Generic placeholder image

Current Drug Metabolism

Editor-in-Chief

ISSN (Print): 1389-2002
ISSN (Online): 1875-5453

Research Article

Curcumin-C3 Complexed with α-, β-cyclodextrin Exhibits Antibacterial and Antioxidant Properties Suitable for Cancer Treatments

Author(s): Desu N. K. Reddy*, Ramya Kumar, Shao-Pin Wang and Fu-Yung Huang*

Volume 20, Issue 12, 2019

Page: [988 - 1001] Pages: 14

DOI: 10.2174/1389200220666191001104834

Price: $65

Abstract

Background: The curcumin-C3 (cur-C3) complex obtained from Curcuma longa rhizome is a combination of three curcuminoids, namely, curcumin, dimethoxycurcumin, and bisdemethoxycurcumin. Cur and curcuminoids have been extensively researched for their wide range of therapeutic properties against inflammatory diseases, diabetes, and cancer.

Objective: In spite of their extensive medicinal properties, cur and curcuminoids have poor solubility and bioavailability due to their hydrophobicity. This limitation can be overcome by complexing cur-C3 with natural cyclic oligosaccharides, such as Cyclodextrin (CD).

Methods: In this study, cur-C3 and CD (α, β) inclusion complexes (ICs) were prepared with different molar ratios and characterized by nuclear magnetic resonance, Fourier transform infrared spectroscopy, X-ray diffraction, and transmission electron microscopy.

Results: The cur-C3 cyclodextrin ICs showed an increased entrapment efficiency of 97.8% and improved antioxidant activity compared to cur and can be used as an antioxidant to reduce cancer-related oxidative stress. Additionally, α- CD ICs of curcumin-C3 caused an increase in growth inhibition of Staphylococcus aureus.

Conclusion: Our findings suggest that both α- and β-CDs are suitable carriers for cur-C3 and can be used as an effective treatment for cancer-associated oxidative stress and as a preventive treatment for nosocomial infections and pneumonia.

Keywords: Antioxidant, antibacterial, curcumin-C3, cyclodextrin, inclusion complex, S. aureus.

Graphical Abstract

[1]
Stanić, Z. Curcumin, a compound from natural sources, a true scientific challenge a review. Plant Foods Hum. Nutr., 2017, 72(1), 1-12.
[http://dx.doi.org/10.1007/s11130-016-0590-1] [PMID: 27995378]
[2]
Sandur, S.K.; Pandey, M.K.; Sung, B.; Ahn, K.S.; Murakami, A.; Sethi, G. Curcumin, demethoxycurcumin, bisdemethoxycurcumin, tetrahydrocurcumin and turmerones differentially regulate anti-inflammatory and anti-proliferative responses through a ROS-independent mechanism. Carcinogenesis, 2007, 28, 1765e73.
[http://dx.doi.org/10.1093/carcin/bgm123]
[3]
Luo, J.; Yang, M. Demethoxycurcumin: a potential antimicrobial agent. J. Therm. Anal. Calorim., 2013, 115(3), 2331-2338.
[http://dx.doi.org/10.1007/s10973-013-3103-6]
[4]
Lee, W.H.; Loo, C.Y.; Bebawy, M.; Luk, F.; Mason, R.S.; Rohanizadeh, R. Curcumin and its derivatives: Their application in neuropharmacology and neuroscience in the 21st century. Curr. Neuropharmacol., 2013, 11(4), 338-378.
[http://dx.doi.org/10.2174/1570159X11311040002] [PMID: 24381528]
[5]
Gupta, S.C.; Patchva, S.; Koh, W.; Aggarwal, B.B. Discovery of curcumin, a component of golden spice, and its miraculous biological activities. Clin. Exp. Pharmacol. Physiol., 2012, 39(3), 283-299.
[http://dx.doi.org/10.1111/j.1440-1681.2011.05648.x] [PMID: 22118895]
[6]
Priyadarsini, K.I. Chemical and structural features influencing the biological activity of curcumin. Curr. Pharm. Des., 2013, 19(11), 2093-2100.
[PMID: 23116315]
[7]
Liao, J.H.; Wu, T.H.; Chen, M.Y.; Chen, W.T.; Lu, S.Y.; Wang, Y.H.; Wang, S.P.; Hsu, Y.M.; Huang, Y.S.; Huang, Z.Y.; Lin, Y.C.; Chang, C.M.; Huang, F.Y.; Wu, S.H. The comparative studies of binding activity of curcumin and didemethylated curcumin with selenite: Hydrogen bonding vs acid-base interactions. Sci. Rep., 2015, 5, 17614.
[http://dx.doi.org/10.1038/srep17614] [PMID: 26635113]
[8]
Liao, J.H.; Huang, Y.S.; Lin, Y.C.; Huang, F.Y.; Wu, S.H.; Wu, T.H. Anticataractogenesis mechanisms of curcumin and a comparison of its degradation products: an in vitro study. J. Agric. Food Chem., 2016, 64(10), 2080-2086.
[http://dx.doi.org/10.1021/acs.jafc.6b00430] [PMID: 26905955]
[9]
Perkins, S.; Verschoyle, R.D.; Hill, K.; Parveen, I.; Threadgill, M.D.; Sharma, R.A.; Williams, M.L.; Steward, W.P.; Gescher, A.J. Chemopreventive efficacy and pharmacokinetics of curcumin in the min/+ mouse, a model of familial adenomatous polyposis. Cancer Epidemiol. Biomarkers Prev., 2002, 11(6), 535-540.
[PMID: 12050094]
[10]
Okada, K.; Wangpoengtrakul, C.; Tanaka, T.; Toyokuni, S.; Uchida, K.; Osawa, T. Curcumin and especially tetrahydrocurcumin ameliorate oxidative stress-induced renal injury in mice. J. Nutr., 2001, 131(8), 2090-2095.
[http://dx.doi.org/10.1093/jn/131.8.2090] [PMID: 11481399]
[11]
Lai, C.S.; Wu, J.C.; Yu, S.F.; Badmaev, V.; Nagabhushanam, K.; Ho, C.T.; Pan, M.H. Tetrahydrocurcumin is more effective than curcumin in preventing azoxymethane-induced colon carcinogenesis. Mol. Nutr. Food Res., 2011, 55(12), 1819-1828.
[http://dx.doi.org/10.1002/mnfr.201100290] [PMID: 21887819]
[12]
Ireson, C.; Orr, S.; Jones, D.J.; Verschoyle, R.; Lim, C.K.; Luo, J.L.; Howells, L.; Plummer, S.; Jukes, R.; Williams, M.; Steward, W.P.; Gescher, A. Characterization of metabolites of the chemopreventive agent curcumin in human and rat hepatocytes and in the rat in vivo, and evaluation of their ability to inhibit phorbol ester-induced prostaglandin E2 production. Cancer Res., 2001, 61(3), 1058-1064.
[PMID: 11221833]
[13]
Chen, C.Y.; Yang, W.L.; Kuo, S.Y. Cytotoxic activity and cell cycle analysis of hexahydrocurcumin on SW 480 human colorectal cancer cells. Nat. Prod. Commun., 2011, 6(11), 1671-1672.
[http://dx.doi.org/10.1021/np200497h] [PMID: 22224285]
[14]
Jahromi, M.A.M.; Al-Musawi, S.; Pirestani, M.; Ramandi, M.F.; Rajayi, H.; Hassan, Z.M.; Kamali, M.; Mirnejad, R. Curcumin-loaded chitosan tripolyphosphate nanoparticles as a safe, natural and effective antibiotic inhibits the infection of Staphylococcus aureus and Pseudomonas aeruginosa in vivo. Iranian J. Biotechnol., 2014, 12(3) e1012
[15]
Yallapu, M.M.; Jaggi, M.; Chauhan, S.C. Poly(β-cyclodextrin)/curcumin self-assembly: A novel approach to improve curcumin delivery and its therapeutic efficacy in prostate cancer cells. Macromol. Biosci., 2010, 10(10), 1141-1151.
[http://dx.doi.org/10.1002/mabi.201000084] [PMID: 20572274]
[16]
Harada, T.; Pham, D.T.; Leung, M.H.; Ngo, H.T.; Lincoln, S.F.; Easton, C.J.; Kee, T.W. Cooperative binding and stabilization of the medicinal pigment curcumin by diamide linked γ-cyclodextrin dimers: A spectroscopic characterization. J. Phys. Chem. B, 2011, 115(5), 1268-1274.
[http://dx.doi.org/10.1021/jp1096025] [PMID: 21194191]
[17]
Radjaram, A.; Hafid, A.F.; Setyawan, D. Dissolution enhancement of curcumin by hydroxypropyl-β-cyclodextrin complexation. Int. J. Pharm. Pharm. Sci., 2013, 5(3), 401-405.
[18]
Mangolim, C.S.; Moriwaki, C.; Nogueira, A.C.; Sato, F.; Baesso, M.L.; Neto, A.M.; Matioli, G. Curcumin-β-cyclodextrin inclusion complex: stability, solubility, characterisation by FT-IR, FT-Raman, X-ray diffraction and photoacoustic spectroscopy, and food application. Food Chem., 2014, 153, 361-370.
[http://dx.doi.org/10.1016/j.foodchem.2013.12.067] [PMID: 24491741]
[19]
Marcolino, V.A.; Zanin, G.M.; Durrant, L.R. Benassi, Mde.T.; Matioli, G. Interaction of curcumin and bixin with β-cyclodextrin: Complexation methods, stability, and applications in food. J. Agric. Food Chem., 2011, 59(7), 3348-3357.
[http://dx.doi.org/10.1021/jf104223k] [PMID: 21381747]
[20]
Carvalho, A.C.; Gomes, A.C.; Pereira-Wilson, C.; Lima, C.F. Mechanisms of action of curcumin on aging: Nutritional and pharmacological applications. In: Molecular Basis of Nutrition and Aging; Malavolta, M.; Mocchegiani, E., Eds.; Elsevier: Amsterdam, 2016; pp. 491-511.
[http://dx.doi.org/10.1016/B978-0-12-801816-3.00035-2]
[21]
Jose, S.; Kuriakose, S. Synthesis, characterization and thermal studies of silver nanoparticles-β-cyclodextrin ICs modified with (2E)-3-3-[(Z)-naphthalen-1-yldiazenyl] phenyl prop-2-enoic acid. J. Incl. Phenom. Macrocycl. Chem., 2016, 87, 1-14.
[22]
Dandawate, P.R.; Vyas, A.; Ahmad, A.; Banerjee, S.; Deshpande, J.; Swamy, K.V.; Jamadar, A.; Dumhe-Klaire, A.C.; Padhye, S.; Sarkar, F.H. Inclusion complex of novel curcumin analogue CDF and β-cyclodextrin (1:2) and its enhanced in vivo anticancer activity against pancreatic cancer. Pharm Res., 2012, 29(7), 1775-86.2012..
[23]
Sharma, M.; Manoharlal, R.; Puri, N.; Prasad, R. Antifungal curcumin induces reactive oxygen species and triggers an early apoptosis but prevents hyphae development by targeting the global repressor TUP1 in Candida albicans. Biosci. Rep., 2010, 30(6), 391-404.
[http://dx.doi.org/10.1042/BSR20090151] [PMID: 20017731]
[24]
Zhang, L.; Man, S.; Qiu, H.; Liu, Z.; Zhang, M.; Ma, L.; Gao, W. Curcumin-cyclodextrin complexes enhanced the anti-cancer effects of curcumin. Environ. Toxicol. Pharmacol., 2016, 48, 31-38.
[http://dx.doi.org/10.1016/j.etap.2016.09.021] [PMID: 27716533]
[25]
Sierpe, R.; Lang, E.; Jara, P.; Guerrero, A.R.; Chornik, B.; Kogan, M.J.; Yutronic, N. Gold nanoparticles interacting with β-cyclodextrin-phenylethylamine inclusion complex: A ternary system for photothermal drug release. ACS Appl. Mater. Interfaces, 2015, 7(28), 15177-15188.
[http://dx.doi.org/10.1021/acsami.5b00186] [PMID: 26091143]
[26]
Cheirsilp, B.; Rakmai, J. Inclusion complex formation of cyclodextrin with its guest and their applications. Biol. Eng. Med., 2016, 2(1), 1-6.
[27]
Tanvir, E.M.; Sakib Hossen, M.; Fuad Hossain, M.; Afroz, R.; Siew Hua Gan, M.; Khalil, I. Antioxidant properties of popular turmeric (Curcuma longa) varieties from Bangladesh. J. Food Qual., 2017, ID 8471785.
[28]
Wang, X-S.; Zhang, Z-R.; Zhang, M-M.; Sun, M-X.; Wang, W-W.; Xie, C-L. Neuroprotective properties of curcumin in toxin-base animal models of Parkinson’s disease: A systematic experiment literatures review. BMC Complement. Altern. Med., 2017, 17(1), 412.
[http://dx.doi.org/10.1186/s12906-017-1922-x] [PMID: 28818104]
[29]
Biswas, S.K. Does the interdependence between oxidative stress and inflammation explain the antioxidant paradox? Oxid. Med. Cell. Longev., 2016, 2016, 5698931.
[http://dx.doi.org/10.1155/2016/5698931] [PMID: 26881031]
[30]
Sahebkar, A.; Maria-Corina, S.; Ursoniu, S.; Banach, M. Effect of curcuminoids on oxidative stress: A systematic review and meta-analysis of randomized controlled trials. J. Funct. Foods, 2015, 18, 898-909.
[http://dx.doi.org/10.1016/j.jff.2015.01.005]
[31]
Terlecky, S.R.; Terlecky, L.J.; Giordano, C.R. Peroxisomes, oxidative stress and inflammation. World J. Biol. Chem., 2012, 3(5), 93-97.
[http://dx.doi.org/10.4331/wjbc.v3.i5.93]
[32]
Hewlings, S.J.; Kalman, D.S. Curcumin: A review of its’ effects on human health. Foods, 2017, 6(10)E92
[http://dx.doi.org/10.3390/foods6100092] [PMID: 29065496]
[33]
Edwards, R.L.; Luis, P.B.; Varuzza, P.V.; Joseph, A.I.; Presley, S.H.; Chaturvedi, R.; Schneider, C. The anti-inflammatory activity of curcumin is mediated by its oxidative metabolites. J. Biol. Chem., 2017, 292(52), 21243-21252.
[http://dx.doi.org/10.1074/jbc.RA117.000123] [PMID: 29097552]
[34]
Reuter, S.; Gupta, S.C.; Chaturvedi, M.M.; Aggarwal, B.B. Oxidative stress, inflammation, and cancer: How are they linked? Free Radic. Biol. Med., 2010, 49(11), 1603-1616.
[http://dx.doi.org/10.1016/j.freeradbiomed.2010.09.006] [PMID: 20840865]
[35]
Suresh, D.; Srinivasan, K. Tissue distribution & elimination of capsaicin, piperine & curcumin following oral intake in rats. Indian J. Med. Res., 2010, 131, 682-691.
[PMID: 20516541]
[36]
Vajragupta, O.; Boonchoong, P.; Watanabe, H.; Tohda, M.; Kummasud, N.; Sumanont, Y. Manganese complexes of curcumin and its derivatives: Evaluation for the radical scavenging ability and neuroprotective activity. Free Radic. Biol. Med., 2003, 35(12), 1632-1644.
[http://dx.doi.org/10.1016/j.freeradbiomed.2003.09.011] [PMID: 14680686]
[37]
Mishra, B.; Priyadarsini, K.I.; Bhide, M.K.; Kadam, R.M.; Mohan, H. Reactions of superoxide radicals with curcumin: Probable mechanisms by optical spectroscopy and EPR. Free Radic. Res., 2004, 38(4), 355-362.
[http://dx.doi.org/10.1080/10715760310001660259] [PMID: 15190932]
[38]
Joe, B.; Lokesh, B.R. Role of capsaicin, curcumin and dietary n-3 fatty acids in lowering the generation of reactive oxygen species in rat peritoneal macrophages. Biochim. Biophys. Acta, 1994, 1224(2), 255-263.
[http://dx.doi.org/10.1016/0167-4889(94)90198-8] [PMID: 7981240]
[39]
Takahashi, M.; Suzuki, K.; Kim, H.K.; Otsuka, Y.; Imaizumi, A.; Miyashita, M.; Sakamoto, S. Effects of curcumin supplementation on exercise-induced oxidative stress in humans. Int. J. Sports Med., 2014, 35(6), 469-475.
[PMID: 24165958]
[40]
Murakami, A.; Furukawa, I.; Miyamoto, S.; Tanaka, T.; Ohigashi, H. Curcumin combined with turmerones, essential oil components of turmeric, abolishes inflammation-associated mouse colon carcinogenesis. Biofactors, 2013, 39(2), 221-232.
[http://dx.doi.org/10.1002/biof.1054] [PMID: 23233214]
[41]
Prasad, S.; Tyagi, A.K.; Aggarwal, B.B. Recent developments in delivery, bioavailability, absorption and metabolism of curcumin: The golden pigment from golden spice. Cancer Res. Treat., 2014, 46(1), 2-18.
[http://dx.doi.org/10.4143/crt.2014.46.1.2] [PMID: 24520218]
[42]
Nagaraju, G.P.; Benton, L.; Bethi, S.R.; Shoji, M.; El-Rayes, B.F. Curcumin analogs: Their roles in pancreatic cancer growth and metastasis. Int. J. Cancer, 2019, 145(1), 10-19.
[http://dx.doi.org/10.1002/ijc.31867] [PMID: 30226272]
[43]
Shoji, M.; Qian, W.P.; Nagaraju, G.P.; Brat, D.J.; Pessolano, D.; Luzietti, R.; Chennamadhavuni, S.; Yamaguchi, M.; Yang, L.; Liotta, D.C. Inhibition of breast cancer metastasis to the lungs with UBS109. Oncotarget, 2018, 9(90), 36102-36109.
[http://dx.doi.org/10.18632/oncotarget.26302] [PMID: 30546830]
[44]
Ryan, J.L.; Heckler, C.E.; Ling, M.; Katz, A.; Williams, J.P.; Pentland, A.P.; Morrow, G.R. Curcumin for radiation dermatitis: A randomized, double-blind, placebo-controlled clinical trial of thirty breast cancer patients. Radiat. Res., 2013, 180(1), 34-43.
[http://dx.doi.org/10.1667/RR3255.1] [PMID: 23745991]
[45]
Amitay, E.L.; Krilaviciute, A.; Brenner, H. Systematic review: Gut microbiota in fecal samples and detection of colorectal neoplasms. Gut Microbes, 2018, 9(4), 293-307.
[http://dx.doi.org/10.1080/19490976.2018.1445957] [PMID: 29543545]
[46]
Burns, M.B.; Blekhman, R. Integrating tumor genomics into studies of the microbiome in colorectal cancer. Gut Microbes, 2019, 10(4), 547-552.
[PMID: 30556775]
[47]
Barr, T.; Sureshchandra, S.; Ruegger, P.; Zhang, J.; Ma, W.; Borneman, J.; Grant, K.; Messaoudi, I. Concurrent gut transcriptome and microbiota profiling following chronic ethanol consumption in nonhuman primates. Gut Microbes, 2018, 9(4), 338-356.
[http://dx.doi.org/10.1080/19490976.2018.1441663] [PMID: 29517944]
[48]
Arnoldini, M.; Cremer, J.; Hwa, T. Bacterial growth, flow, and mixing shape human gut microbiota density and composition. Gut Microbes, 2018, 9(6), 559-566.
[http://dx.doi.org/10.1080/19490976.2018.1448741] [PMID: 29533125]
[49]
Brown, K.; Abbott, D.W.; Uwiera, R.R.E.; Inglis, G.D. Removal of the cecum affects intestinal fermentation, enteric bacterial community structure, and acute colitis in mice. Gut Microbes, 2018, 9(3), 218-235.
[http://dx.doi.org/10.1080/19490976.2017.1408763] [PMID: 29227180]
[50]
Bagga, D.; Reichert, J.L.; Koschutnig, K.; Aigner, C.S.; Holzer, P.; Koskinen, K.; Moissl-Eichinger, C.; Schöpf, V. Probiotics drive gut microbiome triggering emotional brain signatures. Gut Microbes, 2018, 9(6), 486-496.
[http://dx.doi.org/10.1080/19490976.2018.1460015] [PMID: 29723105]
[51]
Davoren, M.J.; Liu, J.; Castellanos, J.; Rodriguez-Malave, N.I.; Schiest, R.H. A novel probiotic, Lactobacillus johnsonii 456, resists acid and can persist in the human gut beyond the initial ingestion period. Gut Microbes, 2018, 1-23.
[PMID: 30580660]
[52]
Colliou, N.; Ge, Y.; Gong, M.; Zadeh, M.; Li, J.; Alonzo, F., III; Mohamadzadeh, M. Regulation of Th17 cells by P. UF1 against systemic Listeria monocytogenes infection. Gut Microbes, 2018, 9(3), 279-287.
[http://dx.doi.org/10.1080/19490976.2017.1417731] [PMID: 29420115]
[53]
Kiuchi, F.; Goto, Y.; Sugimoto, N.; Akao, N.; Kondo, K.; Tsuda, Y. Nematocidal activity of turmeric: Synergistic action of curcuminoids. Chem Pharm Bu, 1993, 41,1640e3.
[54]
Azandeh, S.S.; Abbaspour, M.; Khodadadi, A.; Khorsandi, L.; Orazizadeh, M.; Heidari-Moghadam, A. Anticancer activity of curcumin-loaded PLGA nanoparticles on PC3 prostate cancer cells. Iran. J. Pharm. Res., 2017, 16(3), 868-879.
[PMID: 29201078]
[55]
Pathak, L.; Kanwal, A.; Agrawal, Y. Curcumin loaded self assembled lipid-biopolymer nanoparticles for functional food applications. J. Food Sci. Technol., 2015, 52(10), 6143-6156.
[http://dx.doi.org/10.1007/s13197-015-1742-2] [PMID: 26396362]
[56]
Bomdyal, R.S.; Shah, M.U.; Doshi, Y.S.; Shah, V.A.; Khirade, S.P. Antibacterial activity of curcumin (turmeric) against periopathogens - an in vitro evaluation. J. Adv. Clin. Res. Insights., 2017, 4, 175-180.
[57]
Maria, D.N.; Mishra, S.R.; Wang, L.; Abd-Elgawad, A.H.; Soliman, O.A.; El-Dahan, M.S.; Jablonski, M.M. Water-soluble complex of curcumin with cyclodextrins: Enhanced physical properties for ocular drug delivery. Curr. Drug Deliv., 2017, 14(6), 875-886.
[http://dx.doi.org/10.2174/1567201813666160808111209] [PMID: 27501714]
[58]
Chen, J.; Qin, X.; Zhong, S.; Chen, S.; Su, W.; Liu, Y. Characterization of curcumin/ cyclodextrin polymer inclusion complex and investigation on its antioxidant and antiproliferative activities. Molecules, 2018, 23(5), 1179.
[http://dx.doi.org/10.3390/molecules23051179] [PMID: 29762477]
[59]
Singh, P.K.; Wani, K.; Kaul-Ghanekar, R.; Prabhune, A.; Ogale, S. From micron to nano-curcumin by sophorolipid co-processing: Highly enhanced bioavailability, fluorescence, and anti-cancer efficacy. RSC Advances, 2014, 4, 60334.
[http://dx.doi.org/10.1039/C4RA07300B]
[60]
Singh, R.; Bharti, N.; Madan, J.; Hiremath, S.N. Characterization of cyclodextrin ICs - a review. J. Pharm. Sci. Technol., 2010, 2(3), 171-183.
[61]
Ja’far, M.H.; Kamal, N.S.N.M.; Boon, H.; Kamaruzzaman, M.F.; Zain, N.M.; Noorfatimah, Y.; Muggundha, R. Inclusion of curcumin in β-cyclodextrins as potential drug delivery system: preparation, characterization and its preliminary cytotoxicity approaches. Sains Malays., 2018, 47, 977-989.
[http://dx.doi.org/10.17576/jsm-2018-4705-13]
[62]
Syed, H.; Peh, K-K. Comparative curcumin solubility enhancement study of β-cyclodextrin (βCD) and its derivative hydroxypropyl-β-cyclodextrin (HPβCD). Lat. Am. J. Pharm., 2012, 32, 52-59.
[63]
Mohan, P.R.K.; Sreelakshmi, G.; Muraleedharan, C.V.; Roy, J. Water soluble complexes of curcumin with cyclodextrins: Characterization by FT-Raman spectroscopy. Vib. Spectrosc., 2012, 62, 77-84.
[http://dx.doi.org/10.1016/j.vibspec.2012.05.002]
[64]
Rahman, S.; Cao, S.; Steadman, K.J.; Wei, M.; Parekh, H.S.; Parekh, H.S. Native and β-cyclodextrin-enclosed curcumin: Entrapment within liposomes and their in vitro cytotoxicity in lung and colon cancer. Drug Deliv., 2012, 19(7), 346-353.
[http://dx.doi.org/10.3109/10717544.2012.721143] [PMID: 23030405]
[65]
Weitzman, S.A.; Gordon, L.I. Inflammation and cancer: role of phagocyte-generated oxidants in carcinogenesis. Blood, 1990, 76(4), 655-663.
[PMID: 2200535]
[66]
Frenkel, K. Carcinogen-mediated oxidant formation and oxidative DNA damage. Pharmacol. Ther., 1992, 53(1), 127-166.
[http://dx.doi.org/10.1016/0163-7258(92)90047-4] [PMID: 1641400]
[67]
Hattori-Nakakuki, Y.; Nishigori, C.; Okamoto, K.; Imamura, S.; Hiai, H.; Toyokuni, S. Formation of 8-hydroxy-2′-deoxyguanosine in epidermis of hairless mice exposed to near-UV. Biochem. Biophys. Res. Commun., 1994, 201(3), 1132-1139.
[http://dx.doi.org/10.1006/bbrc.1994.1823] [PMID: 8024554]
[68]
Jagetia, G.C.; Rajanikant, G.K. Curcumin stimulates the antioxidant mechanisms in mouse skin exposed to fractionated γ-irradiation. Antioxidants, 2015, 4(1), 25-41.
[http://dx.doi.org/10.3390/antiox4010025] [PMID: 26785336]
[69]
Panahi, Y.; Khalili, N.; Sahebi, E.; Namazi, S.; Atkin, S.L.; Majeed, M.; Sahebkar, A. Curcuminoids plus piperine modulate adipokines in type 2 diabetes mellitus. Curr. Clin. Pharmacol., 2017, 12(4), 253-258.
[http://dx.doi.org/10.2174/1574884713666180104095641] [PMID: 29299989]
[70]
Larasati, Y.A.; Yoneda-Kato, N.; Nakamae, I.; Yokoyama, T.; Meiyanto, E.; Kato, J-Y. Curcumin targets multiple enzymes involved in the ROS metabolic pathway to suppress tumor cell growth. Sci. Rep., 2018, 8(1), 2039.
[http://dx.doi.org/10.1038/s41598-018-20179-6] [PMID: 29391517]
[71]
Lin, X.; Bai, D.; Wei, Z.; Zhang, Y.; Huang, Y.; Deng, H.; Huang, X. Curcumin attenuates oxidative stress in RAW264.7 cells by increasing the activity of antioxidant enzymes and activating the Nrf2-Keap1 pathway. PLoS One, 2019, 14(5)e0216711
[http://dx.doi.org/10.1371/journal.pone.0216711] [PMID: 31112588]
[72]
Marquardt, J.U.; Gomez-Quiroz, L.; Arreguin Camacho, L.O.; Pinna, F.; Lee, Y.H.; Kitade, M.; Domínguez, M.P.; Castven, D.; Breuhahn, K.; Conner, E.A.; Galle, P.R.; Andersen, J.B.; Factor, V.M.; Thorgeirsson, S.S. Curcumin effectively inhibits oncogenic NF-κB signaling and restrains stemness features in liver cancer. J. Hepatol., 2015, 63(3), 661-669.
[http://dx.doi.org/10.1016/j.jhep.2015.04.018] [PMID: 25937435]
[73]
Olivera, A.; Moore, T.W.; Hu, F.; Brown, A.P.; Sun, A.; Liotta, D.C.; Snyder, J.P.; Yoon, Y.; Shim, H.; Marcus, A.I.; Miller, A.H.; Pace, T.W. Inhibition of the NF-κB signaling pathway by the curcumin analog, 3,5-Bis(2-pyridinylmethylidene)-4-piperidone (EF31): anti-inflammatory and anti-cancer properties. Int. Immunopharmacol., 2012, 12(2), 368-377.
[http://dx.doi.org/10.1016/j.intimp.2011.12.009] [PMID: 22197802]
[74]
Rezaii, M.; Oryan, S.; Javeri, A. Curcumin nanoparticles incorporated collagen-chitosan scaffold promotes cutaneous wound healing through regulation of TGF-β1/Smad7 gene expression. Mater. Sci. Eng. C, 2019, 98, 347-357.
[http://dx.doi.org/10.1016/j.msec.2018.12.143] [PMID: 30813036]
[75]
Yadav, P.; Bandyopadhyay, A.; Chakraborty, A.; Sarkar, K. Enhancement of anticancer activity and drug delivery of chitosan-curcumin nanoparticle via molecular docking and simulation analysis. Carbohydr. Polym., 2018, 182, 188-198.
[http://dx.doi.org/10.1016/j.carbpol.2017.10.102] [PMID: 29279114]
[76]
Rajitha, B.; Nagaraju, G.P.; Shaib, W.L.; Alese, O.B.; Snyder, J.P.; Shoji, M.; Pattnaik, S.; Alam, A.; El-Rayes, B.F. Novel synthetic curcumin analogs as potent antiangiogenic agents in colorectal cancer. Mol. Carcinog., 2017, 56(1), 288-299.
[http://dx.doi.org/10.1002/mc.22492] [PMID: 27128654]
[77]
Gupta, A.; Mahajan, S.; Sharma, R. Evaluation of antimicrobial activity of Curcuma longa rhizome extract against Staphylococcus aureus. Biotechnol. Rep. (Amst.), 2015, 6, 51-55.
[http://dx.doi.org/10.1016/j.btre.2015.02.001] [PMID: 28626697]
[78]
Wang, J.; Zhou, X.; Li, W.; Deng, X.; Deng, Y.; Niu, X. Curcumin protects mice from Staphylococcus aureus pneumonia by interfering with the self-assembly process of α-hemolysin. Sci. Rep., 2016, 6, 28254.
[http://dx.doi.org/10.1038/srep28254] [PMID: 27345357]
[79]
Bar, R.; Ulitzur, S. Bacterial toxicity of cyclodextrins: Luminuous Escherichia coli as a model. Appl. Microbiol. Biotechnol., 1994, 41(5), 574-577.
[http://dx.doi.org/10.1007/BF00178492] [PMID: 7765085]
[80]
Teow, S.Y.; Liew, K.; Ali, S.A.; Khoo, A.S.; Peh, S.C. Antibacterial action of curcumin against Staphylococcus aureus: A brief review. J. Trop. Med., 2016, 2016, 2853045.
[http://dx.doi.org/10.1155/2016/2853045] [PMID: 27956904]
[81]
Cieplak, T.; Soffer, N.; Sulakvelidze, A.; Nielsen, D.S. A bacteriophage cocktail targeting Escherichia coli reduces E. coli in simulated gut conditions, while preserving a non-targeted representative commensal normal microbiota. Gut Microbes, 2018, 9(5), 391-399.
[http://dx.doi.org/10.1080/19490976.2018.1447291] [PMID: 29517960]
[82]
Borgersen, Q.; Bolick, D.T.; Kolling, G.L.; Aijuka, M.; Ruiz-Perez, F.; Guerrant, R.L.; Nataro, J.P.; Santiago, A.E. Abundant production of exopolysaccharide by EAEC strains enhances the formation of bacterial biofilms in contaminated sprouts. Gut Microbes, 2018, 9(3), 264-278.
[http://dx.doi.org/10.1080/19490976.2018.1429877] [PMID: 29543544]
[83]
Anjuwon-Foster, B.R.; Tamayo, R. Phase variation of Clostridium difficile virulence factors. Gut Microbes, 2018, 9(1), 76-83.
[http://dx.doi.org/10.1080/19490976.2017.1362526] [PMID: 28806147]
[84]
Džunková, M.; Moya, A.; Chen, X.; Kelly, C.; D’Auria, G. Detection of mixed-strain infections by FACS and ultra-low input genome sequencing. Gut Microbes, 2018, 1-5
[http://dx.doi.org/10.1080/19490976.2018.1526578] [PMID: 30289342]
[85]
Gera, M.; Sharma, N.; Ghosh, M.; Huynh, D.L.; Lee, S.J.; Min, T.; Kwon, T.; Jeong, D.K. Nanoformulations of curcumin: An emerging paradigm for improved remedial application. Oncotarget, 2017, 8(39), 66680-66698.
[http://dx.doi.org/10.18632/oncotarget.19164] [PMID: 29029547]
[86]
Mandroli, P.S.; Bhat, K. An in vitro evaluation of antibacterial activity of curcumin against common endodontic bacteria. J. Appl. Pharm. Sci., 2013, 3(10), 106-108.
[87]
Tyagi, P.; Singh, M.; Kumari, H.; Kumari, A.; Mukhopadhyay, K. Bactericidal activity of curcumin I is associated with damaging of bacterial membrane. PLoS One, 2015, 10(3) e0121313
[http://dx.doi.org/10.1371/journal.pone.0121313] [PMID: 25811596]
[88]
Dovigo, L.N.; Carmello, J.C.; de Souza Costa, C.A.; Vergani, C.E.; Brunetti, I.L.; Bagnato, V.S.; Pavarina, A.C. Curcumin-mediated photodynamic inactivation of Candida albicans in a murine model of oral candidiasis. Med. Mycol., 2013, 51(3), 243-251.
[http://dx.doi.org/10.3109/13693786.2012.714081] [PMID: 22934533]
[89]
An, J.; Li, Z.; Dong, Y.; Ren, J.; Guo, K. Methicillin-resistant Staphylococcus aureus infection exacerbates NSCLC cell metastasis by up-regulating TLR4/MyD88 pathway. Cell. Mol. Biol., 2016, 62(8), 1-7.
[PMID: 27545207]
[90]
Kullander, J.; Forslund, O.; Dillner, J. Staphylococcus aureus and squamous cell carcinoma of the skin cancer. Epidemiol. Biomarkers Prev, 2009, 18(2)

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy