pianzolli, R.; Machadoa, L.C.; Miranda, J.L.; Turci, C.C.; Guerra, A.C.O.; Souza-Aguiar, E.F.; Mota, C.J.A. Metal impregnated zeolite Y as efficient catalyst for the direct carbonation of glycerol with CO2. Appl. Catal. A Gen., 2014, 504, 187-191.
[http://dx.doi.org/10.1016/j.apcata.2014.12.010]
[79]
Doyle, A.M.; Albayati, T.M.; Abbas, A.S.; Alismaeel, Z.T. Biodiesel production by esterification of oleic over zeolite Y prepared from kaolin. Renew. Energy, 2016, 97, 19-23.
[http://dx.doi.org/10.1016/j.renene.2016.05.067]
[80]
Sanaeepur, H.; Kargari, A.; Nasernejad, B.; Amooghinc, A.E.; Omidkhahd, M. A novel Co2+ exchanged zeolite Y/cellulose acetate mixed matrix membrane for CO2/N2 separation. J. Taiwan. Instit. Chem. Eng, 2015, 60, 403-413.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy