Research Article

I半聚类鉴定阿尔茨海默氏病相关miRNA

卷 19, 期 4, 2019

页: [216 - 223] 页: 8

弟呕挨: 10.2174/1566523219666190924113737

价格: $65

摘要

背景:越来越多的学者试图将其用作阿尔茨海默氏病(AD)和轻度认知障碍(MCI)的特定生物标记。多项研究表明,miRNA与轴突生长不良和突触结构丧失有关,两者都是AD的早期事件。 miRNA的总体丧失可能与衰老,AD发病率增加有关,也可能通过某些特定的分子机制与疾病有关。 目的:确定与阿尔茨海默氏病相关的miRNA可以帮助我们找到新的药物靶点,及早诊断。 材料和方法:我们使用基因作为连接AD和miRNA的桥梁。首先,利用蛋白质相互作用网络通过已知的AD相关基因寻找更多的AD相关基因。然后,通过miRNA与基因的相互作用获得每个miRNA与这些基因的相关性。最后,每个miRNA都可以获得代表其与AD相关性的特征向量。与其他研究不同,我们不会使用分类方法来随机识别出与AD相关的miRNA的阴性样品。在这里,我们使用半集群方法“一类SVM”。与AD相关的miRNA被认为是异常值,我们的目标是鉴定与已知与AD相关的miRNA(异常值)相似的miRNA。 结果与结论:我们鉴定了257种与AD相关的新型miRNA,并将我们的方法与SVM进行比较,该方法通过产生阴性样品而应用。我们的方法的AUC远高于SVM,我们进行了案例研究以证明我们的结果可靠。

关键词: 阿尔茨海默氏病,基因,miRNA,半集群,一类SVM,MMSE。

图形摘要

[1]
Liao ZJ, Li D, Wang X, Li L, Zou Q. Cancer diagnosis through IsomiR expression with machine learning method. Curr Bioinform 2018; 13(1): 57-63.
[http://dx.doi.org/10.2174/1574893611666160609081155]
[2]
Jiang L, Xiao Y, Ding Y, Tang J, Guo F. Discovering cancer subtypes via an accurate fusion strategy on multiple profile data. Front Genet 2019; 10: 20.
[http://dx.doi.org/10.3389/fgene.2019.00020] [PMID: 30804977]
[3]
Jiang Q, Wang Y, Hao Y, et al. miR2Disease: A manually curated database for microRNA deregulation in human disease. Nucleic Acids Res 2009; 37: D98-D104.
[http://dx.doi.org/10.1093/nar/gkn714] [PMID: 18927107]
[4]
Peng Y, Croce CM. The role of MicroRNAs in human cancer. Signal Transduct Target Ther 2016; 1: 15004.
[http://dx.doi.org/10.1038/sigtrans.2015.4. eCollection 2016] [PMID: 29263891]
[5]
Jiang Q, Wang G, Jin S, Li Y, Wang Y. Predicting human microRNA-disease associations based on support vector machine. Int J Data Min Bioinform 2013; 8(3): 282-93.
[http://dx.doi.org/10.1504/IJDMB.2013.056078] [PMID: 24417022]
[6]
Zou Q, Qu K, Luo Y, Yin D, Ju Y, Tang H. Predicting diabetes mellitus with machine learning techniques. Front Genet 2018; 9: 515.
[http://dx.doi.org/10.3389/fgene.2018.00515] [PMID: 30459809]
[7]
Wang L, Ping P, Kuang L, Ye S. lqbal FMB, Pei T. A novel approach based on bipartite network to predict human microbe-disease associations. Curr Bioinform 2018; 13(2): 141-8.
[http://dx.doi.org/10.2174/1574893612666170911143601]
[8]
Cheng L, Wang P, Tian R, et al. LncRNA2Target v2.0: A comprehensive database for target genes of lncRNAs in human and mouse. Nucleic Acids Res 2019; 47(D1): D140-4.
[http://dx.doi.org/10.1093/nar/gky1051] [PMID: 30380072]
[9]
Smith-Vikos T, Slack FJ. MicroRNAs circulate around Alzheimer’s disease. Genome Biol 2013; 14(7): 125-5.
[http://dx.doi.org/10.1186/gb4116] [PMID: 23889814]
[10]
Zhao T, Zhang N, Zhang Y, et al. A novel method to identify pre-microRNA in various species knowledge base on various species. J Biomed Semantics 2017; 8(1): 30.
[http://dx.doi.org/10.1186/s13326-017-0143-z] [PMID: 29297389]
[11]
Jiang L, Ding Y, Tang J, Guo F. MDA-SKF: Similarity kernel fusion for accurately discovering miRNA-Disease Association. Front Genet 2018; 9(618): 618.
[http://dx.doi.org/10.3389/fgene.2018.00618] [PMID: 30619454]
[12]
Jiang L, Xiao Y, Ding Y, Tang J, Guo F. FKL-Spa-LapRLS: An accurate method for identifying human microRNA-disease association. BMC Genomics 2018; 19(911): 911.
[http://dx.doi.org/10.1186/s12864-018-5273-x] [PMID: 30598109]
[13]
Ardekani BA, Bermudez E, Mubeen AM, Bachman AH. Alzheimer’s disease neuroimaging initiative. Prediction of incipient Alzheimer’s disease dementia in patients with mild cognitive impairment. J Alzheimers Dis 2017; 55(1): 269-81.
[http://dx.doi.org/10.3233/JAD-160594] [PMID: 27662309]
[14]
Li C, Zheng X, Yang Z, Kuang L. Predicting short-term electricity demand by combining the advantages of ARMA and XGBoost in fog computing environment. Wirel Commun and Mob Comput 2018; 2018: 1-18.
[http://dx.doi.org/10.1155/2018/5018053]
[15]
Jiang Q, Jin S, Jiang Y, et al. Alzheimer’s disease variants with the Genome-Wide significance are significantly enriched in immune pathways and active in immune cells. Mol Neurobiol 2017; 54(1): 594-600.
[http://dx.doi.org/10.1007/s12035-015-9670-8] [PMID: 26746668]
[16]
Liu G, Jin S, Hu Y, Jiang Q. Disease status affects the association between rs4813620 and the expression of Alzheimer’s disease susceptibility gene TRIB3. Proc Natl Acad Sci USA 2018; 115(45): E10519-20.
[http://dx.doi.org/10.1073/pnas.1812975115] [PMID: 30355771]
[17]
Jutten RJ, Harrison J, de Jong FJ, et al. A composite measure of cognitive and functional progression in Alzheimer’s disease: Design of the capturing changes in cognition study. Alzheimers Dement (N Y) 2017; 3(1): 130-8.
[http://dx.doi.org/10.1016/j.trci.2017.01.004] [PMID: 29067324]
[18]
Ewers M, Sperling RA, Klunk WE, Weiner MW, Hampel H. Neuroimaging markers for the prediction and early diagnosis of Alzheimer’s disease dementia. Trends Neurosci 2011; 34(8): 430-42.
[http://dx.doi.org/10.1016/j.tins.2011.05.005] [PMID: 21696834]
[19]
Peng J, Guan J, Shang X. Predicting parkinson’s disease genes based on node2vec and autoencoder. Front Genet 2019; 10: 226.
[http://dx.doi.org/10.3389/fgene.2019.00226] [PMID: 31001311]
[20]
Gaugler JE, Ascher-Svanum H, Roth DL, Fafowora T, Siderowf A, Beach TG. Characteristics of patients misdiagnosed with Alzheimer’s disease and their medication use: An analysis of the NACC-UDS database. BMC Geriatr 2013; 13(1): 137-7.
[http://dx.doi.org/10.1186/1471-2318-13-137] [PMID: 24354549]
[21]
Cheng L, Zhuang H, Ju H, et al. Exposing the causal effect of body mass index on the risk of type 2 diabetes mellitus: A mendelian randomization study. Front Genet 2019; 10(94): 94.
[http://dx.doi.org/10.3389/fgene.2019.00094] [PMID: 30891058]
[22]
Cheng L, Zhuang H, Yang S, Jiang H, Wang S, Zhang J. Exposing the causal effect of C-Reactive Protein on the risk of type 2 diabetes mellitus: A mendelian randomization study. Front Genet 2018; 9: 657.
[http://dx.doi.org/10.3389/fgene.2018.00657]
[23]
Wang T, Xiao S, Liu Y, et al. The efficacy of plasma biomarkers in early diagnosis of Alzheimer’s disease. Int J Geriatr Psychiatry 2014; 29(7): 713-9.
[http://dx.doi.org/10.1002/gps.4053] [PMID: 24318929]
[24]
Tan L, Yu JT, Liu QY, et al. Circulating miR-125b as a biomarker of Alzheimer’s disease. J Neurol Sci 2014; 336(1-2): 52-6.
[http://dx.doi.org/10.1016/j.jns.2013.10.002] [PMID: 24139697]
[25]
Tan L, Yu JT, Tan MS, et al. Genome-wide serum microRNA expression profiling identifies serum biomarkers for Alzheimer’s disease. J Alzheimers Dis 2014; 40(4): 1017-27.
[http://dx.doi.org/10.3233/JAD-132144] [PMID: 24577456]
[26]
Leidinger P, Backes C, Deutscher S, et al. A blood based 12-miRNA signature of Alzheimer disease patients. Genome Biol 2013; 14(7): R78.
[http://dx.doi.org/10.1186/gb-2013-14-7-r78] [PMID: 23895045]
[27]
Cheng L, Sun J, Xu W, Dong L, Hu Y, Zhou M. OAHG: An integrated resource for annotating human genes with multi-level ontologies. Sci Rep 2016; 6(1): 34820.
[http://dx.doi.org/10.1038/srep34820] [PMID: 27703231]
[28]
Liu G, Zhao Y, Jin S, et al. Circulating vitamin E levels and Alzheimer's disease: A Mendelian randomization study Neurobiol Aging 2018; 72: 189. e9.
[http://dx.doi.org/10.1016/j.neurobiolaging.2018.08.008]
[29]
Liu G, Hu Y, Han Z, Jin S, Jiang Q. Genetic variant rs17185536 regulates SIM1 gene expression in human brain hypothalamus. Proc Natl Acad Sci USA 2019; 116(9): 3347-8.
[http://dx.doi.org/10.1073/pnas.1821550116] [PMID: 30755538]
[30]
Peng J, Hui W, Li Q, et al. A learning-based framework for miRNA-disease association identification using neural networks. Bioinformatics 2019.pii: btz254
[http://dx.doi.org/10.1093/bioinformatics/btz254] [PMID: 30977780]
[31]
Peng J, Zhu L, Wang Y, Chen J. Mining relationships among Multiple entities in biological networks. IEEE/ACM Trans Comput Biol Bioinformatics 2019.
[http://dx.doi.org/10.1109/TCBB.2019.2904965] [PMID: 30872239]
[32]
Cheng L, Hu Y, Sun J, Zhou M, Jiang Q. DincRNA: A comprehensive web-based bioinformatics toolkit for exploring disease associations and ncRNA function. Bioinformatics 2018; 34(11): 1953-6.
[http://dx.doi.org/10.1093/bioinformatics/bty002] [PMID: 29365045]
[33]
Cheng L, Yang H, Zhao H, et al. MetSigDis: A manually curated resource for the metabolic signatures of diseases. Brief Bioinform 2019; 20(1): 203-9.
[PMID: 28968812]
[34]
Cheng L, Jiang Y, Ju H, et al. InfAcrOnt: Calculating cross-ontology term similarities using information flow by a random walk. BMC Genomics 2018; 19(Suppl. 1): 919.
[http://dx.doi.org/10.1186/s12864-017-4338-6] [PMID: 29363423]
[35]
Deng L, Wang J, Zhang J. Predicting gene ontology function of human MicroRNAs by integrating multiple networks. Front Genet 2019; 10: 3.
[http://dx.doi.org/10.3389/fgene.2019.00003] [PMID: 30761178]
[36]
Zhang J, Zhang Z, Chen Z, Deng L. Integrating multiple heterogeneous networks for novel LncRNA-Disease association inference. IEEE/ACM Trans Comput Biol Bioinformatics 2019; 16(2): 396-406.
[http://dx.doi.org/10.1109/TCBB.2017.2701379] [PMID: 28489543]
[37]
Zhang X, Zou Q, Rodriguez-Paton A, Zeng X. Meta-Path methods for prioritizing candidate disease miRNAs. IEEE/ACM Trans Comput Biol Bioinformatics 2019; 16(1): 283-91.
[http://dx.doi.org/10.1109/TCBB.2017.2776280] [PMID: 29990255]
[38]
Zeng X, Liu L, Lü L, Zou Q. Prediction of potential disease-associated microRNAs using structural perturbation method. Bioinformatics 2018; 34(14): 2425-32.
[http://dx.doi.org/10.1093/bioinformatics/bty112] [PMID: 29490018]
[39]
Cheng L, Hu Y. Human disease system biology. Curr Gene Ther 2018; 18(5): 255-6.
[http://dx.doi.org/10.2174/1566523218666181010101114] [PMID: 30306867]
[40]
Xuan P, Han K, Guo M, et al. Correction: Prediction of microRNAs associated with human diseases based on weighted k most similar neighbors. PLoS One 2013; 8(9)e70204
[http://dx.doi.org/10.1371/journal.pone.0070204] [PMID: 24116246]
[41]
Jiang Q, Hao Y, Wang G, et al. Prioritization of disease microRNAs through a human phenome-microRNAome network. BMC Syst Biol 2010; 4(Suppl. 1): S2.
[http://dx.doi.org/10.1186/1752-0509-4-S1-S2] [PMID: 20522252]
[42]
Zhang J, Zou S, Deng L. Gene Ontology-based function prediction of long non-coding RNAs using bi-random walk. BMC Med Genomics 2018; 11(5): 99.
[http://dx.doi.org/10.1186/s12920-018-0414-2] [PMID: 30453964]
[43]
Deng L, Wu H, Liu C, Zhan W, Zhang J. Probing the functions of long non-coding RNAs by exploiting the topology of global association and interaction network. Comput Biol Chem 2018; 74: 360-7.
[http://dx.doi.org/10.1016/j.compbiolchem.2018.03.017] [PMID: 29573966]
[44]
Deng L, Wang J, Xiao Y, Wang Z, Liu H. Accurate prediction of protein-lncRNA interactions by diffusion and HeteSim features across heterogeneous network. BMC Bioinformatics 2018; 19(1): 370.
[http://dx.doi.org/10.1186/s12859-018-2390-0] [PMID: 30309340]
[45]
Niu YW, Liu H, Wang GH, et al. Maximal entropy random walk on heterogenous network for MiRNA-disease association prediction. Math Biosci 2018; 306: 1-9.
[46]
Shi H, Xu J, Zhang G, et al. Walking the interactome to identify human miRNA-disease associations through the functional link between miRNA targets and disease genes. BMC Syst Biol 2013; 7: 101-.
[http://dx.doi.org/10.1186/1752-0509-7-101] [PMID: 24103777]
[47]
Prabahar A, Natarajan J, Immunemi R. A database of prioritized immune miRNA disease associations and its interactome. MicroRNA 2017; 6(1): 71-8.
[http://dx.doi.org/10.2174/2211536606666170117112322] [PMID: 28124611]
[48]
Liu Y, Zeng X, He Z, Zou Q. Inferring microRNA-disease associations by random walk on a heterogeneous network with multiple data sources. IEEE/ACM Trans Comput Biol Bioinformatics 2017; 14(4): 905-15.
[http://dx.doi.org/10.1109/TCBB.2016.2550432] [PMID: 27076459]
[49]
You Z-H, Wang LP, Chen X, et al. PRMDA: Personalized recommendation-based MiRNA-disease association prediction. Oncotarget 2017; 8(49): 85568-83.
[http://dx.doi.org/10.18632/oncotarget.20996] [PMID: 29156742]
[50]
Piñero J, Bravo A, Queralt-Rosinach N, et al. DisGeNET: A comprehensive platform integrating information on human disease-associated genes and variants. Nucleic Acids Res 2017; 45(D1): D833-9.
[PMID: 27924018]
[51]
Szklarczyk D, Gable AL, Lyon D, et al. STRING v11: Protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res 2019; 47(D1): D607-13.
[http://dx.doi.org/10.1093/nar/gky1131] [PMID: 30476243]
[52]
Dweep H, Gretz N. miRWalk2.0: A comprehensive atlas of microRNA-target interactions. Nat Methods 2015; 12(8): 697.
[http://dx.doi.org/10.1038/nmeth.3485] [PMID: 26226356]
[53]
Li Y, Qiu C, Tu J, et al. HMDD v2.0: A database for experimentally supported human microRNA and disease associations. Nucleic Acids Res 2014; 42: D1070-4.
[http://dx.doi.org/10.1093/nar/gkt1023] [PMID: 24194601]
[54]
Barrett T, Wilhite SE, Ledoux P, et al. NCBI GEO: Archive for functional genomics data sets--update. Nucleic Acids Res 2013; 41: D991-5.
[PMID: 23193258]
[55]
Li Y, Niu M, Zou Q. ELM-MHC: An improved MHC identification method with extreme learning machine algorithm. J Proteome Res 2019; 18(3): 1392-401.
[http://dx.doi.org/10.1021/acs.jproteome.9b00012] [PMID: 30698979]
[56]
Yu L, Sun X, Tian S, et al. Drug and nondrug classification based on deep learning with various feature selection strategies. Curr Bioinform 2018; 13(3): 253-9.
[http://dx.doi.org/10.2174/1574893612666170125124538]
[57]
Jia C, Zuo Y, Zou Q. O-GlcNAcPRED-II: An integrated classification algorithm for identifying O-GlcNAcylation sites based on fuzzy undersampling and a K-means PCA oversampling technique. Bioinformatics 2018; 34(12): 2029-36.
[http://dx.doi.org/10.1093/bioinformatics/bty039] [PMID: 29420699]
[58]
Zeng X, Liao Y, Liu Y, Zou Q. Prediction and validation of disease genes using HeteSim scores. IEEE/ACM Trans Comput Biol Bioinformatics 2017; 14(3): 687-95.
[http://dx.doi.org/10.1109/TCBB.2016.2520947] [PMID: 26890920]
[59]
Tan JX, Li SH, Zhang ZM, et al. Identification of hormone binding proteins based on machine learning methods. Math Biosci Eng 2019; 16(4): 2466-80.
[http://dx.doi.org/10.3934/mbe.2019123] [PMID: 31137222]
[60]
Lv H, Zhang ZM, Li SH, Tan JX, Chen W, Lin H. Evaluation of different computational methods on 5-methylcytosine sites identification. Brief Bioinform 2019.bbz048
[PMID: 31157855]
[61]
Yang W, Xu X-J, Huang J, Ding H, Lin H. A brief survey of machine learning methods in protein sub-Golgi localization. Curr Bioinform 2019; 14: 234-40.
[http://dx.doi.org/10.2174/1574893613666181113131415]
[62]
Feng CQ, Zhang ZY, Zhu XJ, et al. iTerm-PseKNC: A sequencebased tool for predicting bacterial transcriptional terminators. Bioinformatics 201; 35(9): 1469-77.
[PMID: 30247625]
[63]
Dao FY. LV H, Wang F, et al. Identify origin of replication in Saccharomyces cerevisiae using two-step feature selection technique. Bioinformatics 2019; 35(12): 2075-83.
[PMID: 30428009]
[64]
Guo R, Fan G, Zhang J, et al. A 9-microRNA signature in serum serves as a noninvasive biomarker in early diagnosis of Alzheimer’s disease. J Alzheimers Dis 2017; 60(4): 1365-77.
[http://dx.doi.org/10.3233/JAD-170343] [PMID: 29036818]
[65]
Cheng L, Doecke JD, Sharples RA, et al. Prognostic serum miRNA biomarkers associated with Alzheimer’s disease shows concordance with neuropsychological and neuroimaging assessment. Mol Psychiatry 2015; 20(10): 1188.
[66]
Li Y, Song D, Jiang Y, et al. CR1 rs3818361 Polymorphism Contributes to Alzheimer’s Disease susceptibility in chinese population. Mol Neurobiol 2016; 53(6): 4054-9.
[http://dx.doi.org/10.1007/s12035-015-9343-7] [PMID: 26189835]
[67]
Liu G, Jiang Q. Alzheimer’s disease CD33 rs3865444 variant does not contribute to cognitive performance. Proc Natl Acad Sci USA 2016; 113(12): E1589-90.
[http://dx.doi.org/10.1073/pnas.1600852113] [PMID: 26933222]
[68]
Liu G, Xu Y, Jiang Y, Zhang L, Feng R, Jiang Q. PICALM rs3851179 variant confers susceptibility to alzheimer’s disease in chinese population. Mol Neurobiol 2017; 54(5): 3131-6.
[PMID: 27048444]
[69]
Liu G, Wang T, Tian R, et al. Alzheimer’s disease risk variant rs2373115 Regulates GAB2 and NARS2 expression in human brain tissues. J Mol Neurosci 2018; 66(1): 37-43.
[http://dx.doi.org/10.1007/s12031-018-1144-9] [PMID: 30088171]
[70]
Zou Q, Xing P, Wei L, Liu B. Gene2vec: Gene subsequence embedding for prediction of mammalian N6-methyladenosine sites from mRNA. RNA 2019; 25(2): 205-18.
[http://dx.doi.org/10.1261/rna.069112.118] [PMID: 30425123]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy