Generic placeholder image

Recent Advances in Electrical & Electronic Engineering

Editor-in-Chief

ISSN (Print): 2352-0965
ISSN (Online): 2352-0973

Review Article

A Review on Visual Odometry Techniques for Mobile Robots: Types and Challenges

Author(s): Vikas Thapa, Abhishek Sharma, Beena Gairola, Amit K. Mondal, Vindhya Devalla and Ravi K. Patel*

Volume 13, Issue 5, 2020

Page: [618 - 631] Pages: 14

DOI: 10.2174/2352096512666191004142546

Price: $65

Abstract

For autonomous navigation, tracking and obstacle avoidance, a mobile robot must have the knowledge of its position and localization over time. Among the available techniques for odometry, vision-based odometry is robust and economical technique. In addition, a combination of position estimation from odometry with interpretations of the surroundings using a mobile camera is effective. This paper presents an overview of current visual odometry approaches, applications, and challenges in mobile robots. The study offers a comparative analysis of different available techniques and algorithms associated with it, emphasizing on its efficiency and other feature extraction capability, applications and optimality of various techniques.

Keywords: Visual odometry, position estimation, error elimination, appearance-based approach, feature-based approach, hybrid approach.

Graphical Abstract

[1]
J. Borenstein, and L. Feng, "Measurement and correction of systematic odometry errors in mobile robots", IEEE Trans. Robot. Autom., vol. 12, pp. 869-880, 1996.
[http://dx.doi.org/10.1109/70.544770]
[2]
Y. Kunii, G. Kovacs, and N. Hoshi, "Mobile robot navigation in natural environments using robust object tracking ", In: ; 2017 IEEE 26th International Symposium on Industrial Electronics (ISIE), .Edinburgh, UK, 2017, pp. 1747-1752.
[http://dx.doi.org/10.1109/ISIE.2017.8001512]
[3]
D. Nistér, O. Naroditsky, and J. Bergen, "Visual odometry", Computer Vision and Pattern Recognition, 2004. CVPR 2004. Proceedings of the 2004 IEEE Computer Society Conference on,. 2004, vol.1 pp. I-I..
[4]
D. Scaramuzza, and F. Fraundorfer, "Visual odometry [tutorial", IEEE Robot. Autom. Mag., vol. 18, pp. 80-92, 2011.
[http://dx.doi.org/10.1109/MRA.2011.943233]
[5]
J. Seong, D. Jung, and W. Chung, "Odometry calibration for car-like mobile robots ", In: ; 2017 14th International Conference on Ubiquitous Robots and Ambient Intelligence..URAI, Jeju, South Korea , 2017,, ,pp. 889-890..
[6]
K. Ni, and F. Dellaert, "Stereo tracking and three-point/one-point algorithms-a robust approach in visual odometry, ", In: ; 2006 International Conference on Image Processing, 2006.Atlanta, GA, USA, 2006 pp. 2777-2780..
[http://dx.doi.org/10.1109/ICIP.2006.313123]
[7]
R. Munguia, and A. Grau, "Monocular SLAM for visual odometry ", In: ; 2007 IEEE International Symposium on Intelligent Signal Processing.Alcala de Henares, Spain, , 2007, pp. 1-6..
[http://dx.doi.org/10.1109/WISP.2007.4447564]
[8]
J. Campbell, R. Sukthankar, I. Nourbakhsh, and A. Pahwa, "A robust visual odometry and precipice detection system using consumer-grade monocular vision , In: ", Proceedings of the 2005 IEEE International Conference on.Barcelona, Spain, Spain; 2005, pp.3421-3427.,
[http://dx.doi.org/10.1109/ROBOT.2005.1570639]
[9]
R. Gonzalez, F. Rodriguez, J.L. Guzman, C. Pradalier, and R. Siegwart, "Combined visual odometry and visual compass for off-road mobile robots localization", Robotica, vol. 30, pp. 865-878, 2012.
[http://dx.doi.org/10.1017/S026357471100110X]
[10]
D. Nistér, O. Naroditsky, and J. Bergen, "Visual odometry for ground vehicle applications", J. Field Robot., vol. 23, pp. 3-20, 2006.
[http://dx.doi.org/10.1002/rob.20103]
[11]
N. Nourani-Vatani, J. Roberts, and M.V. Srinivasan, "Practical visual odometry for car-like vehicles", Robot. Automat., 2009. ICRA'09. IEEE International Conference on.Kobe, Japan, 2009,, pp. 3551-3557..
[12]
W. Chen, and T. Zhang, "An indoor mobile robot navigation technique using odometry and electronic compass", Int. J. Adv. Robot. Syst.,, vol. 14, 2017., . Avalaiable at: .
[http://dx.doi.org/10.1177/1729881417711643]
[13]
T. Takahashi, 2D localization of outdoor mobile robots using 3D laser range data., Carnegie Mellon University, 2007.
[14]
A. Howard, "Real-time stereo visual odometry for autono-mous ground vehicles", Intell. Robot. Syst., , pp. 3946-3952, . IROS 2008. IEEE/RSJ International Conference on, 2008..
[15]
A.S. Huang, A. Bachrach, P. Henry, M. Krainin, D. Maturana, D. Fox, and N. Roy, Visual odometry and mapping for au-tonomous flight using an RGB-D camera., Springer, 2017, pp. 235-252.
[16]
C. Wang, C. Zhao, and J. Yang, "Monocular odometry in country roads based on phase-derived optical flow and 4-DOF ego-motion model", Ind. Rob., vol. 38, no. 5, pp. 509-520, 2011.
[17]
R. Clark, S. Wang, H. Wen, A. Markham, and N. Trigoni, "Vinet: Visual-inertial odometry as a sequence-to-sequence learning problem", Thirty-First AAAI Conference on Artificial Intelligence, 2017.
[18]
F. Fraundorfer, D. Scaramuzza, and M. Pollefeys, "A constricted bundle adjustment parameterization for relative scale estimation in visual odometry", In: , 2010 IEEE In-ternational Conference on Robotics and Automation, Anchorage: AK, USA, 2010, pp. 1899-1904, .
[http://dx.doi.org/10.1109/ROBOT.2010.5509733]
[19]
N.D. Reddy, I. Abbasnejad, S. Reddy, A.K. Mondal, and V. Devalla, "Incremental real-time multibody VSLAM with tra-jectory optimization using stereo camera", In: ; 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), .Daejeon, South Korea, 2016, pp. 4505-4510..
[http://dx.doi.org/10.1109/IROS.2016.7759663]
[20]
G. Blanc, Y. Mezouar, and P. Martinet, "Indoor navigation of a wheeled mobile robot along visual routes", In: ; Proceedings of the 2005 IEEE international conference on robotics and automation.Barcelona, Spain, Spain, 2005, pp. 3354-3359..
[http://dx.doi.org/10.1109/ROBOT.2005.1570628]
[21]
A. Georgiev, and P.K. Allen, "Localization methods for a mobile robot in urban environments", IEEE Trans. Robot., vol. 20, pp. 851-864, 2004.
[http://dx.doi.org/10.1109/TRO.2004.829506]
[22]
A. Howard, "Real-time stereo visual odometry for autonomous ground vehicles", In: , 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems. Nice, France, pp. 3946-3952, 2008..
[23]
M. Maimone, Y. Cheng, and L. Matthies, "Two years of visual odometry on the mars exploration rovers", J. Field Robot., vol. 24, pp. 169-186, 2007.
[http://dx.doi.org/10.1002/rob.20184]
[24]
J. Campbell, R. Sukthankar, and I. Nourbakhsh, "Techniques for evaluating optical flow for visual odometry in extreme terrain", In: 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566), Sendai, Japan, 2004,, pp. 3704-3711. .
[25]
A. Lambert, P. Furgale, T.D. Barfoot, and J. Enright, "Field testing of visual odometry aided by a sun sensor and inclinometer", J. Field Robot., vol. 29, pp. 426-444, 2012.
[http://dx.doi.org/10.1002/rob.21412]
[26]
M. Agrawal, and K. Konolige, "Real-time localization in out-door environments using stereo vision and inexpensive gps", In: , 18th International Conference on Pattern Recognition (ICPR’06). Hong Kong, China, 2006, pp. 1063-1068..
[http://dx.doi.org/10.1109/ICPR.2006.962]
[27]
N. Sünderhauf, K. Konolige, S. Lacroix, and P. Protzel, Visual Odometry using Sparse Bundle Adjustment on an Autonomous Outdoor VehicleIn: Levi, Schanz, Lafrenz, Avrutin (Hrsg.), Tagungsband Autonome Mobile Systeme, 2005, Reihe Informatik aktuell, Springer Verlag,. S. pp. 157-163 .
[28]
M. Lhuillier, "Automatic structure and motion using a catadioptric camera", In: ; Proceedings of the 6th Workshop on Omnidirectional Vision, Camera Networks and Non-Classical Cameras.United States, 2005.,
[29]
E. Mouragnon, M. Lhuillier, M. Dhome, F. Dekeyser, and P. Sayd, "Real time localization and 3D reconstruction", In: 2006; IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06).New York, NY, USA, pp. 363-370..
[http://dx.doi.org/10.1109/CVPR.2006.236]
[30]
J-P. Tardif, Y. Pavlidis, and K. Daniilidis, "Monocular visual odometry in urban environments using an omnidirectional camera", In: , IEEE/RSJ International Conference on Intelligent Robots and Systems. Nice, France, 2008, pp. 2531-2538..
[http://dx.doi.org/10.1109/IROS.2008.4651205]
[31]
D. Scaramuzza, F. Fraundorfer, and R. Siegwart, "Real-time monocular visual odometry for on-road vehicles with 1-point ransac", Robotics and Automation, 2009. ICRA'09. IEEE International Conference on, 2009,. Kobe, Japan, 2009, pp. 4239-4299..
[http://dx.doi.org/10.1109/ROBOT.2009.5152255]
[32]
H.P. Moravec, Obstacle avoidance and navigation in the real world by a seeing robot rover., DTIC Document, 1980.
[33]
L. Matthies, and S. Shafer, "Error modeling in stereo navigation", IEEE J. Robot. Autom., vol. 3, pp. 239-248, 1987.
[http://dx.doi.org/10.1109/JRA.1987.1087097]
[34]
S. Lacroix, A. Mallet, R. Chatila, and L. Gallo, "Rover self localization in planetary-like environments", In: , 5th International Symposium on Artificial Intelligence, Robotics and Automation in Space (I-SAIRAS 99),. Noordwijk, The Netherlands, 1999, pp. 433..
[35]
C.F. Olson, L.H. Matthies, H. Schoppers, and M.W. Maimone, "Robust stereo ego-motion for long distance navigation", In: , Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662)2000, . Hilton Head Island, SC, USA, 2000, pp. 453-458..
[36]
V. Vasco, A. Glover, and C. Bartolozzi, "Fast event-based Harris corner detection exploiting the advantages of event-driven cameras", In: ; 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).Daejeon, South Korea, 2016, pp. 4144-4149..
[http://dx.doi.org/10.1109/IROS.2016.7759610]
[37]
D.G. Lowe, "Distinctive image features from scale-invariant keypoints", Int. J. Comput. Vis., vol. 60, pp. 91-110, 2004.
[http://dx.doi.org/10.1023/B:VISI.0000029664.99615.94]
[38]
H. Bay, T. Tuytelaars, and L. Van Gool, "Surf: Speeded up robust features", In: , ECCV 2006: Computer Vision – ECCV, . 2006, pp. 404-417. .
[39]
A.C. Murillo, J.J. Guerrero, and C. Sagues, "Surf features for efficient robot localization with omnidirectional images", In: , Proceedings 2007 IEEE International Conference on Robotics and Automation , Rome, Italy , vol. 2007, pp. 3901-3907, .
[40]
M. Agrawal, K. Konolige, and M.R. Blas, "Censure: Center surround extremas for real time feature detection and matching", European Conference on Computer Vision. , 2008, pp. 102-115..
[http://dx.doi.org/10.1007/978-3-540-88693-8_8]
[41]
R. Siegwart, I.R. Nourbakhsh, and D. Scaramuzza, Introduction to autonomous mobile robots., MIT press, 2011.
[42]
F. Fraundorfer, and D. Scaramuzza, "Visual odometry: Part II: Matching, robustness, optimization, and applications", IEEE Robot. Autom. Mag., vol. 19, pp. 78-90, 2012.
[http://dx.doi.org/10.1109/MRA.2012.2182810]
[43]
R. Kawanishi, A. Yamashita, and T. Kaneko, "Construction of 3D environment model from an omni-directional image sequence", Proceedings of the 3rd Asia International Symposium on Mechatronics, TP1-3 (2), .2008, pp. 1-6. .
[44]
H. Stewenius, C. Engels, and D. Nistér, "Recent developments on direct relative orientation", ISPRS J. Photogramm. Remote Sens., vol. 60, pp. 284-294, 2006.
[http://dx.doi.org/10.1016/j.isprsjprs.2006.03.005]
[45]
D. Nistér, "An efficient solution to the five-point relative pose problem", IEEE transactions on pattern analysis and machine intelligence,, vol. 26. 2004 , pp. 0756-777.
[http://dx.doi.org/10.1109/TPAMI.2004.17]
[46]
A. Sharma, R.K. Patel, V. Thapa, B. Gairola, B. Pandey, B.A. Epenetus, S. Choudhury, and A.K. Mondal, "Investigation on optimized relative localization of a mobile robot using regression analysis ", In: , 2016 International Conference on Robotics: Current Trends and Future Challenges (RCTFC). , 2016, pp. 1-6..
[47]
S. Poddar, R. Kottath, and V. Karar, "Evolution of visual odometry techniques", arXiv preprint arXiv:1804.11142 , 2018.
[48]
B.K. Horn, and B.G. Schunck, "Determining optical flow", Artif. Intell., vol. 17, pp. 185-203, 1981.
[http://dx.doi.org/10.1016/0004-3702(81)90024-2]
[49]
B.D. Lucas, and T. Kanade, "An iterative image registration technique with an application to stereo vision ", In: , Proceedings of the 7th International Joint Conference on Artificial Intelligence (IJCAI ’81), 1981.
[50]
M-S. Choi, and W-Y. Kim, "A novel two stage template matching method for rotation and illumination invariance", Pattern Recognit., vol. 35, pp. 119-129, 2002.
[http://dx.doi.org/10.1016/S0031-3203(01)00025-5]
[51]
A. Goshtasby, S.H. Gage, and J.F. Bartholic, "A two-stage cross correlation approach to template matching", IEEE Trans. Pattern Anal. Mach. Intell., vol. 6, no. 3, pp. 374-378, 1984.
[http://dx.doi.org/10.1109/TPAMI.1984.4767532 PMID: 21869206]
[52]
J. Yoo, S.S. Hwang, S.D. Kim, M.S. Ki, and J. Cha, "Scale-invariant template matching using histogram of dominant gradients", Pattern Recognit., vol. 47, pp. 3006-3018, 2014.
[http://dx.doi.org/10.1016/j.patcog.2014.02.016]
[53]
A. Mahmood, and S. Khan, "Correlation-coefficient-based fast template matching through partial elimination", IEEE Trans. Image Process., vol. 21, no. 4, pp. 2099-2108, 2012.
[http://dx.doi.org/10.1109/TIP.2011.2171696 PMID: 21997266]
[54]
F. Zhao, Q. Huang, and W. Gao, "Image matching by mul-tiscale oriented corner correlation", Asian Conference on Computer Vision. , 2006, pp. 928-937..
[55]
F. Zhao, Q. Huang, and W. Gao, "Image matching by normalized cross-correlation", Acoustics, Speech and Signal Processing, 2006. ICASSP 2006 Proceedings. 2006 IEEE International Conference on, 2006,. 2006, pp. II-II..
[56]
N. Nourani‐Vatani, and P.V.K. Borges, "Correlation‐based visual odometry for ground vehicles", J. Field Robot., vol. 28, pp. 742-768, 2011.
[http://dx.doi.org/10.1002/rob.20407]
[57]
A.E. Johnson, S.B. Goldberg, Y. Cheng, and L.H. Matthies, "Robust and efficient stereo feature tracking for visual odometry", Robot. Automat., 2008. ICRA 2008. IEEE International Conference on, 2008,. 2008pp. 39-46.
[58]
P. Kicman, and J. Narkiewicz, "Concept of integrated INS/visual system for autonomous mo-bile robot operation" Marine Navigation and Safety of Sea Transportation: Navigational Problems, vol. 35. 2013.. .
[http://dx.doi.org/10.1201/b14962-6]
[59]
D. Scaramuzza, and R. Siegwart, "Appearance-guided monocular omnidirectional visual odometry for outdoor ground vehi-cles", IEEE Trans. Robot., vol. 24, pp. 1015-1026, 2008.
[http://dx.doi.org/10.1109/TRO.2008.2004490]
[60]
J. Zhang, and S. Singh, "Visuallidar odometry and mapping: Lowdrift, robust, and fast,” In: 2015 IEEE International Conference on Robotics and Automation..ICRA, 2015,, pp. 2174-2181.
[61]
FLIR, Available at: , https://www.flir.eu/iis/machine-vision/spherical-vision-systems
[62]
Microsoft, Available at:, https://www.microsoft.com/accessories/en-us/webcams
[63]
Z.E.D., Available at:, https://store.stereolabs.com/products/zed
[64]
H. Wang, K. Yuan, W. Zou, and Q. Zhou, "Visual odometry based on locally planar ground assumption", Information Acquisition, 2005 IEEE International Conference on, . 2005, pp. 6..
[65]
Q. Ke, and T. Kanade, "Transforming camera geometry to a virtual downward-looking camera: Robust ego-motion estimation and ground-layer detection", Computer Vision and Pattern Recognition, 2003. Proceedings. 2003 IEEE Computer Society Conference on, 2003, . 2003, pp. I-I..
[66]
J.J. Guerrero, R. Martinez‐Cantin, and C. Sagüés, "Visual map‐less navigation based on homographies", J. Field Robot., vol. 22, pp. 569-581, 2005.
[67]
B. Liang, and N. Pears, "Visual navigation using planar homographies", Robotics and Automation, 2002. Proceedings. ICRA'02. IEEE International Conference on, 2002, . 2002, pp. 205-210..
[68]
F. Dellaert, S.M. Seitz, C.E. Thorpe, and S. Thrun, "Structure from motion without correspondence", In Computer Vision and Pattern Recognition, Proceedings. IEEE Conference on, . 2000, pp. 557- 564..
[69]
K. Daniilidis, A. Makadia, and T. Bulow, "Image processing in catadioptric planes: Spatiotemporal derivatives and optical flow computation", Proceedings of the IEEE Workshop on Omnidirectional Vision 2002. Held in conjunction with ECCV'02, 2002, . 2002, pp. 3-10..
[http://dx.doi.org/10.1109/OMNVIS.2002.1044483]
[70]
C. Rother, "A new approach to vanishing point detection in architectural environments", Image Vis. Comput., vol. 20, pp. 647-655, 2002.
[http://dx.doi.org/10.1016/S0262-8856(02)00054-9]
[71]
J. Košecká, and W. Zhang, "Video compass", European conference on computer vision, . 2002, pp. 476-490..
[72]
J-C. Bazin, C. Demonceaux, P. Vasseur, and I. Kweon, "Rotation estimation and vanishing point extraction by omnidirectional vision in urban environment", Int. J. Robot. Res., vol. 31, pp. 63-81, 2012.
[http://dx.doi.org/10.1177/0278364911421954]
[73]
J. Zhang, M. Kaess, and S. Singh, "Real-time depth enhanced monocular odometry", 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems. , 2014, pp. 4973-4980..
[http://dx.doi.org/10.1109/IROS.2014.6943269]
[74]
C. Forster, M. Pizzoli, and D. Scaramuzza, "SVO: Fast semi-direct monocular visual odometry", 2014 IEEE Interna-tional Conference on Robotics and Automation (ICRA), . 2014 pp. 15-22.
[http://dx.doi.org/10.1109/ICRA.2014.6906584]
[75]
C. Forster, Z. Zhang, M. Gassner, M. Werlberger, and D. Scaramuzza, "SVO: Semidirect visual odometry for monocular and multicamera systems", IEEE Trans. Robot., vol. 33, pp. 249-265, 2016.
[http://dx.doi.org/10.1109/TRO.2016.2623335]
[76]
J. Delmerico, and D. Scaramuzza, "A benchmark comparison of monocular visual-inertial odometry algorithms for flying robots", 2018 IEEE International Conference on Robotics and Automation (ICRA). , 2018, pp. 2502-2509.
[http://dx.doi.org/10.1109/ICRA.2018.8460664]
[77]
T. Schneider, M. Dymczyk, M. Fehr, K. Egger, S. Lynen, I. Gilitschenski, and R. Siegwart, "MAPLAB: An open framework for research in visual-inertial mapping and localization", IEEE Robot. Autom. Lett., vol. 3, pp. 1418-1425, 2018.
[http://dx.doi.org/10.1109/LRA.2018.2800113]
[78]
M. He, C. Zhu, Q. Huang, B. Ren, and J. Liu, "A review of monocular visual odometry", Vis. Comput., pp. 1-13, 2019.
[79]
S. Song, M. Chandraker, and C.C. Guest, “Parallel, real-time monocular visual odometry”, Robot. Automat. (ICRA),, 2013, pp. 4698-4705.
[80]
D. Barnes, W. Maddern, G. Pascoe, and I. Posner, "Driven to distraction: Self-supervised distractor learning for robust monocular visual odometry in urban environments", In: , 2018 IEEE International Conference on Robotics and Automation (ICRA). 2018, pp. 1894-1900..
[http://dx.doi.org/10.1109/ICRA.2018.8460564]
[81]
C. Häne, T. Sattler, and M. Pollefeys, "Obstacle detection for self-driving cars using only monocular cameras and wheel odometry", In: , 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 2015, pp. 5101-5108..
[http://dx.doi.org/10.1109/IROS.2015.7354095]
[82]
X. Gao, R. Wang, N. Demmel, and D. Cremers, "LDSO: Direct sparse odometry with loop closure", In: , 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). , 2018, pp. 2198-2204.
[http://dx.doi.org/10.1109/IROS.2018.8593376]
[83]
J. Montiel, J. Civera, and A.J. Davison, "Unified inverse depth parametrization for monocular SLAM", Analysis, vol. 9, p. 1, 2006.
[http://dx.doi.org/10.15607/RSS.2006.II.011]
[84]
M. Kaess, A. Ranganathan, and F. Dellaert, "iSAM: Incremental smoothing and mapping", IEEE Trans. Robot., vol. 24, pp. 1365-1378, 2008.
[http://dx.doi.org/10.1109/TRO.2008.2006706]
[85]
M. Bloesch, S. Omari, M. Hutter, and R. Siegwart, "Robust visual inertial odometry using a direct EKF-based approach.".In: , 2015 IEEE/RSJ international conference on intelligent robots and systems.. IROS, 2015, pp. 298-304.
[86]
T. Qin, P. Li, and S. Shen, "Vins-mono: A robust and versa-tile monocular visual-inertial state estimator", IEEE Trans. Robot., vol. 34, pp. 1004-1020, 2018.
[http://dx.doi.org/10.1109/TRO.2018.2853729]
[87]
M. Bloesch, M. Burri, S. Omari, M. Hutter, and R. Siegwart, "Iterated extended Kalman filter based visual-inertial odome-try using direct photometric feedback", Int. J. Robot. Res., vol. 36, pp. 1053-1072, 2017.
[http://dx.doi.org/10.1177/0278364917728574]
[88]
B. Triggs, P.F. McLauchlan, R.I. Hartley, and A.W. Fitzgibbon, "Bundle adjustment-a modern synthesis", International workshop on vision algorithms, . pp. 298-372, 1999.
[89]
H. Li, and R. Hartley, "Five-point motion estimation made easy", Pattern Recognition, 2006. ICPR 2006. 18th International Conference on, 2006,. 2006, pp. 630-633.
[90]
J. Philip, "A non‐iterative algorithm for determining all essential matrices corresponding to five point Pairs", Photogramm. Rec., vol. 15, pp. 589-599, 1996.
[http://dx.doi.org/10.1111/0031-868X.00066]
[91]
R. Hartley, and A. Zisserman, "Multiple view geometry in computer vision", Robotica, vol. 23, pp. 271-271, 2005.
[92]
D. Nister, Automatic dense reconstruction from uncalibrated video sequences: Numerisk analys och datalogi, . 2001
[93]
P.H. Torr, and D.W. Murray, "The development and compar-ison of robust methods for estimating the fundamental matrix", Int. J. Comput. Vis., vol. 24, pp. 271-300, 1997.
[http://dx.doi.org/10.1023/A:1007927408552]
[94]
H.C. Longuet-Higgins, "A computer algorithm for reconstructing a scene from two projections", Nature, vol. 293, pp. 133-135, 1981.
[http://dx.doi.org/10.1038/293133a0]
[95]
V. Usenko, J. Engel, J. Stückler, and D. Cremers, "Direct visual-inertial odometry with stereo cameras", In: , 2016 IEEE International Conference on Robotics and Automation (ICRA). , 2016, pp. 1885-1892.
[http://dx.doi.org/10.1109/ICRA.2016.7487335]
[96]
C. Harris, and M. Stephens, "A combined corner and edge detector."Alvey Vision Confer-ence, 1988, p. 50.
[http://dx.doi.org/10.5244/C.2.23]
[97]
C. Schmid, R. Mohr, and C. Bauckhage, "Evaluation of interest point detectors", Int. J. Comput. Vis., vol. 37, pp. 151-172, 2000.
[http://dx.doi.org/10.1023/A:1008199403446]
[98]
J. Martin, and J.L. Crowley, "Comparison of correlation techniques", In: ; International Conference on Intelligent Autonmous Systems.Karlsruhe, Germany, , 1995, pp. 86-93.
[99]
Y. Dufournaud, C. Schmid, and R. Horaud, "Matching images with different resolutions", Computer Vision and Pattern Recognition, 2000. In: Proceedings of IEEE Conference on, 2000,. 2000, pp. 612-618.
[http://dx.doi.org/10.1109/CVPR.2000.855876]
[100]
Y. Dufournaud, C. Schmid, and R. Horaud, "Image matching with scale adjustment", Comput. Vis. Image Underst., vol. 93, pp. 175-194, 2004.
[http://dx.doi.org/10.1016/j.cviu.2003.07.003]
[101]
I-K. Jung, "SLAM in 3D Environments with Stereovision",.PhD thesis, LAAS, Toulouse, , 2004
[102]
T. Lindeberg, and B.M. ter Haar Romeny, Linear scale-space I: Basic theory Geometry-Driven Diffusion in Computer Vision., Springer, 1994, pp. 1-38.
[http://dx.doi.org/10.1007/978-94-017-1699-4_1]
[103]
S. Se, D. Lowe, and J. Little, "Mobile robot localization and mapping with uncertainty using scale-invariant visual land-marks", Int. J. Robot. Res., vol. 21, pp. 735-758, 2002.
[http://dx.doi.org/10.1177/027836402761412467]
[104]
K. Mikolajczyk, and C. Schmid, "Performance evaluation of local descriptors", IEEE Trans. Pattern Anal. Mach. Intell., vol. 27, no. 10, pp. 1615-1630, 2005.
[http://dx.doi.org/10.1109/TPAMI.2005.188 PMID: 16237996]
[105]
N. Krombach, D. Droeschel, S. Houben, and S. Behnke, "Feature-based visual odometry prior for real-time semi-dense stereo SLAM", Robot. Auton. Syst., vol. 109, pp. 38-58, 2018.
[http://dx.doi.org/10.1016/j.robot.2018.08.002]
[106]
N. Krombach, D. Droeschel, and S. Behnke, "Combining feature-based and direct methods for semi-dense real-time stereo visual odometry", In: , International Conference on Intelligent Autonomous Systems. , 2016 pp. 855-868
[107]
K. Mikolajczyk, and C. Schmid, "Scale & affine invariant interest point detectors", Int. J. Comput. Vis., vol. 60, pp. 63-86, 2004.
[http://dx.doi.org/10.1023/B:VISI.0000027790.02288.f2]
[108]
J. van de Weijer, T. Gevers, and A.D. Bagdanov, "Boosting color saliency in image feature detection", IEEE Trans. Pattern Anal. Mach. Intell., vol. 28, no. 1, pp. 150-156, 2006.
[http://dx.doi.org/10.1109/TPAMI.2006.3 PMID: 16402628]
[109]
P. Liu, L. Heng, T. Sattler, A. Geiger, and M. Pollefeys, "Direct visual odometry for a fisheye-stereo camera", In: , 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). , 2017, pp. 1746-1752.
[http://dx.doi.org/10.1109/IROS.2017.8205988]
[110]
B.M. Kitt, J. Rehder, A.D. Chambers, M. Schonbein, H. Lategahn, and S. Singh, "Monocular visual odometry using a planar road model to solve scale ambiguity", In: , Conference Paper, Proceedings of Proc. European Conference on Mobile Robots, August, 2011..
[111]
A. Cumani, "Feature localization refinement for improved visual odometry accuracy”", Inter. J. Circ. Syst. Sig. Process., vol. 5, pp. 151-158, 2011.
[112]
R. Giubilato, M. Pertile, and S. Debei, "A comparison of monocular and stereo visual Fast SLAM implementations" , In: , 2016 IEEE Metrology for Aerospace (Met-roAeroSpace) . , 2016, pp. 227-232.
[113]
C. Jaramillo, L. Yang, J.P. Muñoz, Y. Taguchi, and J. Xiao, "Visual odometry with a single-camera stereo omnidirectional system", Mach. Vis. Appl., vol. 30, no. 7-8, pp. 1145-1155, 2019.
[http://dx.doi.org/10.1007/s00138-019-01041-9]
[114]
A. Cumani, and A. Guiducci, "Fast stereo-based visual odometry for rover navigation", WSEAS Transactions on Circuits and Systems, vol. 7, pp. 648-657, 2008.
[115]
D. Valiente García, L. Fernández Rojo, A. Gil Aparicio, L. Payá Castelló, and O. Reinoso García, "Visual odometry through appearance-and feature-based method with omnidirectional images", J. Robot., 2012.
[116]
J.R. Fabian, and G.M. Clayton, “Adaptive visual odometry using RGBD cameras”, Adv. Intell. Mechatron. (AIM), . 2014, pp. 1533- 1538.
[117]
J. Fabian, and G.M. Clayton, "Error analysis for visual odometry on indoor, wheeled mobile robots with 3-d sensors", IEEE/ASME Trans. Mechatron., vol. 19, pp. 1896-1906, 2014.
[http://dx.doi.org/10.1109/TMECH.2014.2302910]
[118]
Z. Fang, and Y. Zhang, "Experimental evaluation of RGBD visual odometry methods", Int. J. Adv. Robot. Syst., vol. 12, p. 26, 2015.
[http://dx.doi.org/10.5772/59991]
[119]
E. Guizzo, How google’s self-driving car works., vol. 18. IEEE Spectrum Online, 2011.
[120]
J-L. Blanco, F-A. Moreno, and J. Gonzalez, "A collection of outdoor robotic datasets with centimeter-accuracy ground truth", Auton. Robots, vol. 27, p. 327, 2009.
[http://dx.doi.org/10.1007/s10514-009-9138-7]
[121]
J-L. Blanco-Claraco, F-Á. Moreno-Dueñas, and J. González-Jiménez, "The Málaga urban dataset: High-rate stereo and Li-DAR in a realistic urban scenario", Int. J. Robot. Res., vol. 33, pp. 207-214, 2014.
[http://dx.doi.org/10.1177/0278364913507326]
[122]
M. Smith, I. Baldwin, W. Churchill, R. Paul, and P. Newman, "The new college vision and laser data set", Int. J. Robot. Res., vol. 28, pp. 595-599, 2009.
[http://dx.doi.org/10.1177/0278364909103911]
[123]
A. Geiger, J. Ziegler, and C. Stiller, "Stereoscan: Dense 3D reconstruction in real-time", In: , 2011 IEEE Intelligent Vehicles Symposium (IV). , 2011, pp. 963-968.
[http://dx.doi.org/10.1109/IVS.2011.5940405]
[124]
A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, "Vision meets robotics: The KITTI dataset", Int. J. Robot. Res., vol. 32, pp. 1231-1237, 2013.
[http://dx.doi.org/10.1177/0278364913491297]
[125]
H. Alismail, B. Browning, and M.B. Dias, "Evaluating pose estimation methods for stereo visual odometry on robots", In: , The 11th Int’l Conf. on Intelligent Autonomous Systems (IAS-11), . 2010, pp. 2.
[126]
M. Warren, D. McKinnon, H. He, A. Glover, M. Shiel, and B. Upcroft, "Large scale monocular vision-only mapping from a fixed-wings UAS." Field and Service Robot. , pp. 495-509. 2014
[http://dx.doi.org/10.1007/978-3-642-40686-7_33]
[127]
M. Burri, J. Nikolic, P. Gohl, T. Schneider, J. Rehder, S. Omari, M.W. Achtelik, and R. Siegwart, "The EuRoC micro aerial vehicle datasets", Int. J. Robot. Res., vol. 35, pp. 1157-1163, 2016.
[http://dx.doi.org/10.1177/0278364915620033]
[128]
W. Maddern, G. Pascoe, C. Linegar, and P. Newman, "1 year, 1000 km: The Oxford RobotCar dataset", Int. J. Robot. Res., vol. 36, pp. 3-15, 2017.
[http://dx.doi.org/10.1177/0278364916679498]
[129]
P. Bergmann, R. Wang, and D. Cremers, "Online photometric calibration of auto exposure video for realtime visual odome-try and SLAM", IEEE Robot. Autom. Lett., vol. 3, pp. 627-634, 2017.
[http://dx.doi.org/10.1109/LRA.2017.2777002]
[130]
J. Engel, V. Usenko, and D. Cremers, "A photometrically calibrated benchmark for monocular visual odometry", arXiv preprint arXiv:1607.02555, , 2016.
[131]
D. Caruso, J. Engel, and D. Cremers, "Large-scale direct slam for omnidirectional cameras", In: , 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). , 2015, pp. 141-148.
[http://dx.doi.org/10.1109/IROS.2015.7353366]
[132]
E. Mueggler, H. Rebecq, G. Gallego, T. Delbruck, and D. Scaramuzza, "The event-camera dataset and simulator: Event-based data for pose estimation, visual odometry, and SLAM", Int. J. Robot. Res., vol. 36, pp. 142-149, 2017.
[http://dx.doi.org/10.1177/0278364917691115]
[133]
G. Pandey, J.R. McBride, and R.M. Eustice, "Ford campus vision and lidar data set", Int. J. Robot. Res., vol. 30, pp. 1543-1552, 2011.
[http://dx.doi.org/10.1177/0278364911400640]
[134]
T. Hinzmann, T. Stastny, G. Conte, P. Doherty, P. Rudol, M. Wzorek, E. Galceran, R. Siegwart, and I. Gilitschenski, "Collaborative 3D reconstruction using heterogeneous UAVs: System and experiments", In: , International Symposium on Experimental Robotics. , 2016, pp. 43-56,
[135]
A.L. Majdik, C. Till, and D. Scaramuzza, "The Zurich urban micro aerial vehicle dataset", Int. J. Robot. Res., vol. 36, pp. 269-273, 2017.
[http://dx.doi.org/10.1177/0278364917702237]
[136]
D. Schubert, T. Goll, N. Demmel, V. Usenko, J. Stückler, and D. Cremers, “The TUM VI benchmark for evaluating visualinertial odometry,”. In: , 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems, . , IROS, 2018, pp. 1680-1687.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy