Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

Research Article

Expression of a Functional Recombinant Human Glycogen Debranching Enzyme (hGDE) in N. benthamiana Plants and in Hairy Root Cultures

Author(s): Meilyn Rodriguez-Hernandez, Doriana Triggiani, Fiona Ivison, Olivia C. Demurtas, Elena Illiano, Carmela Marino, Rosella Franconi* and Silvia Massa*

Volume 27, Issue 2, 2020

Page: [145 - 157] Pages: 13

DOI: 10.2174/0929866526666191014154047

Price: $65

Abstract

Background: Glycogen storage disease type III (GSDIII, Cori/Forbes disease) is a metabolic disorder due to the deficiency of the Glycogen Debranching Enzyme (GDE), a large monomeric protein (about 176 kDa) with two distinct enzymatic activities: 4-α-glucantransferase and amylo-α-1,6-glucosidase. Several mutations along the amylo-alpha-1,6-glucosidase,4-alphaglucanotransferase (Agl) gene are associated with loss of enzymatic activity. The unique treatment for GSDIII, at the moment, is based on diet.

The potential of plants to manufacture exogenous engineered compounds for pharmaceutical purposes, from small to complex protein molecules such as vaccines, antibodies and other therapeutic/prophylactic entities, was shown by modern biotechnology through “Plant Molecular Farming”.

Objective and Methods: In an attempt to develop novel protein-based therapeutics for GSDIII, the Agl gene, encoding for the human GDE (hGDE) was engineered for expression as a histidinetagged GDE protein both in Nicotiana benthamiana plants by a transient expression approach, and in axenic hairy root in vitro cultures (HR) from Lycopersicum esculentum and Beta vulgaris.

Results: In both plant-based expression formats, the hGDE protein accumulated in the soluble fraction of extracts. The plant-derived protein was purified by affinity chromatography in native conditions showing glycogen debranching activity.

Conclusion: These investigations will be useful for the design of a new generation of biopharmaceuticals based on recombinant GDE protein that might represent, in the future, a possible therapeutic option for GSDIII.

Keywords: Plant molecular farming, glycogen storage disease, glycogen debranching enzyme, GDE, rare disease, metabolic inherited disease.

Graphical Abstract

[1]
Grabowski, G.A.; Golembo, M.; Shaaltiel, Y. Taliglucerase alfa: An enzyme replacement therapy using plant cell expression technology. Mol. Genet. Metab., 2014, 112(1), 1-8.
[http://dx.doi.org/10.1016/j.ymgme.2014.02.011] [PMID: 24630271]
[2]
Loh, H.S.; Green, B.J.; Yusibov, V. Using transgenic plants and modified plant viruses for the development of treatments for human diseases. Curr. Opin. Virol., 2017, 26, 81-89.
[http://dx.doi.org/10.1016/j.coviro.2017.07.019] [PMID: 28800551]
[3]
Massa, S.; Presenti, O.; Benvenuto, E. Engineering plants for the future: farming with value-added harvest. In: Progress in Botany; Springer: Berlin, Heidelberg, 2018; pp. 1-44.
[4]
Komarova, T.V.; Sheshukova, E.V.; Dorokhov, Y.L. Plant-made antibodies: Properties and therapeutic applications. Curr. Med. Chem., 2017. [Epub ahead of Print]
[PMID: 29231134]
[5]
Yusibov, V.; Streatfield, S.J.; Kushnir, N. Clinical development of plant-produced recombinant pharmaceuticals: Vaccines, antibodies and beyond. Hum. Vaccin., 2011, 7(3), 313-321.
[http://dx.doi.org/10.4161/hv.7.3.14207] [PMID: 21346417]
[6]
D’Aoust, M.A.; Couture, M.M.; Charland, N.; Trépanier, S.; Landry, N.; Ors, F.; Vézina, L.P. The production of hemagglutinin-based virus-like particles in plants: A rapid, efficient and safe response to pandemic influenza. Plant Biotechnol. J., 2010, 8(5), 607-619.
[http://dx.doi.org/10.1111/j.1467-7652.2009.00496.x] [PMID: 20199612]
[7]
Schillberg, S.; Raven, N.; Fischer, R.; Twyman, R.M.; Schiermeyer, A. Molecular farming of pharmaceutical proteins using plant suspension cell and tissue cultures. Curr. Pharm. Des., 2013, 19(31), 5531-5542.
[http://dx.doi.org/10.2174/1381612811319310008] [PMID: 23394569]
[8]
Franconi, R.; Demurtas, O.C.; Massa, S. Plant-derived vaccines and other therapeutics produced in contained systems. Expert Rev. Vaccines, 2010, 9(8), 877-892.
[http://dx.doi.org/10.1586/erv.10.91] [PMID: 20673011]
[9]
Guillon, S.; Trémouillaux-Guiller, J.; Pati, P.K.; Rideau, M.; Gantet, P. Hairy root research: Recent scenario and exciting prospects. Curr. Opin. Plant Biol., 2006, 9(3), 341-346.
[http://dx.doi.org/10.1016/j.pbi.2006.03.008] [PMID: 16616871]
[10]
Woods, R.R.; Geyer, B.C.; Mor, T.S. Hairy-root organ cultures for the production of human acetylcholinesterase. BMC Biotechnol., 2008, 8, 95.
[http://dx.doi.org/10.1186/1472-6750-8-95] [PMID: 19105816]
[11]
Skarjinskaia, M.; Ruby, K.; Araujo, A.; Taylor, K.; Gopalasamy-Raju, V.; Musiychuk, K.; Chichester, J.A.; Palmer, G.A.; de la Rosa, P.; Mett, V.; Ugulava, N.; Streatfield, S.J.; Yusibov, V. Hairy roots as a vaccine production and delivery system. Adv. Biochem. Eng. Biotechnol., 2013, 134, 115-134.
[http://dx.doi.org/10.1007/10_2013_184] [PMID: 23649385]
[12]
Wongsamuth, R.; Doran, P.M. Production of monoclonal antibodies by tobacco hairy roots. Biotechnol. Bioeng., 1997, 54(5), 401-415.
[http://dx.doi.org/10.1002/(SICI)1097-0290(19970605)54:5<401:AID-BIT1>3.0.CO;2-I] [PMID: 18634133]
[13]
Drake, P.M.; de Moraes Madeira, L.; Szeto, T.H.; Ma, J.K. Transformation of Althaea officinalis L. by Agrobacterium rhizogenes for the production of transgenic roots expressing the anti-HIV microbicide cyanovirin-N. Transgenic Res., 2013, 22(6), 1225-1229.
[http://dx.doi.org/10.1007/s11248-013-9730-7] [PMID: 23852261]
[14]
Kishnani, P.S.; Austin, S.L.; Arn, P.; Bali, D.S.; Boney, A.; Case, L.E.; Chung, W.K.; Desai, D.M.; El-Gharbawy, A.; Haller, R.; Smit, G.P.; Smith, A.D.; Hobson-Webb, L.D.; Wechsler, S.B.; Weinstein, D.A.; Watson, M.S. Glycogen storage disease type III diagnosis and management guidelines. Genet. Med., 2010, 12(7), 446-463.
[http://dx.doi.org/10.1097/GIM.0b013e3181e655b6] [PMID: 20631546]
[15]
Sentner, C.P.; Hoogeveen, I.J.; Weinstein, D.A.; Santer, R.; Murphy, E.; McKiernan, P.J.; Steuerwald, U.; Beauchamp, N.J.; Taybert, J.; Laforêt, P.; Petit, F.M.; Hubert, A.; Labrune, P.; Smit, G.P.A.; Derks, T.G.J. Glycogen storage disease type III: Diagnosis, genotype, management, clinical course and outcome. J. Inherit. Metab. Dis., 2016, 39(5), 697-704.
[http://dx.doi.org/10.1007/s10545-016-9932-2] [PMID: 27106217]
[16]
Mayorandan, S.; Meyer, U.; Hartmann, H.; Das, A.M. Glycogen storage disease type III: Modified Atkins diet improves myopathy. Orphanet J. Rare Dis., 2014, 9, 196.
[http://dx.doi.org/10.1186/s13023-014-0196-3] [PMID: 25431232]
[17]
Pagliarani, S.; Lucchiari, S.; Ulzi, G.; Ripolone, M.; Violano, R.; Fortunato, F.; Bordoni, A.; Corti, S.; Moggio, M.; Bresolin, N.; Comi, G.P. Glucose-free/high-protein diet improves hepatomegaly and exercise intolerance in glycogen storage disease type III mice. Biochim. Biophys. Acta Mol. Basis Dis., 2018, 1864(10), 3407-3417.
[http://dx.doi.org/10.1016/j.bbadis.2018.07.031] [PMID: 30076962]
[18]
Vidal, P.; Pagliarani, S.; Colella, P.; Costa Verdera, H.; Jauze, L.; Gjorgjieva, M.; Puzzo, F.; Marmier, S.; Collaud, F.; Simon Sola, M.; Charles, S.; Lucchiari, S.; van Wittenberghe, L.; Vignaud, A.; Gjata, B.; Richard, I.; Laforet, P.; Malfatti, E.; Mithieux, G.; Rajas, F.; Comi, G.P.; Ronzitti, G.; Mingozzi, F. Rescue of GSDIII phenotype with gene transfer requires liver- and muscle-targeted GDE expression. Mol. Ther., 2018, 26(3), 890-901.
[http://dx.doi.org/10.1016/j.ymthe.2017.12.019] [PMID: 29396266]
[19]
Yang, B.Z.; Ding, J.H.; Enghild, J.J.; Bao, Y.; Chen, Y.T. Molecular cloning and nucleotide sequence of cDNA encoding human muscle glycogen debranching enzyme. J. Biol. Chem., 1992, 267(13), 9294-9299.
[PMID: 1374391]
[20]
Sainsbury, F.; Thuenemann, E.C.; Lomonossoff, G.P. pEAQ: Versatile expression vectors for easy and quick transient expression of heterologous proteins in plants. Plant Biotechnol. J., 2009, 7(7), 682-693.
[http://dx.doi.org/10.1111/j.1467-7652.2009.00434.x] [PMID: 19627561]
[21]
Cheng, A.; Zhang, M.; Okubo, M.; Omichi, K.; Saltiel, A.R. Distinct mutations in the glycogen debranching enzyme found in glycogen storage disease type III lead to impairment in diverse cellular functions. Hum. Mol. Genet., 2009, 18(11), 2045-2052.
[http://dx.doi.org/10.1093/hmg/ddp128] [PMID: 19299494]
[22]
Endo, Y.; Horinishi, A.; Vorgerd, M.; Aoyama, Y.; Ebara, T.; Murase, T.; Odawara, M.; Podskarbi, T.; Shin, Y.S.; Okubo, M. Molecular analysis of the AGL gene: Heterogeneity of mutations in patients with glycogen storage disease type III from Germany, Canada, Afghanistan, Iran, and Turkey. J. Hum. Genet., 2006, 51(11), 958-963.
[http://dx.doi.org/10.1007/s10038-006-0045-x] [PMID: 17047887]
[23]
Kikuchi, T.; Yang, H.W.; Pennybacker, M.; Ichihara, N.; Mizutani, M.; Van Hove, J.L.K.; Chen, Y.T. Clinical and metabolic correction of pompe disease by enzyme therapy in acid maltase-deficient quail. J. Clin. Invest., 1998, 101(4), 827-833.
[http://dx.doi.org/10.1172/JCI1722] [PMID: 9466978]
[24]
Yusibov, V.; Kushnir, N.; Streatfield, S.J. Antibody production in plants and green algae. Annu. Rev. Plant Biol., 2016, 67, 669-701.
[http://dx.doi.org/10.1146/annurev-arplant-043015-111812] [PMID: 26905655]
[25]
Streatfield, S.J.; Kushnir, N.; Yusibov, V. Plant-produced candidate countermeasures against emerging and reemerging infections and bioterror agents. Plant Biotechnol. J., 2015, 13(8), 1136-1159.
[http://dx.doi.org/10.1111/pbi.12475] [PMID: 26387510]
[26]
Daniell, H.; Singh, N.D.; Mason, H.; Streatfield, S.J. Plant-made vaccine antigens and biopharmaceuticals. Trends Plant Sci., 2009, 14(12), 669-679.
[http://dx.doi.org/10.1016/j.tplants.2009.09.009] [PMID: 19836291]
[27]
He, X.; Haselhorst, T.; von Itzstein, M.; Kolarich, D.; Packer, N.H.; Gloster, T.M.; Vocadlo, D.J.; Clarke, L.A.; Qian, Y.; Kermode, A.R. Production of α-L-iduronidase in maize for the potential treatment of a human lysosomal storage disease. Nat. Commun., 2012, 3, 1062.
[http://dx.doi.org/10.1038/ncomms2070] [PMID: 22990858]
[28]
He, X.; Pierce, O.; Haselhorst, T.; von Itzstein, M.; Kolarich, D.; Packer, N.H.; Gloster, T.M.; Vocadlo, D.J.; Qian, Y.; Brooks, D.; Kermode, A.R. Characterization and downstream mannose phosphorylation of human recombinant α-L-iduronidase produced in Arabidopsis complex glycan-deficient (cgl) seeds. Plant Biotechnol. J., 2013, 11(9), 1034-1043.
[http://dx.doi.org/10.1111/pbi.12096] [PMID: 23898885]
[29]
De Marchis, F.; Balducci, C.; Pompa, A.; Riise Stensland, H.M.; Guaragno, M.; Pagiotti, R.; Menghini, A.R.; Persichetti, E.; Beccari, T.; Bellucci, M. Human α-mannosidase produced in transgenic tobacco plants is processed in human α-mannosidosis cell lines. Plant Biotechnol. J., 2011, 9(9), 1061-1073.
[http://dx.doi.org/10.1111/j.1467-7652.2011.00630.x] [PMID: 21645202]
[30]
Martiniuk, F.; Reggi, S.; Tchou-Wong, K.M.; Rom, W.N.; Busconi, M.; Fogher, C. Production of a functional human acid maltase in tobacco seeds: Biochemical analysis, uptake by human GSDII cells, and in vivo studies in GAA knockout mice. Appl. Biochem. Biotechnol., 2013, 171(4), 916-926.
[http://dx.doi.org/10.1007/s12010-013-0367-z] [PMID: 23907679]
[31]
Singhabahu, S.; George, J.; Bringloe, D. Expression of a functional human adenosine deaminase in transgenic tobacco plants. Transgenic Res., 2013, 22(3), 643-649.
[http://dx.doi.org/10.1007/s11248-012-9676-1] [PMID: 23264022]
[32]
Kizhner, T.; Azulay, Y.; Hainrichson, M.; Tekoah, Y.; Arvatz, G.; Shulman, A.; Ruderfer, I.; Aviezer, D.; Shaaltiel, Y. Characterization of a chemically modified plant cell culture expressed human α-Galactosidase-A enzyme for treatment of Fabry disease. Mol. Genet. Metab., 2015, 114(2), 259-267.
[http://dx.doi.org/10.1016/j.ymgme.2014.08.002] [PMID: 25155442]
[33]
Kytidou, K.; Beekwilder, J.; Artola, M.; van Meel, E.; Wilbers, R.H.P.; Moolenaar, G.F.; Goosen, N.; Ferraz, M.J.; Katzy, R.; Voskamp, P.; Florea, B.I.; Hokke, C.H.; Overkleeft, H.S.; Schots, A.; Bosch, D.; Pannu, N.; Aerts, J.M.F.G. Nicotiana benthamiana α-galactosidase A1.1 can functionally complement human α-galactosidase A deficiency associated with Fabry disease. J. Biol. Chem., 2018, 293(26), 10042-10058.
[http://dx.doi.org/10.1074/jbc.RA118.001774] [PMID: 29674318]
[34]
Shaaltiel, Y.; Bartfeld, D.; Hashmueli, S.; Baum, G.; Brill-Almon, E.; Galili, G.; Dym, O.; Boldin-Adamsky, S.A.; Silman, I.; Sussman, J.L.; Futerman, A.H.; Aviezer, D. Production of glucocerebrosidase with terminal mannose glycans for enzyme replacement therapy of Gaucher’s disease using a plant cell system. Plant Biotechnol. J., 2007, 5(5), 579-590.
[http://dx.doi.org/10.1111/j.1467-7652.2007.00263.x] [PMID: 17524049]
[35]
Shaaltiel, Y.; Gingis-Velitski, S.; Tzaban, S.; Fiks, N.; Tekoah, Y.; Aviezer, D. Plant-based oral delivery of β-glucocerebrosidase as an enzyme replacement therapy for Gaucher’s disease. Plant Biotechnol. J., 2015, 13(8), 1033-1040.
[http://dx.doi.org/10.1111/pbi.12366] [PMID: 25828481]
[36]
Shahid, N.; Daniell, H. Plant-based oral vaccines against zoonotic and non-zoonotic diseases. Plant Biotechnol. J., 2016, 14(11), 2079-2099.
[http://dx.doi.org/10.1111/pbi.12604] [PMID: 27442628]
[37]
Kwon, K.C.; Daniell, H. Oral delivery of protein drugs bioencapsulated in plant cells. Mol. Ther., 2016, 24(8), 1342-1350.
[http://dx.doi.org/10.1038/mt.2016.115] [PMID: 27378236]
[38]
Bobinnec, Y.; Khodjakov, A.; Mir, L.M.; Rieder, C.L.; Eddé, B.; Bornens, M. Centriole disassembly in vivo and its effect on centrosome structure and function in vertebrate cells. J. Cell Biol., 1998, 143(6), 1575-1589.
[http://dx.doi.org/10.1083/jcb.143.6.1575] [PMID: 9852152]
[39]
Sun, C.; Ouyang, M.; Cao, Z.; Ma, S.; Alqublan, H.; Sriranganathan, N.; Wang, Y.; Lu, C. Electroporation-delivered fluorescent protein biosensors for probing molecular activities in cells without genetic encoding. Chem. Commun. (Camb.), 2014, 50(78), 11536-11539.
[http://dx.doi.org/10.1039/C4CC04730C] [PMID: 25133322]
[40]
Cao, Y.; Ma, E.; Cestellos-Blanco, S.; Zhang, B.; Qiu, R.; Su, Y.; Doudna, J.A.; Yang, P. Nontoxic nanopore electroporation for effective intracellular delivery of biological macromolecules. Proc. Natl. Acad. Sci. USA, 2019, 116(16), 7899-7904.
[http://dx.doi.org/10.1073/pnas.1818553116] [PMID: 30923112]
[41]
Ebner, D.C.; Bialek, P.; El-Kattan, A.F.; Ambler, C.M.; Tu, M. Strategies for skeletal muscle targeting in drug discovery. Curr. Pharm. Des., 2015, 21(10), 1327-1336.
[http://dx.doi.org/10.2174/1381612820666140929095755] [PMID: 25269560]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy