Research Article

视神经粉碎后视网膜神经节细胞凋亡中上调的P53诱导的死亡域蛋白的参与。

卷 20, 期 1, 2020

页: [51 - 59] 页: 9

弟呕挨: 10.2174/1566524019666190918160032

价格: $65

摘要

目的:视网膜神经节细胞(RGCs)凋亡是视神经病变的共同特征。 p53诱导的具有死亡结构域的蛋白(PIDD)是遗传毒性应激诱导的细胞凋亡的众所周知的调节剂,其被组成性切割为三个主要片段:PIDD-N,PIDD-C和PIDD-CC。因此,我们旨在确定PIDD在视神经挤压(ONC)模型中RGC凋亡中的生理相关性。 方法:将所有动物平均随机分为四组:假手术对照组,con-siRNA组,ONC组和PIDD-siRNA组(ONC + PIDD-siRNA)。用Western blot和免疫荧光法分析ONC模型中PIDD,caspase-2,Brn3a和tBid的表达。使用氟金(FG)计算RGC / mm2的平均密度。此外,我们使用TUNEL染色测试了PIDD-siRNA对ONC诱导的RGC凋亡的影响。 结果:全长PIDD的水平较弱,在任何时间点均无显着差异。 ONC后3天,视网膜中的PIDD-CC和PIDD-C显着上调。同时,在Brn3a(RGCs的标记)阳性细胞中,PIDD的表达显着增加,表明PIDD的定位似乎仅限于RGC。此外,抑制PIDD可通过抑制caspase-2和tBid激活来阻止RGC凋亡。 结论:总的来说,PIDD可能在ONC后RGC的凋亡中起关键作用,这一过程可能与caspase-2和tBid有关。

关键词: PIDD,caspase-2,视网膜神经节细胞,凋亡,视神经挤压,RGC。

[1]
Jang SY. Traumatic Optic Neuropathy. Korean J Neurotrauma 2018; 14(1): 1-5.
[http://dx.doi.org/10.13004/kjnt.2018.14.1.1] [PMID: 29774191]
[2]
Xu Y, Lu X, Hu Y, et al. Melatonin attenuated retinal neovascularization and neuroglial dysfunction by inhibition of HIF-1α-VEGF pathway in oxygen-induced retinopathy mice. J Pineal Res 2018; 64(4)e12473
[http://dx.doi.org/10.1111/jpi.12473] [PMID: 29411894]
[3]
Xu Y, Yang B, Hu Y, et al. Secretion of down syndrome critical region 1 isoform 4 in ischemic retinal ganglion cells displays anti-angiogenic properties via NFATc1-dependent pathway. Mol Neurobiol 2017; 54(8): 6556-71.
[http://dx.doi.org/10.1007/s12035-016-0092-z] [PMID: 27734335]
[4]
Huang R, Lan Q, Chen L, et al. CD200Fc attenuates retinal glial responses and RGCs apoptosis after optic nerve crush by modulating CD200/CD200R1 interaction. J Mol Neurosci 2018; 64(2): 200-10.
[http://dx.doi.org/10.1007/s12031-017-1020-z] [PMID: 29280053]
[5]
Huang Y, Xu Y, Cheng Q, et al. The expression changes of myelin and lymphocyte protein (MAL) following optic nerve crush in adult rats retinal ganglion cells. J Mol Neurosci 2014; 54(4): 614-21.
[http://dx.doi.org/10.1007/s12031-014-0332-5] [PMID: 24878628]
[6]
Vidal-Sanz M, Galindo-Romero C, Valiente-Soriano FJ, et al. Shared and differential retinal responses against optic nerve injury and ocular hypertension. Front Neurosci 2017; 11: 235.
[http://dx.doi.org/10.3389/fnins.2017.00235] [PMID: 28491019]
[7]
Aubrey BJ, Kelly GL, Janic A, Herold MJ, Strasser A. How does p53 induce apoptosis and how does this relate to p53-mediated tumour suppression? Cell Death Differ 2018; 25(1): 104-13.
[http://dx.doi.org/10.1038/cdd.2017.169] [PMID: 29149101]
[8]
Xie L, Cheng L, Xu G, Zhang J, Ji X, Song E. The novel cyclophilin D inhibitor compound 19 protects retinal pigment epithelium cells and retinal ganglion cells from UV radiation. Biochem Biophys Res Commun 2017; 487(4): 807-12.
[http://dx.doi.org/10.1016/j.bbrc.2017.04.128] [PMID: 28450114]
[9]
Gong L, Liu F, Xiong Z, et al. Heterochromatin protects retinal pigment epithelium cells from oxidative damage by silencing p53 target genes. Proc Natl Acad Sci USA 2018; 115(17): E3987-95.
[http://dx.doi.org/10.1073/pnas.1715237115] [PMID: 29622681]
[10]
Wu Y, Xu F, Huang H, et al. Up-regulation of SKIP relates to retinal ganglion cells apoptosis after optic nerve crush in vivo. J Mol Histol 2014; 45(6): 715-21.
[http://dx.doi.org/10.1007/s10735-014-9589-9] [PMID: 25074585]
[11]
Fujita K, Nishiguchi KM, Yokoyama Y, et al. In vivo cellular imaging of various stress/response pathways using AAV following axonal injury in mice. Sci Rep 2015; 5: 18141.
[http://dx.doi.org/10.1038/srep18141] [PMID: 26670005]
[12]
Lin Y, Ma W, Benchimol S. Pidd, a new death-domain-containing protein, is induced by p53 and promotes apoptosis. Nat Genet 2000; 26(1): 122-7.
[http://dx.doi.org/10.1038/79102] [PMID: 10973264]
[13]
Miles MA, Kitevska-Ilioski T, Hawkins CJ. Old and Novel Functions of Caspase-2. Int Rev Cell Mol Biol 2017; 332: 155-212.
[http://dx.doi.org/10.1016/bs.ircmb.2016.12.002] [PMID: 28526132]
[14]
Tinel A, Tschopp J. The PIDDosome, a protein complex implicated in activation of caspase-2 in response to genotoxic stress. Science 2004; 304(5672): 843-6.
[http://dx.doi.org/10.1126/science.1095432] [PMID: 15073321]
[15]
Zhong H, Cui L, Xu F, et al. Up-regulation of Wip1 involves in neuroinflammation of retinal astrocytes after optic nerve crush via NF-κB signaling pathway. Inflamm Res 2016; 65(9): 709-15.
[http://dx.doi.org/10.1007/s00011-016-0952-z] [PMID: 27207279]
[16]
Wang Y, Liu C, Wang J, Zhang Y, Chen L. Iodine-131 induces apoptosis in human cardiac muscle cells through the p53/Bax/caspase-3 and PIDD/caspase-2/tBID/cytochrome c/caspase-3 signaling pathway. Oncol Rep 2017; 38(3): 1579-86.
[http://dx.doi.org/10.3892/or.2017.5813] [PMID: 28714021]
[17]
Manzl C, Peintner L, Krumschnabel G, et al. PIDDosome-independent tumor suppression by Caspase-2. Cell Death Differ 2012; 19(10): 1722-32.
[http://dx.doi.org/10.1038/cdd.2012.54] [PMID: 22595758]
[18]
Doozandeh A, Yazdani S. Neuroprotection in Glaucoma. J Ophthalmic Vis Res 2016; 11(2): 209-20.
[http://dx.doi.org/10.4103/2008-322X.183923] [PMID: 27413504]
[19]
Lin H, Li R, Liu Z, et al. Diagnostic efficacy and therapeutic decision-making capacity of an artificial intelligence platform for childhood cataracts in eye clinics: a multicentre randomized controlled trial. EClinicalMedicine 2019; 9: 52-9.
[http://dx.doi.org/10.1016/j.eclinm.2019.03.001] [PMID: 31143882]
[20]
Sladky V, Schuler F, Fava LL, Villunger A. The resurrection of the PIDDosome - emerging roles in the DNA-damage response and centrosome surveillance. J Cell Sci 2017; 130(22): 3779-87.
[http://dx.doi.org/10.1242/jcs.203448] [PMID: 29142064]
[21]
Tinel A, Eckert MJ, Logette E, et al. Regulation of PIDD auto-proteolysis and activity by the molecular chaperone Hsp90. Cell Death Differ 2011; 18(3): 506-15.
[http://dx.doi.org/10.1038/cdd.2010.124] [PMID: 20966961]
[22]
Bock FJ, Peintner L, Tanzer M, Manzl C, Villunger A. P53-induced protein with a death domain (PIDD): master of puppets? Oncogene 2012; 31(45): 4733-9.
[http://dx.doi.org/10.1038/onc.2011.639] [PMID: 22266869]
[23]
Logette E, Schuepbach-Mallepell S, Eckert MJ, et al. PIDD orchestrates translesion DNA synthesis in response to UV irradiation. Cell Death Differ 2011; 18(6): 1036-45.
[http://dx.doi.org/10.1038/cdd.2011.19] [PMID: 21415862]
[24]
Heath EM, Chan SM, Minden MD, Murphy T, Shlush LI, Schimmer AD. Biological and clinical consequences of NPM1 mutations in AML. Leukemia 2017; 31(4): 798-807.
[http://dx.doi.org/10.1038/leu.2017.30] [PMID: 28111462]
[25]
Tinel A, Janssens S, Lippens S, et al. Autoproteolysis of PIDD marks the bifurcation between pro-death caspase-2 and pro-survival NF-kappaB pathway. EMBO J 2007; 26(1): 197-208.
[http://dx.doi.org/10.1038/sj.emboj.7601473] [PMID: 17159900]
[26]
Stefanis L, Troy CM, Qi H, Shelanski ML, Greene LA. Caspase-2 (Nedd-2) processing and death of trophic factor-deprived PC12 cells and sympathetic neurons occur independently of caspase-3 (CPP32)-like activity. J Neurosci 1998; 18(22): 9204-15.
[http://dx.doi.org/10.1523/JNEUROSCI.18-22-09204.1998] [PMID: 9801360]
[27]
Troy CM, Stefanis L, Greene LA, Shelanski ML. Nedd2 is required for apoptosis after trophic factor withdrawal, but not superoxide dismutase (SOD1) downregulation, in sympathetic neurons and PC12 cells. J Neurosci 1997; 17(6): 1911-8.
[http://dx.doi.org/10.1523/JNEUROSCI.17-06-01911.1997] [PMID: 9045720]
[28]
Troy CM, Rabacchi SA, Friedman WJ, Frappier TF, Brown K, Shelanski ML. Caspase-2 mediates neuronal cell death induced by beta-amyloid. J Neurosci 2000; 20(4): 1386-92.
[http://dx.doi.org/10.1523/JNEUROSCI.20-04-01386.2000] [PMID: 10662829]
[29]
Henshall DC, Skradski SL, Bonislawski DP, Lan JQ, Simon RP. Caspase-2 activation is redundant during seizure-induced neuronal death. J Neurochem 2001; 77(3): 886-95.
[http://dx.doi.org/10.1046/j.1471-4159.2001.00291.x] [PMID: 11331417]
[30]
Kolson DL, Sabnekar P, Baybis M, Crino PB. Gene expression in TUNEL-positive neurons in human immunodeficiency virus-infected brain. J Neurovirol 2004; 10(Suppl. 1): 102-7.
[http://dx.doi.org/10.1080/jnv.10.s1.102.107] [PMID: 14982747]
[31]
Lassus P, Opitz-Araya X, Lazebnik Y. Requirement for caspase-2 in stress-induced apoptosis before mitochondrial permeabilization. Science 2002; 297(5585): 1352-4.
[http://dx.doi.org/10.1126/science.1074721] [PMID: 12193789]
[32]
Paroni G, Henderson C, Schneider C, Brancolini C. Caspase-2-induced apoptosis is dependent on caspase-9, but its processing during UV- or tumor necrosis factor-dependent cell death requires caspase-3. J Biol Chem 2001; 276(24): 21907-15.
[http://dx.doi.org/10.1074/jbc.M011565200] [PMID: 11399776]
[33]
Ahmed Z, Kalinski H, Berry M, et al. Ocular neuroprotection by siRNA targeting caspase-2 Cell Death Dis 2011; 2e173
[http://dx.doi.org/10.1038/cddis.2011.54] [PMID: 21677688]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy