Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

Research Article

Electrochemical Study of Dimensional Specific Carbon Nanomaterials Modified Glassy Carbon Electrode for Highly Sensitive Label-free Detection of Immunoglobulin A

Author(s): Juthi Adhikari, Mohammad Rizwan, David Koh, Natasha Ann Keasberry and Minhaz Uddin Ahmed *

Volume 16, Issue 7, 2020

Page: [833 - 842] Pages: 10

DOI: 10.2174/1573411015666190925152124

Price: $65

Abstract

Background: Immunoglobulin A (IgA) accounts for 15% of total protein production per day and plays a crucial role in the first-line immune defence. Recently, IgA has been established as a vital clinical biomarker for nephropathy, allergic asthma, celiac disease (CD), pneumonia, and asthma as well as some neurological disorders. In this work, we have studied several carbon nanomaterials (CNMs) having different dimensions (D): carbon nano-onions (CNOs) - 0D, single-walled carbon nanotubes (SWCNTs) - 1D, and graphene nanoplatelets (GNPs) - 2D, on glassy carbon electrode (GCE) to identify which CNMs (CNOs/SWCNTs/GNPs) work best to fabricate IgA based electrochemical immunosensor.

Methods: Different CNMs (CNOs, SWCNTs, GNPs) were tested for high electric current on GCE using square wave voltammetry (SWV), and among them, GNPs modified GCE platform (GNPs/GCE) showcased the highest electric current. Therefore, GNPs/GCE was utilized for the development of highly sensitive label-free electrochemical immunosensor for the detection of Immunoglobulin A using SWV.

Results: Despite the simple fabrication strategies employed, the fabricated sensor demonstrated a low limit of detection of 50 fg mL-1 with an extensive linear range of detection from 50 fg mL-1 to 0.1 μg mL-1.

Conclusion: Fabricated immunosensor represented high stability, repeatability, specificity and resistance to most common interferences as well as great potential to analyse the real sample.

Keywords: Carbon nanomaterials, electrochemical immunosensor, graphene nanoplatelets, immunoglobulin A, label-free detection, square wave voltammetry.

Graphical Abstract

[1]
Woof, J.M.; Kerr, M.A. The function of immunoglobulin A in immunity. J. Pathol., 2006, 208(2), 270-282.
[http://dx.doi.org/10.1002/path.1877] [PMID: 16362985]
[2]
Garyfallou, G.Z.; Ketebu, O.; Şahin, S.; Mukaetova-Ladinska, E.B.; Catt, M.; Yu, E.H.; Eileen, H.Y. Electrochemical detection of plasma immunoglobulin as a biomarker for alzheimer’s disease. Sensors (Basel), 2017, 17(11), 2462-2464.
[http://dx.doi.org/10.3390/s17112464] [PMID: 29077013]
[3]
da Silva Neves, M.M.; González-Garcia, M.B.; Nouws, H.P.A.; Delerue-Matos, C.; Santos-Silva, A.; Costa-García, A. Celiac disease diagnosis and gluten-free food analytical control. Anal. Bioanal. Chem., 2010, 397(5), 1743-1753.
[http://dx.doi.org/10.1007/s00216-010-3753-1] [PMID: 20446081]
[4]
Kutukculer, N.; Karaca, N.E.; Demircioglu, O.; Aksu, G. Increases in serum immunoglobulins to age-related normal levels in children with IgA and/or IgG subclass deficiency. Pediatr. Allergy Immunol., 2007, 18(2), 167-173.
[http://dx.doi.org/10.1111/j.1399-3038.2006.00491.x] [PMID: 17338791]
[5]
Ahmed, M.U.; Saaem, I.; Wu, P.C.; Brown, A.S. Personalized diagnostics and biosensors: A review of the biology and technology needed for personalized medicine. Crit. Rev. Biotechnol., 2014, 34(2), 180-196.
[http://dx.doi.org/10.3109/07388551.2013.778228] [PMID: 23607309]
[6]
Ahmed, M.U.; Hossain, M.M.; Safavieh, M.; Wong, Y.L.; Abd Rahman, I.; Zourob, M.; Tamiya, E. Toward the development of smart and low cost point-of-care biosensors based on screen printed electrodes. Crit. Rev. Biotechnol., 2016, 36(3), 495-505.
[PMID: 25578718]
[7]
Martín-Yerga, D.; González-García, M.B.; Costa-García, A. Use of nanohybrid materials as electrochemical transducers for mercury sensors. Sens. Actuators B Chem., 2012, 165, 143-150.
[http://dx.doi.org/10.1016/j.snb.2012.02.031]
[8]
Ahmed, M.U.; Hossain, M.M.; Tamiya, E. Electrochemical biosensors for medical and food applications. Electroanalysis, 2008, 20, 616-626.
[http://dx.doi.org/10.1002/elan.200704121]
[9]
Booth, C.K.; Dwyer, D.B.; Pacque, P.F.; Ball, M.J. Measurement of immunoglobulin A in saliva by particle-enhanced nephelometric immunoassay: sample collection, limits of quantitation, precision, stability and reference range. Ann. Clin. Biochem., 2009, 46(Pt 5), 401-406.
[http://dx.doi.org/10.1258/acb.2009.008248] [PMID: 19641004]
[10]
Chen, F.; Mao, S.; Zeng, H.; Xue, S.; Yang, J.; Nakajima, H.; Lin, J.M.; Uchiyama, K. Inkjet nanoinjection for high-thoughput chemiluminescence immunoassay on multicapillary glass plate. Anal. Chem., 2013, 85(15), 7413-7418.
[http://dx.doi.org/10.1021/ac4013336] [PMID: 23815610]
[11]
Domínguez-Renedo, O.; Alonso-Lomillo, M.A.; Arcos-Martínez, M.J. Disposable electrochemical biosensors in microbiology. Talanta, 2007, 73, 202-219.
[12]
Lim, S.A.; Ahmed, M.U. A carbon nanofiber-based label free immunosensor for high sensitive detection of recombinant bovine somatotropin. Biosens. Bioelectron., 2015, 70, 48-53.
[http://dx.doi.org/10.1016/j.bios.2015.03.022] [PMID: 25794957]
[13]
How, G.T.S.; Pandikumar, A.; Ming, H.N.; Ngee, L.H. Highly exposed 001 facets of titanium dioxide modified with reduced graphene oxide for dopamine sensing. Sci. Rep., 2014, 4, 5044.
[http://dx.doi.org/10.1038/srep05044] [PMID: 24853929]
[14]
Lim, S.A.; Ahmed, M.U. Electrochemical immunosensors and their recent nanomaterial-based signal amplification strategies: A review. RSC Advances, 2016, 6, 4995-25014.
[http://dx.doi.org/10.1039/C6RA00333H]
[15]
Chaki, N.K.; Vijayamohanan, K. Self-assembled monolayers as a tunable platform for biosensor applications. Biosens. Bioelectron., 2002, 17(1-2), 1-12.
[http://dx.doi.org/10.1016/S0956-5663(01)00277-9] [PMID: 11742729]
[16]
Ho, J.A.; Chang, H.C.; Shih, N.Y.; Wu, L.C.; Chang, Y.F.; Chen, C.C.; Chou, C. Diagnostic detection of human lung cancer associated antigen using a gold nanoparticle-based electrochemical immunosensor. Anal. Chem., 2010, 82(14), 5944-5950.
[http://dx.doi.org/10.1021/ac1001959] [PMID: 20557064]
[17]
Mougin, K.; Ham, A.S.; Lawrence, M.B.; Fernandez, E.J.; Hillier, A.C. Construction of a tethered poly(ethylene glycol) surface gradient for studies of cell adhesion kinetics. Langmuir, 2005, 21(11), 4809-4812.
[http://dx.doi.org/10.1021/la050613v] [PMID: 15896016]
[18]
Neves, M.M.; González-García, M.B.; Nouws, H.P.; Costa-García, A. Celiac disease detection using a transglutaminase electrochemical immunosensor fabricated on nanohybrid screen-printed carbon electrodes. Biosens. Bioelectron., 2012, 31(1), 95-100.
[http://dx.doi.org/10.1016/j.bios.2011.09.044] [PMID: 22019096]
[19]
Ohno, R.; Ohnuki, H.; Wang, H.; Yokoyama, T.; Endo, H.; Tsuya, D.; Izumi, M. Electrochemical impedance spectroscopy biosensor with interdigitated electrode for detection of human immunoglobulin A. Biosens. Bioelectron., 2013, 40(1), 422-426.
[http://dx.doi.org/10.1016/j.bios.2012.07.052] [PMID: 22917917]
[20]
Luo, X.; Morrin, A.; Killard, A.J.; Smyth, M.R. Application of nanoparticles in electrochemical sensors and biosensors. Electroanalysis, 2006, 18, 319-326.
[http://dx.doi.org/10.1002/elan.200503415]
[21]
Rizwan, M.; Elma, S.; Lim, S.A.; Ahmed, M.U. AuNPs/CNOs/SWCNTs/chitosan-nanocomposite modified electrochemical sensor for the label-free detection of carcinoembryonic antigen. Biosens. Bioelectron., 2018, 107, 211-217.
[http://dx.doi.org/10.1016/j.bios.2018.02.037] [PMID: 29471282]
[22]
Rizwan, M.; Koh, D.; Booth, M.H.; Ahmed, M.U. Combining a gold nanoparticle-polyethylene glycol nanocomposite and carbon nanofiber electrodes to develop a highly sensitive salivary secretory immunoglobulin A immunosensor. Sensor. Actuat. Biol Chem., 2018, 255, 557-563.
[23]
Lim, S.A.; Yoshikawa, H.; Tamiya, E.; Yasin, H.M.; Ahmed, M.U. A highly sensitive gold nanoparticle bioprobe based electrochemical immunosensor using screen printed graphene biochip. RSC Advances, 2014, 4, 58460-58466.
[http://dx.doi.org/10.1039/C4RA11066H]
[24]
Lee, S.X.; Lim, H.N.; Ibrahim, I.; Jamil, A.; Pandikumar, A.; Huang, N.M. Horseradish peroxidase-labeled silver/reduced graphene oxide thin film-modified screen-printed electrode for detection of carcinoembryonic antigen. Biosens. Bioelectron., 2017, 89(Pt 1), 673-680.
[http://dx.doi.org/10.1016/j.bios.2015.12.030] [PMID: 26718548]
[25]
Jamil, A.; Lim, H.N.; Yusof, N.A.; Tajudin, A.A.; Huang, N.M. Pandikumar, Golsheikh, A.M.; Lee, H.Y.; Andou, Y. Preparation and characterization of silver nanoparticles-reduced graphene oxide on ITO for immunosensing platform. Sensor. Actuat. Biol Chem., 2015, 221, 1423-1432.
[26]
Abdelkader, A.M.; Cooper, A.J.; Dryfe, R.A.W.; Kinloch, I.A. How to get between the sheets: A review of recent works on the electrochemical exfoliation of graphene materials from bulk graphite. Nanoscale, 2015, 7(16), 6944-6956.
[http://dx.doi.org/10.1039/C4NR06942K] [PMID: 25703415]
[27]
Gao, Y.S.; Zhu, X.F.; Xu, J.K.; Lu, L.M.; Wang, W.M.; Yang, T.T.; Xing, H.K.; Yu, Y.F. Label-free electrochemical immunosensor based on Nile blue A-reduced graphene oxide nanocomposites for carcinoembryonic antigen detection. Anal. Biochem., 2016, 500, 80-87.
[http://dx.doi.org/10.1016/j.ab.2016.02.010] [PMID: 26898304]
[28]
Peik-See, T.; Pandikumar, A.; Nay-Ming, H.; Hong-Ngee, L.; Sulaiman, Y. Simultaneous electrochemical detection of dopamine and ascorbic acid using an iron oxide/reduced graphene oxide modified glassy carbon electrode. Sensors (Basel), 2014, 14(8), 15227-15243.
[http://dx.doi.org/10.3390/s140815227] [PMID: 25195850]
[29]
Yusoff, N.; Rameshkumar, P.; Mehmood, M.S.; Pandikumar, A.; Lee, H.W.; Huang, N.M. Ternary nanohybrid of reduced graphene oxide-nafion@silver nanoparticles for boosting the sensor performance in non-enzymatic amperometric detection of hydrogen peroxide. Biosens. Bioelectron., 2017, 87, 1020-1028.
[http://dx.doi.org/10.1016/j.bios.2016.09.045] [PMID: 27697744]
[30]
Pandikumar, A.; How, G.T.S.; See, T.P.; Omar, F.S.; Jayabal, S.; Kamali, K.Z.; Yusoff, N.; Jamil, A.; Ramaraj, R.; John, A.W.; Lim, H.N.; Huang, N.M. Graphene and its nanocomposite material based electrochemical sensor platform for dopamine. RSC. Adv., 2014, 4, 63296-63323.
[31]
Yang, C.; Denno, M.E.; Pyakurel, P.; Venton, B.J. Recent trends in carbon nanomaterial-based electrochemical sensors for biomolecules: A review. Anal. Chim. Acta, 2015, 887, 17-37.
[http://dx.doi.org/10.1016/j.aca.2015.05.049] [PMID: 26320782]
[32]
Roy, S.; Wei, S.X.; Ying, J.L.Z.; Safavieh, M.; Ahmed, M.U. A novel, sensitive and label-free loop-mediated isothermal amplification detection method for nucleic acids using luminophore dyes. Biosens. Bioelectron., 2016, 86, 346-352.
[http://dx.doi.org/10.1016/j.bios.2016.06.065] [PMID: 27393827]
[33]
Yang, L.; Zhao, H.; Fan, S.; Deng, S.; Lv, Q.; Lin, J.; Li, C.P. Label-free electrochemical immunosensor based on gold-silicon carbide nanocomposites for sensitive detection of human chorionic gonadotrophin. Biosens. Bioelectron., 2014, 57, 199-206.
[http://dx.doi.org/10.1016/j.bios.2014.02.019] [PMID: 24583692]
[34]
Shao, Y.; Wang, J.; Wu, H.; Liu, J.; Aksay, I.A.; Lin, Y. Graphene based electrochemical sensors and biosensors: A review. Eletroanalysis, 2010, 22(10), 1027-1036.
[35]
Mahshid, S.S.; Camiré, S.; Ricci, F.; Vallée-Bélisle, A. A highly selective electrochemical DNA-based sensor that employs steric hindrance effects to detect proteins directly in whole blood. J. Am. Chem. Soc., 2015, 137(50), 15596-15599.
[http://dx.doi.org/10.1021/jacs.5b04942] [PMID: 26339721]
[36]
Huang, J.; Liu, Y.; You, T. Carbon nanofiber based electrochemical biosensors: A review. Anal. Methods, 2010, 2, 202-211.
[http://dx.doi.org/10.1039/b9ay00312f]
[37]
Eissa, S.; L’Hocine, L.; Siaj, M.; Zourob, M. A graphene-based label-free voltammetric immunosensor for sensitive detection of the egg allergen ovalbumin. Analyst (Lond.), 2013, 138(15), 4378-4384.
[http://dx.doi.org/10.1039/c3an36883a] [PMID: 23736898]
[38]
Leech, S.; Ju, H. Application of colloidal gold in protein immobilization electron transfer and biosensing. Biosens. Anal. Lett., 2003, 36, 1-19.
[http://dx.doi.org/10.1081/AL-120017740]
[39]
Adela, B.M.; Harbison, S.A.; Travas-Sejdic, J. Effects of redox couple on the response of polypyrrole-based electrochemical DNA sensors. Electroanalysis, 2012, 24, 1311-1317.
[http://dx.doi.org/10.1002/elan.201200119]
[40]
Alonso-Lomillo, M.A.; Domínguez-Renedo, O.; Arcos-Martínez, M.J. Screen-printed biosensors in microbiology; A review. Talanta, 2010, 82(5), 1629-1636.
[http://dx.doi.org/10.1016/j.talanta.2010.08.033] [PMID: 20875555]
[41]
Pan, M.; Gu, Y.; Yun, Y.; Li, M.; Jin, X.X.; Wang, S. Nanomaterials for electrochemical immunosensing. Sensors (Basel), 2017, 17, 1041.
[http://dx.doi.org/10.3390/s17051041]
[42]
Monteiro, R.C.; Halbwachs-Mecarelli, L.; Roque-Barreira, M.C.; Noel, L.H.; Berger, J.; Lesavre, P. Charge and size of mesangial IgA in IgA nephropathy. Kidney Int., 1985, 28(4), 666-671.
[http://dx.doi.org/10.1038/ki.1985.181] [PMID: 3910914]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy