Generic placeholder image

Recent Advances in Electrical & Electronic Engineering

Editor-in-Chief

ISSN (Print): 2352-0965
ISSN (Online): 2352-0973

Research Article

Synthesis for Butterworth Filter Using Compact VDTA Based on Sallen- Key Topology

Author(s): Yong-An Li*

Volume 13, Issue 5, 2020

Page: [681 - 688] Pages: 8

DOI: 10.2174/2352096512666191004123213

Price: $65

Abstract

Background: The original filter including grounded or virtual ground capacitors can be synthesized by using the NAM expansion. However, so far the filters including floating capacitor, such as Sallen-Key filter, have not been synthesized by means of the NAM expansion. This is a problem to be researched further.

Methods: By using the adjoint network theory, the Sallen-Key filter including floating capacitor first is turned into a current-mode one, which includes a grounded capacitor and a virtual ground capacitor. Then the node admittance matrix, after derived, is extended by using NAM expansion.

Results: At last, one VDTA Sallen-Key filter is received. It employs single compact VDTA and two grounded capacitors.

Conclusion: A Butterworth VDTA second-order frequency filter based on Sallen-Key topology with fo = 100kHz, HLP = -HBP=1, is designed.

Keywords: Current-mode circuit, sallen-Key topology, Butterworth filter, VDTA, adjoint network theorem, nodal admittance matrix expansion.

Graphical Abstract

[1]
S. Mahata, S.K. Saha, and R. Kar, "Optimal design of fractional order low pass Butterworth filter with accurate magnitude response", Digit. Signal Process., vol. 72, pp. 96-114, 2018.
[http://dx.doi.org/10.1016/j.dsp.2017.10.001]
[2]
A. Uygur, B. Metin, and H. Kuntman, "Current mode MOSFET-only third order Butterworth low pass filter with DTMOS tuning technique", Analog Integr. Circuits Signal Process., vol. 89, pp. 645-654, 2016.
[http://dx.doi.org/10.1007/s10470-016-0798-x]
[3]
M. Liu, and H.Q. Hao, "P, Xiong and F. Lin, “Constructing a guided filter by exploiting the butterworth filter for ECG signal enhancement", J. Med. Biol. Eng., vol. 38, pp. 1-13, 2017.
[4]
C.Y. Sun, and S.Y. Lee, "A fifth-order butterworth OTA-C LPF with multiple-Output differential-Input OTA for ECG applications", IEEE Trans. Circuits Syst., II Express Briefs, vol. 65, pp. 421-425, 2017.
[http://dx.doi.org/10.1109/TCSII.2017.2695366]
[5]
J.C.C. Mak, A. Bois, and J.K.S. Poon, "Programmable multiring butterworth filters with automated resonance and coupling tuning", IEEE J. Sel. Top. Quantum Electron., vol. 22, pp. 232-240, 2016.
[http://dx.doi.org/10.1109/JSTQE.2016.2540618]
[6]
J.S. Mincey, C. Briseno-Vidrios, J. Silva, and C. Rodenbeck, "Low-Power $G _ m- C $ Filter Employing Current-Reuse Differential Difference Amplifiers", IEEE Trans. Circuits Syst., II Express Briefs, vol. 64, pp. 635-639, 2016.
[http://dx.doi.org/10.1109/TCSII.2016.2599027]
[7]
A. Deo, S.K. Pandey, and A. Joshi, "Design of a Third Order Butterworth Gm-C Filter for EEG Signal Detection Application", 25th International Conference, Mixed Design of Integrated Circuits and System, 2018pp. 361-365 Gdynia, Poland
[8]
J.M. Algueta-Miguel, A. Carlos, and A.J. Lopez-Martin, "A 760μW 4th order butterworth FGMOS Gm-C filter with enhanced linearity", Proc.IEEE Inti. Symp. on Circuits and Systems (ISCAS), 2015pp. 277-280 Lisbon, Portugal
[9]
S. Franco, Design with operational amplifiers and analog integrated circuits., McGraw-Hill: New York, 2002.
[10]
D.G. Haigh, T.J.W. Clarke, and P.M. Radmore, "Symbolic framework for linear active circuits based on port equivalence using limit variables", IEEE Trans. Circuits Syst. I, vol. 53, pp. 2011-2024, 2006.
[http://dx.doi.org/10.1109/TCSI.2006.882815]
[11]
D.G. Haigh, "A method of transformation from symbolic transfer function to active-RC circuit by admittance matrix expansion", IEEE Trans. Circuits Syst. I, vol. 53, pp. 2715-2728, 2007.
[http://dx.doi.org/10.1109/TCSI.2006.883879]
[12]
A.M. Soliman, "Generation of CCII and ICCII based Wien oscillators using nodal admittance matrix expansion", AEU Int. J. Electron. Commun., vol. 64, pp. 971-977, 2010.
[http://dx.doi.org/10.1016/j.aeue.2009.08.003]
[13]
A.M. Soliman, "Generation of Kerwin-Huelsman-Newcomb biquad filter circuits using nodal admittance expansion", Int. J. Circuit Theory Appl., vol. 39, pp. 697-717, 2011.
[http://dx.doi.org/10.1002/cta.654]
[14]
A.M. Soliman, "History and progress of the Tow Thomas bi-quadratic filter part III: generation using NAM expansion", J. Circuits Syst. Comput., vol. 19, pp. 529-548, 2010.
[http://dx.doi.org/10.1142/S021812661000627X]
[15]
Y.A. Li, "Systematic synthesis of OTA-based T-T filters using NAME method", J. Circuits Syst. Comput., vol. 22, pp. 1-17, 2013.
[http://dx.doi.org/10.1142/S0218126613500023]
[16]
Y.A. Li, and R. Cao, "Systematic synthesis of CCCCTA-based TT filters using NAM expansion method", Int. J. Electron., vol. 103, pp. 1067-1082, 2016.
[http://dx.doi.org/10.1080/00207217.2015.1082643]
[17]
Y.A. Li, Y.H. Xi, and Z.T. Fan, "“Systematic synthesis of second generation current-controlled conveyor-based Tow-Thomas filters with orthogonal tune of pole frequency and quality factor”, Rev. Roum. Sci", Tech-El., vol. 62, pp. 76-81, 2017.
[18]
Y.A. Li, "Further research on systematic synthesis for CCCCTA quadrature oscillators", Recent Adv. Electr. Electron. Eng., vol. 10, pp. 209-215, 2017.
[http://dx.doi.org/10.2174/1872212111666170530130108]
[19]
H.D. Tran, H.Y. Wang, Q.M. Nguyen, N.H. Chiang, W.C. Lin, and T.F. Lee, "High-Q biquadratic notch filter synthesis using nodal admittance matrix expansion", AEU Int. J. Electron. Commun., vol. 69, pp. 981-987, 2015.
[http://dx.doi.org/10.1016/j.aeue.2015.03.001]
[20]
A.M. Soliman, "Two integrator loop filters: generation using NAM expansion and review", J. Electr. Comput. Eng., p. 8, 2010.
[http://dx.doi.org/10.1155/2010/108687]
[21]
Y.A. Li, "Synthesis of compact VDTA-based Wien oscillators with grounded capacitors", AEU Int. J. Electron. Commun., vol. 84, pp. 281-289, 2018.
[http://dx.doi.org/10.1016/j.aeue.2017.12.014]
[22]
D. Biolek, R. Senani, V. Biolkova, and Z. Kolka, "Active elements for analog signal processing: classification, review, and new proposals", Wuxiandian Gongcheng, vol. 17, pp. 15-32, 2018.
[23]
W. Mekhum, and W. Jaikla, "Three input single output voltage-mode multifunction filter with independent control of pole frequency and quality factor", Recent Adv. Electr. Electron. Eng., vol. 11, pp. 494-500, 2013.
[24]
H. Xiao, "Recent integrated active inductor patents", Recent Adv. Electr. Electron. Eng., vol. 2, pp. 182-186, 2009.
[25]
R. Sotner, J. Jerabek, N. Herencsar, J. Petrzela, K. Vrba, and Z. Kincl, "Linearly tunable quadrature oscillator derived from LC colpitts structure using voltage differencing tranconductance amplifier and adjustable current amplifier", Analog Integr. Circuits Signal Process., vol. 81, pp. 121-136, 2014.
[http://dx.doi.org/10.1007/s10470-014-0353-6]
[26]
J. Satansup, and W. Tangsrirat, "Compact VDTA-based current-mode electronically tunable universal filters using grounded capacitors", Microelectronics J., vol. 45, pp. 613-618, 2014.
[http://dx.doi.org/10.1016/j.mejo.2014.04.008]
[27]
Y.A. Li, Synthesis approach for compact VDTA quadrature sine-wave oscillators with orthogonal control., J. Circuit Syst. Comp, 2018, p. 16.
[28]
P. Kumar, N. Pandey, and S.K. Paul, Realization of resistorless and electronically tunable inverse filters using VDTA., J. Circuit Syst. Comp, 2018, p. 14.
[29]
N. Narang, B. Aggarwal, and M. Gupta, "DTMOS and FD-FVF based low voltage high performance voltage differencing transconductance amplifier (VDTA) and its application in MISO filter", Microelectronics J., vol. 63, pp. 66-74, 2017.
[http://dx.doi.org/10.1016/j.mejo.2017.03.002]
[30]
V. Kumar, and A. Islam, "Performance analysis of two novel CMOS active grounded and floating inductors suitable for RF bandpass filter applications", Recent Adv. Electr. Electron. Eng., vol. 11, pp. 487-498, 2018.
[http://dx.doi.org/10.2174/2352096511666180116155417]
[31]
A. Yesil, and F. Kacar, "Band-pass filter with high quality factor based on current differencing transconductance amplifier and current amplifier", AEU Int. J. Electron. Commun., vol. 75, pp. 63-69, 2017.
[http://dx.doi.org/10.1016/j.aeue.2017.03.007]
[32]
R. Mehra, V. Kumar, and A. Islam, "Floating active inductor based Class-C VCO with 8 digitally tuned sub-bands", AEU Int. J. Electron. Commun., vol. 83, pp. 1-10, 2018.
[http://dx.doi.org/10.1016/j.aeue.2017.08.018]
[33]
C. Stergiou, K.E. Psannis, B.G. Kim, and B. Gupta, "Secure integration of IoT and cloud computing", Future Gener. Comput. Syst., vol. 78, pp. 964-975, 2018.
[http://dx.doi.org/10.1016/j.future.2016.11.031]
[34]
C. Stergiou, K.E. Psannis, and B.B. Gupta, "Security, privacy & efficiency of sustainable Cloud Computing for Big Data & IoT", Sustainable Computing: Informatics and Systems, vol. 19, pp. 174-184, 2018.
[http://dx.doi.org/10.1016/j.suscom.2018.06.003]
[35]
B.B. Gupta, Computer and cyber security: principles, algorithm, applications, and perspectives., CRC Press, 2018.
[36]
B. Gupta, D.P. Agrawal, and S. Yamaguchi, Handbook of research on modern cryptographic solutions for computer and cyber security., IGI Global: Hershey, Pa, USA, 2016.
[http://dx.doi.org/10.4018/978-1-5225-0105-3]
[37]
F. Jiang, Y. Fu, B.B. Gupta, F. Lou, and S. Rho, “Deep Learning based Multi-channel intelligent attack detection for Data Security”, IEEE Trans., Sustain. Comput, 2018.
[http://dx.doi.org/10.1109/TSUSC.2018.2793284]
[38]
M.S. Hossain, G. Muhammad, W. Abdul, B. Song, and B.B. Gupta, "Cloud-assisted secure video transmission and sharing framework for smart cities", Future Gener. Comput. Syst., vol. 83, pp. 596-606, 2018.
[http://dx.doi.org/10.1016/j.future.2017.03.029]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy