Research Article

细胞松弛素D通过p38-MAPK信号通路促进MC3T3-E1细胞成骨分化

卷 20, 期 1, 2020

页: [79 - 88] 页: 10

弟呕挨: 10.2174/1566524019666191007104816

open access plus

摘要

背景:外伤,肿瘤切除,感染或先天性畸形引起的骨缺损是一种常见的临床疾病。骨组织工程被认为是骨缺损重建的一种有前途的方法。因此,可以促进成骨作用的药物受到极大关注。细胞松弛素D(Cyto D)是一种来自霉菌的代谢产物,被证明能够修饰肌动蛋白,重组细胞骨架,然后促进成骨分化。 目的:本研究旨在探讨Cyto D对小鼠成骨前MC3T3-E1细胞成骨分化的影响及其机制。 方法:探讨细胞色素D的最佳浓度。通过碱性磷酸酶(ALP)染色,茜素红S(ARS)染色,Western印迹和定量实时聚合酶链反应(RT-qPCR)评估了Cyto D诱导的MC3T3-E1细胞的成骨分化。另外,利用特异性途径抑制剂来探索MAPK途径是否参与该过程。 结果:结果表明,最佳作用浓度为10-2μg/ ml。补充Cyto D可上调Runx2,OCN和OSX的表达。p38蛋白的ALP活性,钙沉积和磷酸化水平也得到改善。抑制该途径显着降低了p38的激活以及成骨相关基因的表达。 结论:Cyto D可通过p38-MAPK信号通路促进MC3T3细胞的成骨分化,但不能促进ERK1 / 2或JNK的表达,是改善MC3T3细胞成骨性的潜在药物。

关键词: 骨重塑,细胞松弛素D,成骨分化,MC3T3-E1细胞,MAPK,p38。

« Previous
[1]
Fernandez-Yague MA, Abbah SA, McNamara L, Zeugolis DI, Pandit A, Biggs MJ. Biomimetic approaches in bone tissue engineering: Integrating biological and physicomechanical strategies. Adv Drug Deliv Rev 2015; 84: 1-29.
[http://dx.doi.org/10.1016/j.addr.2014.09.005] [PMID: 25236302]
[2]
Wang Z, Wu D, Zou J, et al. Development of demineralized bone matrix based implantable and biomimetic microcarrier for stem cell expansion and single-step tissue-engineered bone graft construction. J Mater Chem B Mater Biol Med 2016; 5(1)
[http://dx.doi.org/10.1039/C6TB02414A]
[3]
Li K, Zhang S, Wang S, et al. Positive effect of magnetic-conductive bifunctional fibrous scaffolds on guiding double electrical and magnetic stimulations to pre-osteoblasts. J Biomed Nanotechnol 2019; 15(3): 477-86.
[http://dx.doi.org/10.1166/jbn.2019.2708] [PMID: 31165693]
[4]
Dudakovic A, Camilleri ET, Riester SM, et al. Enhancer of Zeste Homolog 2 inhibition stimulates bone formation and mitigates bone loss caused by ovariectomy in skeletally mature mice. J Biol Chem 2016; 291(47): 24594-606.
[http://dx.doi.org/10.1074/jbc.M116.740571] [PMID: 27758858]
[5]
Hemming S, Cakouros D, Isenmann S, et al. EZH2 and KDM6A act as an epigenetic switch to regulate mesenchymal stem cell lineage specification. Stem Cells 2014; 32(3): 802-15.
[http://dx.doi.org/10.1002/stem.1573] [PMID: 24123378]
[6]
Hemming S, Cakouros D, Codrington J, et al. EZH2 deletion in early mesenchyme compromises postnatal bone microarchitecture and structural integrity and accelerates remodeling. FASEB J 2017; 31(3): 1011-27.
[http://dx.doi.org/10.1096/fj.201600748R] [PMID: 27934660]
[7]
Sen B, Xie Z, Uzer G, et al. Intranuclear actin regulates osteogenesis. Stem Cells 2015; 33(10): 3065-76.
[http://dx.doi.org/10.1002/stem.2090] [PMID: 26140478]
[8]
Samsonraj RM, Dudakovic A, Manzar B, et al. Osteogenic stimulation of human adipose-derived mesenchymal stem cells using a fungal metabolite that suppresses the polycomb group protein EZH2. Stem Cells Transl Med 2018; 7(2): 197-209.
[http://dx.doi.org/10.1002/sctm.17-0086] [PMID: 29280310]
[9]
Sen B, Uzer G, Samsonraj RM, et al. Intranuclear Actin Structure Modulates Mesenchymal Stem Cell Differentiation. Stem Cells 2017; 35(6): 1624-35.
[http://dx.doi.org/10.1002/stem.2617] [PMID: 28371128]
[10]
Engler AJ, Sen S, Sweeney HL, Discher DE. Matrix elasticity directs stem cell lineage specification. Cell 2006; 126(4): 677-89.
[http://dx.doi.org/10.1016/j.cell.2006.06.044] [PMID: 16923388]
[11]
McBeath R, Pirone DM, Nelson CM, Bhadriraju K, Chen CS. Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev Cell 2004; 6(4): 483-95.
[http://dx.doi.org/10.1016/S1534-5807(04)00075-9] [PMID: 15068789]
[12]
Le HQ, Ghatak S, Yeung CYC, et al. Mechanical regulation of transcription controls Polycomb-mediated gene silencing during lineage commitment. Nat Cell Biol 2016; 18(8): 864-75.
[http://dx.doi.org/10.1038/ncb3387] [PMID: 27398909]
[13]
Heo SJ, Thorpe SD, Driscoll TP, Duncan RL, Lee DA, Mauck RL. Biophysical regulation of chromatin architecture instills a mechanical memory in mesenchymal stem cells. Sci Rep 2015; 5: 16895.
[http://dx.doi.org/10.1038/srep16895] [PMID: 26592929]
[14]
Dopie J, Skarp K-P, Rajakylä EK, Tanhuanpää K, Vartiainen MK. Active maintenance of nuclear actin by importin 9 supports transcription. Proc Natl Acad Sci USA 2012; 109(9): E544-52.
[http://dx.doi.org/10.1073/pnas.1118880109] [PMID: 22323606]
[15]
Samsonraj RM, Paradise CR, Dudakovic A, et al. Validation of osteogenic properties of cytochalasin d by high-resolution rna-sequencing in mesenchymal stem cells derived from bone marrow and adipose tissues. Stem Cells Dev 2018; 27(16): 1136-45.
[http://dx.doi.org/10.1089/scd.2018.0037] [PMID: 29882479]
[16]
Majidinia M, Sadeghpour A, Yousefi B. The roles of signaling pathways in bone repair and regeneration. J Cell Physiol 2018; 233(4): 2937-48.
[http://dx.doi.org/10.1002/jcp.26042] [PMID: 28590066]
[17]
Johnson GL, Lapadat R. Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science 2002; 298(5600): 1911-2.
[http://dx.doi.org/10.1126/science.1072682] [PMID: 12471242]
[18]
Cong Q, Jia H, Li P, et al. p38α MAPK regulates proliferation and differentiation of osteoclast progenitors and bone remodeling in an aging-dependent manner. Sci Rep 2017; 7: 45964.
[http://dx.doi.org/10.1038/srep45964] [PMID: 28382965]
[19]
Jessop HL, Rawlinson SCF, Pitsillides AA, Lanyon LE. Mechanical strain and fluid movement both activate extracellular regulated kinase (ERK) in osteoblast-like cells but via different signaling pathways. Bone 2002; 31(1): 186-94.
[http://dx.doi.org/10.1016/S8756-3282(02)00797-4] [PMID: 12110433]
[20]
Matsuda N, Morita N, Matsuda K, Watanabe M. Proliferation and differentiation of human osteoblastic cells associated with differential activation of MAP kinases in response to epidermal growth factor, hypoxia, and mechanical stress in vitro. Biochem Biophys Res Commun 1998; 249(2): 350-4.
[http://dx.doi.org/10.1006/bbrc.1998.9151] [PMID: 9712699]
[21]
Wang T, Zhai Y, Nuzzo M, Yang X, Yang Y, Zhang X. Layer-by-layer nanofiber-enabled engineering of biomimetic periosteum for bone repair and reconstruction. Biomaterials 2018; 182: 279-88.
[http://dx.doi.org/10.1016/j.biomaterials.2018.08.028] [PMID: 30142527]
[22]
Fan Z, Yamaza T, Lee JS, et al. BCOR regulates mesenchymal stem cell function by epigenetic mechanisms. Nat Cell Biol 2009; 11(8): 1002-9.
[http://dx.doi.org/10.1038/ncb1913] [PMID: 19578371]
[23]
Yu J, He H, Tang C, et al. Differentiation potential of STRO-1+ dental pulp stem cells changes during cell passaging. BMC Cell Biol 2010; 11(1): 32.
[http://dx.doi.org/10.1186/1471-2121-11-32] [PMID: 20459680]
[24]
Kustermans G, Piette J, Legrand-Poels S. Actin-targeting natural compounds as tools to study the role of actin cytoskeleton in signal transduction. Biochem Pharmacol 2008; 76(11): 1310-22.
[http://dx.doi.org/10.1016/j.bcp.2008.05.028] [PMID: 18602087]
[25]
Komori T. Regulation of osteoblast differentiation by transcription factors. J Cell Biochem 2006; 99(5): 1233-9.
[http://dx.doi.org/10.1002/jcb.20958] [PMID: 16795049]
[26]
Harada S, Rodan GA. Control of osteoblast function and regulation of bone mass. Nature 2003; 423(6937): 349-55.
[http://dx.doi.org/10.1038/nature01660] [PMID: 12748654]
[27]
Termaat MF, Den Boer FC, Bakker FC, Patka P, Haarman HJ. Bone morphogenetic proteins. Development and clinical efficacy in the treatment of fractures and bone defects. J Bone Joint Surg Am 2005; 87(6): 1367-78.
[http://dx.doi.org/10.2106/JBJS.D.02585] [PMID: 15930551]
[28]
Lemonnier J, Ghayor C, Guicheux J, Caverzasio J. Protein kinase C-independent activation of protein kinase D is involved in BMP-2-induced activation of stress mitogen-activated protein kinases JNK and p38 and osteoblastic cell differentiation. J Biol Chem 2004; 279(1): 259-64.
[http://dx.doi.org/10.1074/jbc.M308665200] [PMID: 14573624]
[29]
Zhang P, Dai Q, Ouyang N, et al. Mechanical strain promotes osteogenesis of bmscs from ovariectomized rats via the erk1/2 but not p38 or jnk-mapk signaling pathways. Curr Mol Med 2015; 15(8): 780-9.
[http://dx.doi.org/10.2174/1566524015666150824143830] [PMID: 26299771]
[30]
Zhang W, Guo H, Jing H, et al. Lactoferrin stimulates osteoblast differentiation through PKA and p38 pathways independent of lactoferrin’s receptor LRP1. J Bone Miner Res 2014; 29(5): 1232-43.
[http://dx.doi.org/10.1002/jbmr.2116] [PMID: 24877241]
[31]
Wanachewin O, Boonmaleerat K, Pothacharoen P, Reutrakul V, Kongtawelert P. Sesamin stimulates osteoblast differentiation through p38 and ERK1/2 MAPK signaling pathways. BMC Complement Altern Med 2012; 12: 71.
[http://dx.doi.org/10.1186/1472-6882-12-71] [PMID: 22646286]
[32]
Guo C, Yang XG, Wang F, Ma XY. IL-1α induces apoptosis and inhibits the osteoblast differentiation of MC3T3-E1 cells through the JNK and p38 MAPK pathways. Int J Mol Med 2016; 38(1): 319-27.
[http://dx.doi.org/10.3892/ijmm.2016.2606] [PMID: 27220839]
[33]
Ge C, Xiao G, Jiang D, Franceschi RT. Critical role of the extracellular signal-regulated kinase-MAPK pathway in osteoblast differentiation and skeletal development. J Cell Biol 2007; 176(5): 709-18.
[http://dx.doi.org/10.1083/jcb.200610046] [PMID: 17325210]
[34]
Chen X, Zhang S, Chen X, et al. Emodin promotes the osteogenesis of MC3T3-E1 cells via BMP-9/Smad pathway and exerts a preventive effect in ovariectomized rats. Acta Biochim Biophys Sin (Shanghai) 2017; 49(10): 867-78.
[http://dx.doi.org/10.1093/abbs/gmx087] [PMID: 28981600]
[35]
Nöth U, Tuli R, Seghatoleslami R, et al. Activation of p38 and Smads mediates BMP-2 effects on human trabecular bone-derived osteoblasts. Exp Cell Res 2003; 291(1): 201-11.
[http://dx.doi.org/10.1016/S0014-4827(03)00386-0] [PMID: 14597420]
[36]
Otto F, Thornell AP, Crompton T, et al. Cbfa1, a candidate gene for cleidocranial dysplasia syndrome, is essential for osteoblast differentiation and bone development. Cell 1997; 89(5): 765-71.
[http://dx.doi.org/10.1016/S0092-8674(00)80259-7] [PMID: 9182764]
[37]
Nakashima K, de Crombrugghe B. Transcriptional mechanisms in osteoblast differentiation and bone formation. Trends Genet 2003; 19(8): 458-66.
[http://dx.doi.org/10.1016/S0168-9525(03)00176-8] [PMID: 12902164]
[38]
Franceschi RT, Xiao G, Jiang D, Gopalakrishnan R, Yang S, Reith E. Multiple signaling pathways converge on the Cbfa1/Runx2 transcription factor to regulate osteoblast differentiation. Connect Tissue Res 2003; 44(Suppl. 1): 109-16.
[http://dx.doi.org/10.1080/03008200390152188] [PMID: 12952183]
[39]
Greenblatt MB, Shim JH, Zou W, et al. The p38 MAPK pathway is essential for skeletogenesis and bone homeostasis in mice. J Clin Invest 2010; 120(7): 2457-73.
[http://dx.doi.org/10.1172/JCI42285] [PMID: 20551513]
[40]
Huang FY, Mei WL, Li YN, et al. The antitumour activities induced by pegylated liposomal cytochalasin D in murine models. Eur J Cancer 2012; 48(14): 2260-9.
[http://dx.doi.org/10.1016/j.ejca.2011.12.018] [PMID: 22257793]
[41]
Chen L, Shi K, Frary CE, et al. Inhibiting actin depolymerization enhances osteoblast differentiation and bone formation in human stromal stem cells. Stem Cell Res (Amst) 2015; 15(2): 281-9.
[http://dx.doi.org/10.1016/j.scr.2015.06.009] [PMID: 26209815]

© 2025 Bentham Science Publishers | Privacy Policy