摘要
目的:婴儿身长(IL)是2型糖尿病(T2DM)的正相关表型,但其因果关系仍不清楚。在这里,我们应用孟德尔随机(MR)研究来探讨IL和T2DM之间的因果关系,这有可能为评估年轻高危人群的T2DM活性和T2DM预防提供指导。 材料和方法:为了对研究进行分类,采用了两个样本的MR,使用遗传工具变量(IV)探索因果关系,以检验IL对T2DM风险的影响。在这项研究中,使用8个独立的IL SNP作为IV对GWAS数据进行了MR。通过逆方差加权方法计算这些SNP的合并比值比(OR),以评估较短的IL给T2DM带来的风险。进行敏感性验证以鉴定单个SNP的作用。 MR-Egger回归用于检测IVs的多效性偏倚。 结果:IVW方法的合并优势比为1.03(95%CI 0.89-1.18,P = 0.0785),低截距为-0.477,P = 0.252,OR的小波动范围为-0.062((0.966-1.03) /一千零三验证)中的0.05((1.081-1.03)/ 1.03)。 结论:我们证实较短的IL不会对T2DM造成额外风险。敏感性分析和MR-Egger回归分析也提供了充分的证据,表明上述结果并非归因于IV的任何异质性或多效性。
关键词: 婴儿身长,T2DM,孟德尔随机化,因果效应,工具变量,MR-egger。
图形摘要
[http://dx.doi.org/10.1038/nrendo.2017.151] [PMID: 29219149]
[http://dx.doi.org/10.1038/nrendo.2011.183] [PMID: 22064493]
[http://dx.doi.org/10.2174/1574893611207040366]
[http://dx.doi.org/10.2337/dc10-0440] [PMID: 20823344]
[PMID: 28539866]
[http://dx.doi.org/10.1111/j.1464-5491.2011.03450.x] [PMID: 21916972]
[http://dx.doi.org/10.1016/S0002-9343(00)00568-4] [PMID: 11063954]
[http://dx.doi.org/10.1038/nrendo.2013.44] [PMID: 23438836]
[http://dx.doi.org/10.3389/fgene.2018.00515] [PMID: 30459809]
[http://dx.doi.org/10.1136/bmj.307.6918.1519] [PMID: 8274920]
[http://dx.doi.org/10.1093/ajcn/82.5.980] [PMID: 16280428]
[http://dx.doi.org/10.1136/ard.56.1.17] [PMID: 9059135]
[http://dx.doi.org/10.1016/S0140-6736(86)91340-1] [PMID: 2871345]
[http://dx.doi.org/10.1093/ije/dyt133] [PMID: 24159065]
[http://dx.doi.org/10.1136/bmj.303.6809.1019] [PMID: 1954451]
[http://dx.doi.org/10.1093/hmg/ddu510] [PMID: 25281659]
[http://dx.doi.org/10.1111/dme.12527] [PMID: 24957933]
[http://dx.doi.org/10.1038/oby.2011.36] [PMID: 21394093]
[http://dx.doi.org/10.1007/s00431-015-2577-6] [PMID: 26074370]
[http://dx.doi.org/10.2337/db14-0319] [PMID: 24947364]
[http://dx.doi.org/10.1159/000357338] [PMID: 25226803]
[http://dx.doi.org/10.1093/ajcn/nqy362] [PMID: 30949673]
[http://dx.doi.org/10.3389/fonc.2019.00182] [PMID: 30972295]
[http://dx.doi.org/10.1001/jama.2017.17219] [PMID: 29164242]
[http://dx.doi.org/10.3389/fgene.2018.00657] [PMID: 30619477]
[http://dx.doi.org/10.1038/srep34820] [PMID: 27703231]
[http://dx.doi.org/10.1093/bfgp/elu036] [PMID: 25241224]
[http://dx.doi.org/10.2174/1574893611666160426170806]
[http://dx.doi.org/10.1007/s12035-015-9670-8] [PMID: 26746668]
[http://dx.doi.org/10.1073/pnas.1812975115] [PMID: 30355771]
[http://dx.doi.org/10.1007/s12031-018-1144-9] [PMID: 30088171]
[http://dx.doi.org/10.1016/j.neurobiolaging.2018.08.008]
[http://dx.doi.org/10.3389/fgene.2019.00094] [PMID: 30891058]
[http://dx.doi.org/10.1093/bioinformatics/bty059] [PMID: 29474523]
[http://dx.doi.org/10.1093/oxfordjournals.jhered.a109868] [PMID: 6368675]
[PMID: 30740125]
[http://dx.doi.org/10.1111/1755-0998.12424] [PMID: 26261040]
[http://dx.doi.org/10.1038/ng.2383] [PMID: 22885922]
[http://dx.doi.org/10.1002/pst.1515] [PMID: 22566382]
[http://dx.doi.org/10.5808/GI.2016.14.4.173] [PMID: 28154508]
[http://dx.doi.org/10.1007/s00702-014-1260-9]
[http://dx.doi.org/10.2147/CIA.S130014] [PMID: 28496312]
[http://dx.doi.org/10.3934/mbe.2019123] [PMID: 31137222]
[http://dx.doi.org/10.1186/s12859-018-2098-1] [PMID: 29671398]
[http://dx.doi.org/10.1534/g3.117.300120] [PMID: 29084818]
[http://dx.doi.org/10.1093/ije/dyv080] [PMID: 26050253]
[http://dx.doi.org/10.1016/j.knosys.2018.10.007]
[http://dx.doi.org/10.1093/bioinformatics/btz358] [PMID: 31077296]
[http://dx.doi.org/10.18632/oncotarget.15963] [PMID: 28423655]
[http://dx.doi.org/10.1016/j.jdiacomp.2017.02.017] [PMID: 28336215]
[http://dx.doi.org/10.1111/j.1464-5491.2009.02720.x] [PMID: 19646184]
[http://dx.doi.org/10.1007/s00125-016-4019-z] [PMID: 27333884]
[http://dx.doi.org/10.1371/journal.pone.0039901] [PMID: 22848364]
[http://dx.doi.org/10.1038/nature09410] [PMID: 20881960]
[http://dx.doi.org/10.2174/1566523219999190426144513]
[PMID: 30543166]
[http://dx.doi.org/10.2174/1566523218666181010101114]
[http://dx.doi.org/10.1109/TCBB.2017.2701379] [PMID: 28489543]
[http://dx.doi.org/10.1186/s12859-018-2390-0] [PMID: 30309340]
[http://dx.doi.org/10.1186/s12920-018-0414-2] [PMID: 30453964]
[http://dx.doi.org/10.1109/TCBB.2017.2704587] [PMID: 28534780]
[http://dx.doi.org/10.3389/fgene.2019.00003] [PMID: 30761178]
[http://dx.doi.org/10.1038/s41598-017-03986-1] [PMID: 28623317]
[http://dx.doi.org/10.1109/TCBB.2017.2776280] [PMID: 29990255]
[http://dx.doi.org/10.1093/bioinformatics/bty112] [PMID: 29490018]
[http://dx.doi.org/10.1016/j.neucom.2018.10.028]
[http://dx.doi.org/10.1109/JBHI.2018.2883834] [PMID: 30507518]
[http://dx.doi.org/10.3389/fgene.2018.00618] [PMID: 30619454]
[http://dx.doi.org/10.1186/s12864-018-5273-x] [PMID: 30598109]
[http://dx.doi.org/10.1109/ACCESS.2019.2894225]
[http://dx.doi.org/10.3233/JAD-170468] [PMID: 29332039]
[http://dx.doi.org/10.1073/pnas.1821550116] [PMID: 30755538]
[http://dx.doi.org/10.1109/TCBB.2019.2904965] [PMID: 30872239]
[http://dx.doi.org/10.1186/s12920-017-0313-y] [PMID: 29297351]
[http://dx.doi.org/10.1093/nar/gkz843]
[http://dx.doi.org/10.3389/fcimb.2019.00112] [PMID: 31065547]
[http://dx.doi.org/10.1093/bioinformatics/bty002] [PMID: 29365045]
[http://dx.doi.org/10.1109/TCBB.2016.2550432] [PMID: 27076459]
[http://dx.doi.org/10.1021/acs.molpharmaceut.8b00930] [PMID: 30269508]
[http://dx.doi.org/10.1093/bioinformatics/btx822] [PMID: 29281004]
[http://dx.doi.org/10.1016/j.ymeth.2019.02.009] [PMID: 30772464]
[PMID: 30247625]
[PMID: 30428009]
[http://dx.doi.org/10.1093/bioinformatics/btz254] [PMID: 30977780]
[http://dx.doi.org/10.3389/fgene.2019.00226] [PMID: 31001311]
[http://dx.doi.org/10.1155/2015/810514] [PMID: 26273645]
[http://dx.doi.org/10.7717/peerj.1884] [PMID: 27069814]
[http://dx.doi.org/10.2174/1573406415666191004115128]
[http://dx.doi.org/10.1093/nar/gky1051] [PMID: 30380072]
[http://dx.doi.org/10.1016/j.artmed.2017.02.005] [PMID: 28245947]
[http://dx.doi.org/10.1093/bib/bbx103] [PMID: 28968812]
[http://dx.doi.org/10.1186/s12864-017-4338-6] [PMID: 29363423]