Abstract
Background: Protein folding rate is mainly determined by the size of the conformational space to search, which in turn is dictated by factors such as size, structure and amino-acid sequence in a protein. It is important to integrate these factors effectively to form a more precisely description of conformation space. But there is no general paradigm to answer this question except some intuitions and empirical rules. Therefore, at the present stage, predictions of the folding rate can be improved through finding new factors, and some insights are given to the above question.
Objective: Its purpose is to propose a new parameter that can describe the size of the conformational space to improve the prediction accuracy of protein folding rate.
Methods: Based on the optimal set of amino acids in a protein, an effective cumulative backbone torsion angles (CBTAeff) was proposed to describe the size of the conformational space. Linear regression model was used to predict protein folding rate with CBTAeff as a parameter. The degree of correlation was described by the coefficient of determination and the mean absolute error MAE between the predicted folding rates and experimental observations.
Results: It achieved a high correlation (with the coefficient of determination of 0.70 and MAE of 1.88) between the logarithm of folding rates and the (CBTAeff)0.5 with experimental over 112 twoand multi-state folding proteins.
Conclusion: The remarkable performance of our simplistic model demonstrates that CBTA based on optimal set was the major determinants of the conformation space of natural proteins.
Keywords: Folding rates, conformational space, optimal set of amino acids, cumulative backbone torsion angles, linear regression model, correlation.
Graphical Abstract
[http://dx.doi.org/10.1073/pnas.47.9.1309] [PMID: 13683522]
[http://dx.doi.org/10.1126/science.181.4096.223] [PMID: 4124164]
[http://dx.doi.org/10.1051/jcp/1968650044]
[http://dx.doi.org/10.1021/ja0279141] [PMID: 12405814]
[http://dx.doi.org/10.1016/j.sbi.2004.01.013] [PMID: 15102453]
[http://dx.doi.org/10.1073/pnas.250473497] [PMID: 11087839]
[http://dx.doi.org/10.1110/ps.52801] [PMID: 11369860]
[http://dx.doi.org/10.1073/pnas.96.20.11311] [PMID: 10500173]
[http://dx.doi.org/10.1126/science.7886447] [PMID: 7886447]
[http://dx.doi.org/10.1039/c1cp20402e] [PMID: 21670826]
[http://dx.doi.org/10.1103/PhysRevLett.77.5433] [PMID: 10062802]
[http://dx.doi.org/10.1016/S1359-0278(97)00016-3] [PMID: 9135984]
[http://dx.doi.org/10.1002/prot.10343] [PMID: 12660985]
[http://dx.doi.org/10.1016/j.febslet.2013.04.041] [PMID: 23684724]
[http://dx.doi.org/10.1371/journal.pone.0078606] [PMID: 24339865]
[http://dx.doi.org/10.1073/pnas.0402659101] [PMID: 15184682]
[http://dx.doi.org/10.1103/PhysRevE.82.051930] [PMID: 21230523]
[http://dx.doi.org/10.1006/jmbi.1998.1645] [PMID: 9545386]
[http://dx.doi.org/10.1110/ps.0302503] [PMID: 12931003]
[http://dx.doi.org/10.1146/annurev.biophys.30.1.361] [PMID: 11340064]
[http://dx.doi.org/10.1006/jmbi.2001.4775] [PMID: 11419934]
[http://dx.doi.org/10.1016/S0006-3495(02)75410-6] [PMID: 11751332]
[http://dx.doi.org/10.1110/ps.0220003] [PMID: 12493824]
[http://dx.doi.org/10.1016/j.jtbi.2012.10.003] [PMID: 23063779]
[http://dx.doi.org/10.1063/1.4767567] [PMID: 23206039]
[http://dx.doi.org/10.4236/jbise.2009.23024]
[http://dx.doi.org/10.1002/prot.20911] [PMID: 16477599]
[http://dx.doi.org/10.1021/ci049757q] [PMID: 15807515]
[http://dx.doi.org/10.1093/nar/gkl043]
[http://dx.doi.org/10.1002/prot.24171] [PMID: 22933332]
[http://dx.doi.org/10.1142/S0219720017500123] [PMID: 28513252]
[http://dx.doi.org/10.1093/bib/bbu007] [PMID: 24621527]
[http://dx.doi.org/10.1371/journal.pone.0143166] [PMID: 26606303]
[http://dx.doi.org/10.1126/science.1219021] [PMID: 23180855]
[http://dx.doi.org/10.2174/1570178614666170608130848]
[http://dx.doi.org/10.1038/s41598-018-36992-y] [PMID: 30733462]
[http://dx.doi.org/10.1093/nar/gku1028] [PMID: 25352545]
[http://dx.doi.org/10.1002/bip.360221211] [PMID: 6667333]
[http://dx.doi.org/10.1103/PhysRevLett.100.208101] [PMID: 18518581]
[http://dx.doi.org/10.1093/bioinformatics/btz408] [PMID: 31099381]
[http://dx.doi.org/10.3390/ijms20081964] [PMID: 31013619]
[http://dx.doi.org/10.1016/j.csbj.2018.10.007] [PMID: 30425802]
[http://dx.doi.org/10.3389/fimmu.2018.01783] [PMID: 30108593]
[http://dx.doi.org/10.1002/bip.1967.360050304] [PMID: 6040032]
[http://dx.doi.org/10.1021/bi00702a019] [PMID: 4813373]
[http://dx.doi.org/10.1038/nsb1095-856] [PMID: 7552709]
[http://dx.doi.org/10.1038/nsb1097-805] [PMID: 9334745]
[http://dx.doi.org/10.1038/14918] [PMID: 10542095]
[http://dx.doi.org/10.1038/375427a0] [PMID: 7760940]
[http://dx.doi.org/10.1038/nsb1297-1039] [PMID: 9406555]
[http://dx.doi.org/10.1073/pnas.222243999] [PMID: 12361984]
[http://dx.doi.org/10.1002/prot.24762] [PMID: 25641420]
[http://dx.doi.org/10.1098/rsos.150238] [PMID: 26361554]
[http://dx.doi.org/10.1155/2014/867179] [PMID: 24876837]
[http://dx.doi.org/10.1007/s11427-014-4728-9] [PMID: 25266151]