Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Research Article

High Dietary Fat Modulates Neurobehavioural Effect of Lopinavir/ Ritonavir in Mice

Author(s): Olakunle J. Onaolapo, Oluwole I. Adeyemi, Omolola J. Amujoyegbe, Eunice A. Fasola, Anthony T. Olofinnade and Adejoke Y. Onaolapo*

Volume 21, Issue 2, 2020

Page: [158 - 168] Pages: 11

DOI: 10.2174/1389201020666191011144930

Price: $65

Abstract

Background: Lopinavir/Ritonavir (LR) is a protease inhibitor used human immunodeficiency virus infection management. There have been issues regarding the effects of fat on LR efficacy and the possibility of neurological deficits following prolonged use, there is however a dearth of research examining this.

Aims: The effects of LR administered with normal or High-Fat Diet (HFD) on neurobehaviour, neurochemistry and oxidative stress in healthy mice were examined.

Methods: Mice were randomly-assigned into eight groups of ten (n=10) animals each. The groups were normal control [Standard Diet, (SD)], HFD control, 3 groups of LR incorporated into SD (100/25, 200/50 and 400/100 mg/kg of feed), and 3 groups of LR with HFD (100/25, 200/50 and 400/100 mg/kg of feed). Mice were fed daily for six weeks, following which open field, elevated-plus maze (EPM), radial-arm maze and Y-maze behaviours were scored. Twenty-four hours after tests, mice were euthanised and brains were homogenised for estimation of oxidative stress, L-glutamate level and acetylcholinesterase activity.

Results: LR was associated with a reduction in HFD-induced weight gain, suppression of open-field behaviours with SD, and counteraction of HFD-induced changes in working-memory, open-field and anxiety-related behaviours. Also, LR causes increased lipid peroxidation and superoxide dismutase activity; and a decrease in brain glutamate, irrespective of dietary composition. Increased fat catabolism leading to increased oxidative stress could possibly account for the weight changes, while a decrease in brain glutamate could account for the changes in open-field behaviours in mice fed SD.

Conclusion: LR alters neurobehaviour, oxidative stress and brain glutamate in mice; however, only its effects on neurobehaviour are affected by diet.

Keywords: Antiretroviral, diet, glutamate, nutrition, novelty-induced behaviours, protease inhibitor.

Graphical Abstract

[1]
Lamorde, M.; Byakika-Kibwika, P.; Boffito, M.; Nabukeera, L.; Mayito, J.; Ogwal-Okeng, J.; Tjia, J.; Back, D.; Khoo, S.; Ryan, M.; Merry, C. Steady-state pharmacokinetics of lopinavir plus ritonavir when administered under different meal conditions in HIV-infected Ugandan adults. J. Acquir. Immune Defic. Syndr., 2012, 60(3), 295-298.
[http://dx.doi.org/10.1097/QAI.0b013e3182567a35] [PMID: 22481601]
[2]
Klein, C.E.; Chiu, Y.L.; Awni, W.; Zhu, T.; Heuser, R.S.; Doan, T.; Breitenbach, J.; Morris, J.B.; Brun, S.C.; Hanna, G.J. The tablet formulation of lopinavir/ritonavir provides similar bioavailability to the soft-gelatin capsule formulation with less pharmacokinetic variability and diminished food effect. J. Acquir. Immune Defic. Syndr., 2007, 44(4), 401-410.
[http://dx.doi.org/10.1097/QAI.0b013e31803133c5] [PMID: 17224848]
[3]
Pistell, P.J.; Gupta, S.; Knight, A.G.; Domingue, M.; Uranga, R.M.; Ingram, D.K.; Kheterpal, I.; Ruiz, C.; Keller, J.N.; Bruce-Keller, A.J. Metabolic and neurologic consequences of chronic lopinavir/ritonavir administration to C57BL/6 mice. Antiviral Res., 2010, 88(3), 334-342.
[http://dx.doi.org/10.1016/j.antiviral.2010.10.006] [PMID: 20970459]
[4]
Vivithanaporn, P.; Asahchop, E.L.; Acharjee, S.; Baker, G.B.; Power, C. HIV protease inhibitors disrupt astrocytic glutamate transporter function and neurobehavioral performance. AIDS, 2016, 30(4), 543-552.
[http://dx.doi.org/10.1097/QAD.0000000000000955] [PMID: 26558720]
[5]
Robertson, K.; Liner, J.; Meeker, R.B. Antiretroviral neurotoxicity. J. Neurovirol., 2012, 18(5), 388-399.
[http://dx.doi.org/10.1007/s13365-012-0120-3] [PMID: 22811264]
[6]
Robertson, K.R.; Su, Z.; Margolis, D.M.; Krambrink, A.; Havlir, D.V.; Evans, S.; Skiest, D.J. Neurocognitive effects of treatment interruption in stable HIV-positive patients in an observational cohort. Neurology, 2010, 74(16), 1260-1266.
[http://dx.doi.org/10.1212/WNL.0b013e3181d9ed09] [PMID: 20237308]
[7]
Du Pasquier, R.A.; Jilek, S.; Kalubi, M.; Yerly, S.; Fux, C.A.; Gutmann, C.; Cusini, A.; Günthard, H.F.; Cavassini, M.; Vernazza, P.L. Marked increase of the astrocytic marker S100B in the cerebrospinal fluid of HIV-infected patients on LPV/r-monotherapy. AIDS, 2013, 27(2), 203-210.
[http://dx.doi.org/10.1097/QAD.0b013e32835a9a4a] [PMID: 23032410]
[8]
Akay, C.; Cooper, M.; Odeleye, A.; Jensen, B.K.; White, M.G.; Vassoler, F.; Gannon, P.J.; Mankowski, J.; Dorsey, J.L.; Buch, A.M.; Cross, S.A.; Cook, D.R.; Peña, M.M.; Andersen, E.S.; Christofidou-Solomidou, M.; Lindl, K.A.; Zink, M.C.; Clements, J.; Pierce, R.C.; Kolson, D.L.; Jordan-Sciutto, K.L. Antiretroviral drugs induce oxidative stress and neuronal damage in the central nervous system. J. Neurovirol., 2014, 20(1), 39-53.
[http://dx.doi.org/10.1007/s13365-013-0227-1] [PMID: 24420448]
[9]
Gupta, S.; Knight, A.G.; Losso, B.Y.; Ingram, D.K.; Keller, J.N.; Bruce-Keller, A.J. Brain injury caused by HIV protease inhibitors: role of lipodystrophy and insulin resistance. Antiviral Res., 2012, 95(1), 19-29.
[http://dx.doi.org/10.1016/j.antiviral.2012.04.010] [PMID: 22580130]
[10]
Lenhard, J.M.; Croom, D.K.; Weiel, J.E.; Spaltenstein, A.; Reynolds, D.J.; Furfine, E.S. Dietary fat alters HIV protease inhibitor-induced metabolic changes in mice. J. Nutr., 2000, 130(9), 2361-2366.
[http://dx.doi.org/10.1093/jn/130.9.2361] [PMID: 10958836]
[11]
Aluvia®. Summary of product characteristics. 2010.
[12]
Onaolapo, O.J.; Onaolapo, A.Y.; Akanmu, M.A.; Gbola, O. Evidence of alterations in brain structure and antioxidant status following ‘low-dose’ monosodium glutamate ingestion. Pathophysiology, 2016, 23(3), 147-156.
[http://dx.doi.org/10.1016/j.pathophys.2016.05.001] [PMID: 27312658]
[13]
Onaolapo, A.Y.; Aina, O.A.; Onaolapo, O.J. Melatonin attenuates behavioural deficits and reduces brain oxidative stress in a rodent model of schizophrenia. Biomed. Pharmacother., 2017, 92, 373-383.
[http://dx.doi.org/10.1016/j.biopha.2017.05.094] [PMID: 28554133]
[14]
Onaolapo, A.Y.; Olawore, O.I.; Yusuf, F.O.; Adeyemo, A.M.; Adewole, I.O.; Onaolapo, O.J. Oral monosodium glutamate differentially affects open-field behaviours, behavioural despair and place preference in male and female mice. Curr. Psychopharmacol., 2019, 8, 1-16.
[15]
Onaolapo, A.Y.; Ayeni, O.J.; Ogundeji, M.O.; Ajao, A.; Onaolapo, O.J.; Owolabi, A.R. Subchronic ketamine alters behaviour, metabolic indices and brain morphology in adolescent rats: Involvement of oxidative stress, glutamate toxicity and caspase-3-mediated apoptosis. J. Chem. Neuroanat., 2019, 96, 22-33.
[http://dx.doi.org/10.1016/j.jchemneu.2018.12.002] [PMID: 30529750]
[16]
Onaolapo, O.J.; Onaolapo, A.Y.; Omololu, T.A.; Oludimu, A.T.; Segun-Busari, T.; Omoleke, T. Exogenous testosterone, aging and changes in behavioral response of gonadally intact male mice. J. Exp. Neurosci., 2016, 10, 59-70.
[http://dx.doi.org/10.4137/JEN.S39042] [PMID: 27158222]
[17]
Onaolapo, O.J.; Onaolapo, A.Y.; Akanmu, M.A.; Olayiwola, G. Caffeine/sleep-deprivation interaction in mice produces complex memory effects. Ann. Neurosci., 2015, 22(3), 139-149.
[http://dx.doi.org/10.5214/ans.0972.7531.220304] [PMID: 26130922]
[18]
Onaolapo, O.J.; Onaolapo, A.Y.; Akanmu, M.A.; Olayiwola, G. Changes in spontaneous working-memory, memory-recall and approach-avoidance following “low dose” monosodium glutamate in mice. AIMS Neurosci., 2016, 3, 317-337.
[http://dx.doi.org/10.3934/Neuroscience.2016.3.317]
[19]
Onaolapo, A.Y.; Onaolapo, O.J. Nevirapine mitigates monosodium glutamate induced neurotoxicity and oxidative stress changes in prepubertal mice. Ann. Med. Res., 2018, 25, 518-524.
[http://dx.doi.org/10.5455/annalsmedres.2018.06.118]
[20]
Onaolapo, A.Y.; Odetunde, I.; Akintola, A.S.; Ogundeji, M.O.; Ajao, A.; Obelawo, A.Y.; Onaolapo, O.J. Dietary composition modulates impact of food-added monosodium glutamate on behaviour, metabolic status and cerebral cortical morphology in mice. Biomed. Pharmacother., 2019, 109, 417-428.
[http://dx.doi.org/10.1016/j.biopha.2018.10.172] [PMID: 30399577]
[21]
Onaolapo, A.Y.; Oladipo, B.P.; Onaolapo, O.J. Cyclophosphamide-induced male subfertility in mice: An assessment of the potential benefits of Maca supplement. Andrologia, 2018, 50(3)
[http://dx.doi.org/10.1111/and.12911] [PMID: 29047156]
[22]
Onaolapo, A.Y.; Onaolapo, O.J.; Nwoha, P.U. Aspartame and the hippocampus: Revealing a bi-directional, dose/time-dependent behavioural and morphological shift in mice. Neurobiol. Learn. Mem., 2017, 139, 76-88.
[http://dx.doi.org/10.1016/j.nlm.2016.12.021] [PMID: 28049023]
[23]
Onaolapo, A.Y.; Onaolapo, O.J.; Nwoha, P.U. Methyl aspartylphenylalanine, the pons and cerebellum in mice: An evaluation of motor, morphological, biochemical, immunohistochemical and apoptotic effects. J. Chem. Neuroanat., 2017, 86, 67-77.
[http://dx.doi.org/10.1016/j.jchemneu.2017.09.001] [PMID: 28890110]
[24]
Onaolapo, A.Y.; Adebayo, A.A.; Onaolapo, O.J. Oral phenytoin protects against experimental cyclophosphamide-chemotherapy induced hair loss. Pathophysiology, 2018, 25, 31-39.
[25]
Umoren, E.B.; Obembe, A.O.; Osim, E.E. Chronic administration of the antiretroviral nevirapine increases body weight, food, and water intake in albino Wistar rats. J. Basic Clin. Physiol. Pharmacol., 2012, 23(2), 89-92.
[http://dx.doi.org/10.1515/jbcpp-2012-0016] [PMID: 22944657]
[26]
Symington, B.; Mapanga, R.F.; Norton, G.R.; Essop, M.F. Resveratrol co-treatment attenuates the effects of HIV protease inhibitors on rat body weight and enhances cardiac mitochondrial respiration. PLoS One, 2017, 12(1)e0170344
[http://dx.doi.org/10.1371/journal.pone.0170344] [PMID: 28107484]
[27]
Prot, M.; Heripret, L.; Cardot-Leccia, N.; Perrin, C.; Aouadi, M.; Lavrut, T.; Garraffo, R.; Dellamonica, P.; Durant, J.; Le Marchand-Brustel, Y.; Binétruy, B. Long-term treatment with lopinavir-ritonavir induces a reduction in peripheral adipose depots in mice. Antimicrob. Agents Chemother., 2006, 50(12), 3998-4004.
[http://dx.doi.org/10.1128/AAC.00625-06] [PMID: 17000748]
[28]
Goetzman, E.S.; Tian, L.; Nagy, T.R.; Gower, B.A.; Schoeb, T.R.; Elgavish, A.; Acosta, E.P.; Saag, M.S.; Wood, P.A. HIV protease inhibitor ritonavir induces lipoatrophy in male mice. AIDS Res. Hum. Retroviruses, 2003, 19(12), 1141-1150.
[http://dx.doi.org/10.1089/088922203771881248] [PMID: 14709251]
[29]
Friedman, J.M.; Halaas, J.L. Leptin and the regulation of body weight in mammals. Nature, 1998, 395(6704), 763-770.
[http://dx.doi.org/10.1038/27376] [PMID: 9796811]
[30]
Reyskens, K.M.S.E.; Essop, M.F. The maladaptive effects of HIV protease inhibitors (lopinavir/ritonavir) on the rat heart. Int. J. Cardiol., 2013, 168(3), 3047-3049.
[http://dx.doi.org/10.1016/j.ijcard.2013.04.128] [PMID: 23669113]
[31]
Pepping, J.K.; Otvos, L., Jr; Surmacz, E.; Gupta, S. Keller. J.N.; Bruce-Keller, A.J. Designer adiponectin receptor agonist stabilizes metabolic function and prevents brain injury caused by HIV protease inhibitors. J. Neuroimmune Pharmacol., 2014, 9, 388-398.
[http://dx.doi.org/10.1007/s11481-014-9529-1] [PMID: 24562631]
[32]
Calamandrei, G.; Venerosi, A.; Branchi, I.; Valanzano, A.; Alleva, E. Prenatal exposure to anti-HIV drugs. Long-term neurobehavioral effects of lamivudine (3TC) in CD-1 mice. Neurotoxicol. Teratol., 2000, 22(3), 369-379.
[http://dx.doi.org/10.1016/S0892-0362(00)00063-5] [PMID: 10840180]
[33]
Cavalcante, G.I.; Chaves Filho, A.J.; Linhares, M.I.; de Carvalho Lima, C.N.; Venâncio, E.T.; Rios, E.R.; de Souza, F.C.; Vasconcelos, S.M.; Macêdo, D.; de França Fonteles, M.M.; de França, F.M.M. HIV antiretroviral drug Efavirenz induces anxiety-like and depression-like behavior in rats: Evaluation of neurotransmitter alterations in the striatum. Eur. J. Pharmacol., 2017, 799, 7-15.
[http://dx.doi.org/10.1016/j.ejphar.2017.02.009] [PMID: 28188763]
[34]
Gatch, M.B.; Kozlenkov, A.; Huang, R.Q.; Yang, W.; Nguyen, J.D.; González-Maeso, J.; Rice, K.C.; France, C.P.; Dillon, G.H.; Forster, M.J.; Schetz, J.A. The HIV antiretroviral drug efavirenz has LSD-like properties. Neuropsychopharmacology, 2013, 38(12), 2373-2384.
[http://dx.doi.org/10.1038/npp.2013.135] [PMID: 23702798]
[35]
Kalueff, A.V.; Stewart, A.M.; Song, C.; Berridge, K.C.; Graybiel, A.M.; Fentress, J.C. Neurobiology of rodent self-grooming and its value for translational neuroscience. Nat. Rev. Neurosci., 2016, 17(1), 45-59.
[http://dx.doi.org/10.1038/nrn.2015.8] [PMID: 26675822]
[36]
Taylor, J.L.; Rajbhandari, A.K.; Berridge, K.C.; Aldridge, J.W. Dopamine receptor modulation of repetitive grooming actions in the rat: potential relevance for Tourette syndrome. Brain Res., 2010, 1322, 92-101.
[http://dx.doi.org/10.1016/j.brainres.2010.01.052] [PMID: 20114036]
[37]
Nin, M.S.; Couto-Pereira, N.S.; Souza, M.F.; Azeredo, L.A.; Ferri, M.K.; Dalprá, W.L.; Gomez, R.; Barros, H.M. Anxiolytic effect of clonazepam in female rats: Grooming microstructure and elevated plus maze tests. Eur. J. Pharmacol., 2012, 684(1-3), 95-101.
[http://dx.doi.org/10.1016/j.ejphar.2012.03.038] [PMID: 22487059]
[38]
McLean, F.H.; Grant, C.; Morris, A.C.; Horgan, G.W.; Polanski, A.J.; Allan, K.; Campbell, F.M.; Langston, R.F.; Williams, L.M. Rapid and reversible impairment of episodic memory by a high-fat diet in mice. Sci. Rep., 2018, 8(1), 11976.
[http://dx.doi.org/10.1038/s41598-018-30265-4] [PMID: 30097632]
[39]
Goddard, A.W.; Ball, S.G.; Martinez, J.; Robinson, M.J.; Yang, C.R.; Russell, J.M.; Shekhar, A. Current perspectives of the roles of the central norepinephrine system in anxiety and depression. Depress. Anxiety, 2010, 27(4), 339-350.
[http://dx.doi.org/10.1002/da.20642] [PMID: 19960531]
[40]
Charney, D.S. Neuroanatomical circuits modulating fear and anxiety behaviors. Acta Psychiatr. Scand. Suppl., 2003, 417(417), 38-50.
[http://dx.doi.org/10.1034/j.1600-0447.108.s417.3.x] [PMID: 12950435]
[41]
Onaolapo, O.J.; Aremu, O.S.; Onaolapo, A.Y. Monosodium glutamate-associated alterations in open field, anxiety-related and conditioned place preference behaviours in mice. Naunyn Schmiedebergs Arch. Pharmacol., 2017, 390(7), 677-689.
[http://dx.doi.org/10.1007/s00210-017-1371-6] [PMID: 28357464]
[42]
Clifford, D.B.; Evans, S.; Yang, Y.; Acosta, E.P.; Goodkin, K.; Tashima, K.; Simpson, D.; Dorfman, D.; Ribaudo, H.; Gulick, R.M. Impact of efavirenz on neuropsychological performance and symptoms in HIV-infected individuals. Ann. Intern. Med., 2005, 143(10), 714-721.
[http://dx.doi.org/10.7326/0003-4819-143-10-200511150-00008] [PMID: 16287792]
[43]
Adaramoye, O.A.; Akanni, O.O.; Adewumi, O.M.; Owumi, S.E. Lopinavir/ritonavir, an antiretroviral drug, lowers sperm quality and induces testicular oxidative damage in rats. Tokai J. Exp. Clin. Med., 2015, 40(2), 51-57.
[PMID: 26150184]
[44]
Gratton, R.; Tricarico, P.M.; Guimaraes, R.L.; Celsi, F.; Crovella, S. Lopinavir/ritonavir treatment induces oxidative stress and caspase independent apoptosis in human glioblastoma U-87 MG cell line. Curr. HIV Res., 2018, 16(2), 106-112.
[http://dx.doi.org/10.2174/1570162X16666180528100922] [PMID: 29804534]
[45]
Tricarico, P.M.; de Oliveira Franca, R.F.; Pacor, S.; Ceglia, V.; Crovella, S.; Celsi, F. HIV protease inhibitors apoptotic effect in SH-SY5Y neuronal cell line. Cell. Physiol. Biochem., 2016, 39(4), 1463-1470.
[http://dx.doi.org/10.1159/000447849] [PMID: 27607424]
[46]
Elhaik Goldman, S.; Goez, D.; Last, D.; Naor, S.; Liraz Zaltsman, S.; Sharvit-Ginon, I.; Atrakchi-Baranes, D.; Shemesh, C.; Twitto-Greenberg, R.; Tsach, S.; Lotan, R.; Leikin-Frenkel, A.; Shish, A.; Mardor, Y.; Schnaider Beeri, M.; Cooper, I. High-fat diet protects the blood-brain barrier in an Alzheimer’s disease mouse model. Aging Cell, 2018, 17(5)e12818
[http://dx.doi.org/10.1111/acel.12818] [PMID: 30079520]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy