Research Article

基于多个异构网络的HeteSim评分预测疾病合并症

卷 19, 期 4, 2019

页: [232 - 241] 页: 10

弟呕挨: 10.2174/1566523219666190917155959

价格: $65

摘要

背景:越来越多的实验研究表明,与单一疾病的患者相比,疾病合并症给患者带来更多痛苦,并导致标准治疗失败。因此,准确预测潜在合并症对于设计更有效的治疗策略至关重要。然而,在临床中仅发现了少数疾病合并症。 目的:在这项工作中,我们提出PCHS,一种预测疾病合并症的有效计算方法。 材料和方法:我们使用HeteSim度量来计算全球异构网络中不同疾病对的相关性得分,该得分基于生物学信息整合了六个网络,包括疾病-疾病关联,药物-药物相互作用,蛋白质-蛋白质相互作用和关联其中。我们基于HeteSim得分使用支持向量机(SVM)构建了预测模型。 结果与结论:结果表明,PCHS的性能明显优于以前的最新方法,并且在10倍交叉验证中的AUC得分为0.90。此外,我们的一些预测已在文献中得到验证,表明了我们方法的有效性。

关键词: 疾病合并症,HoteSim量度,异构网络,疾病基因,疾病药物,蛋白质相互作用。

图形摘要

[1]
Capobianco E, Lio P. Comorbidity: A multidimensional approach. Trends Mol Med 2013; 19(9): 515-21.
[http://dx.doi.org/10.1016/j.molmed.2013.07.004]
[2]
Hidalgo CA, Blumm N, Barabasi AL, Christakis NA. A dynamic network approach for the study of human phenotypes 2009. 5(4): e1000353.
[3]
Gijsen R, Hoeymans N, Schellevis FG, Ruwaard D, Satariano WA, van den Bos GA. Causes and consequences of comorbidity: A review. J Clin Epidemiol 2001; 54(7): 661-74.
[4]
Starfield B. Comorbidity: Implications for the importance of primary care in ‘case’ management. Ann Fam Med 2003; 1(1): 8-14.
[http://dx.doi.org/10.1370/afm.1]
[5]
Struijs JN, Baan CA, Schellevis FG, Westert GP, Bos GA. Comorbidity in patients with diabetes mellitus: Impact on medical health care utilization 2006; 6(1): 84.
[http://dx.doi.org/10.1186/1472-6963-6-84]
[6]
Kumar MSA, Sierka DR, Damask AM, et al. Safety and success of kidney transplantation and concomitant immunosuppression in HIV-positive patient. Kidney Int 2005; 67(4): 1622.
[7]
Haffner SM, Lehto S, Rönnemaa T, Pyörälä K, Laakso M. Mortality from coronary heart disease in subjects with type 2 diabetes and in nondiabetic subjects with and without prior myocardial infarction 1998. 339(4): 229-34.
[8]
Weiner DE, Hocine T, Stark PC, et al. Kidney disease as a risk factor for recurrent cardiovascular disease and mortality. Am J Kidney Dis 2004; 44(2): 198-206.
[9]
Levin A, Djurdjev O, Barrett B, et al. Cardiovascular disease in patients with chronic kidney disease: Getting to the heart of the matter. Am J Kidney Dis 2001; 38(6): 1398-407.
[http://dx.doi.org/10.1053/ajkd.2001.29275]
[10]
Zhang W, Chen XLY, Wu W, Wang W, Li X. Feature-derived graph regularized matrix factorization for predicting drug side effects. Neurocomputing 2018; 287: 154-62.
[http://dx.doi.org/10.1016/j.neucom.2018.01.085]
[11]
Goh K-I, Cusick M E, Valle D, Childs B, Vidal M, Barabási A-L. The human disease network 2007; 104(21): 8685-90.
[http://dx.doi.org/10.1073/pnas.0701361104]
[12]
Feldman I, Rzhetsky A, Vitkup D. Network properties of genes harboring inherited disease mutations. Proc Natl Acad Sci USA 2008; 105(11): 4323-8.
[http://dx.doi.org/10.1073/pnas.0701722105]
[13]
Park J, Lee DS, Christakis NA, Barabási AL. The impact of cellular networks on disease comorbidity. Mol Syst Biol 2009; 5(1): 262.
[http://dx.doi.org/10.1038/msb.2009.16]
[14]
Lee D-S, Park J, Kay KA, Christakis NA, Oltvai ZN, Barabási A-L. The implications of human metabolic network topology for disease comorbidity. Proc Natl Acad Sci 2008; 105(29): 9880-5.
[http://dx.doi.org/10.1073/pnas.0802208105]
[15]
Zheng CH, Zhang L, Ng VT, Shiu SC, Huang DS. Molecular pattern discovery based on penalized matrix decomposition IEEE/ACM Trans Comput Biol Bioinform 2011; 8(6): 1592-603.
[16]
Huang DS, Yu HJ. Normalized feature vectors: A novel alignment-free sequence comparison method based on the numbers of adjacent amino acids. IEEE/ACM Trans Comput Biol Bioinformatics 2013; 10(2): 457-67.
[http://dx.doi.org/10.1109/TCBB.2013.10]
[17]
Rual J-F, Venkatesan K, Hao T, et al. Towards a proteome-scale map of the human protein–protein interaction network. Nature 2005; 437(7062): 1173-8.
[http://dx.doi.org/10.1038/nature04209]
[18]
Stelzl U, Worm U, Lalowski M, et al. A human protein-protein interaction network: A resource for annotating the proteome. Cell 2005; 122(6): 957-68.
[http://dx.doi.org/10.1016/j.cell.2005.08.029]
[19]
Liang C, Yang H. Human disease system biology. Curr Gene Ther 2018; 18(5): 255-6.
[http://dx.doi.org/10.2174/1566523218666181010101114]
[20]
Park S, Yang JS, Shin YE, Park J, Jang SK, Kim S. Protein localization as a principal feature of the etiology and comorbidity of genetic diseases. Mol Syst Biol 2011; 7(1): 494.
[http://dx.doi.org/10.1038/msb.2011.29]
[21]
Park S, Yang J-S, Kim J, et al. Evolutionary history of human disease genes reveals phenotypic connections and comorbidity among genetic diseases. Sci Rep 2012; 2: 757.
[http://dx.doi.org/10.1038/srep00757]
[22]
Moni MA, Liò P. comoR: A software for disease comorbidity risk assessment. J Clin Bioinforma 2014; 4(1): 8.
[http://dx.doi.org/10.1186/2043-9113-4-8]
[23]
Menche J, Sharma A, Kitsak M, et al. Uncovering disease-disease relationships through the incomplete interactome. Science 2015; 347(6224)1257601
[http://dx.doi.org/10.1126/science.1257601]
[24]
Akram P, Liao LJBG. Prediction of missing common genes for disease pairs using network based module separation on incomplete human interactome. BMC Genomics 2017; 18(10): 902.
[http://dx.doi.org/10.1186/s12864-017-4272-7]
[25]
Akram P, Liao L. Predicting comorbid diseases with geometric embedding of human interactome. The 14th International Symposium on Bioinformatics Research and Applications (ISBRA), Beijing, China, June 8 - 11, 2018.
[26]
He F, Zhu G, Wang Y, Zhao X, Huang D. PCID: A novel approach for predicting disease comorbidity by integrating multi-scale data. IEEE/ACM Trans Comput Biol Bioinformatics 2017; 14(3): 678-86.
[http://dx.doi.org/10.1109/TCBB.2016.2550443]
[27]
Xiao Y, Zhang J, Deng L. Prediction of lncRNA-protein interactions using HeteSim scores based on heterogeneous networks. Sci Rep 2017; 7(1): 3664.
[http://dx.doi.org/10.1038/s41598-017-03986-1]
[28]
Zeng X, Liao Y, Liu Y, Zou Q. Prediction and validation of disease genes using hetesim scores. IEEE/ACM Trans Comput Biol Bioinformatics 2017; 14(3): 687-95.
[http://dx.doi.org/10.1109/TCBB.2016.2520947]
[29]
Knox C, Law V, Jewison T, et al. DrugBank 3.0: A comprehensive resource for ‘omics’ research on drugs. Nucleic Acids Res 2011; 39(Database issue): D1035-41.
[http://dx.doi.org/10.1093/nar/gkq1126]
[30]
Zhang W, Huang F, Chen Y, Li B, Li J, Gong J. SFLLN: A sparse feature learning ensemble method with linear neighborhood regularization for predicting drug-drug interactions. Inf Sci 2019; 497: 189-201.
[http://dx.doi.org/10.1016/j.ins.2019.05.017]
[31]
Zhang W, Li YCD, Yue X. Manifold regularized matrix factorization for drug-drug interaction prediction. J Biomed Inform 2018; 88: 90-7.
[http://dx.doi.org/10.1016/j.jbi.2018.11.005]
[32]
Szklarczyk D, Franceschini A, Wyder S, et al. STRING v10: Protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res 2015; 43: D447-52.
[http://dx.doi.org/10.1093/nar/gku1003]
[33]
Hamosh A, Scott AF, Amberger JS, Bocchini CA, McKusick VA. Online Mendelian Inheritance in Man (OMIM), a knowledgebase of human genes and genetic disorders. Nucleic Acids Res 2005; 33: D514-7.
[http://dx.doi.org/10.1093/nar/gki033]
[34]
Zhang W, Yue X, Chen Y, et al. Predicting drug-disease associations based on the known association bipartite network. 2017 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). 503-9.
[http://dx.doi.org/10.1109/BIBM.2017.8217698]
[35]
Zhang W, Lin XY, Wu W, Liu R, Huang F, Liu F. Predicting drug-disease associations by using similarity constrained matrix factorization. BMC Bioinformatics 2018; 19: 233.
[http://dx.doi.org/10.1186/s12859-018-2220-4]
[36]
Zhang W, Huang XYF, Liu R, Chen Y, Ruan C. Predicting drug-disease associations and their therapeutic function based on the drug-disease association bipartite network. Methods 2018; 145: 51-9.
[http://dx.doi.org/10.1016/j.ymeth.2018.06.001]
[37]
Zhang J, Deng L. Gene Ontology-based function prediction of long non-coding RNAs using bi-random walk. BMC Med Genomics 2018; 11(5): 99.
[http://dx.doi.org/10.1186/s12920-018-0414-2]
[38]
Zhang J, Zhang Z, Chen Z, Deng L. Integrating multiple heterogeneous networks for novel LncRNA-disease association inference. IEEE/ACM Trans Comput Biol Bioinformatics 2019; 16(2): 396-406.
[http://dx.doi.org/10.1109/TCBB.2017.2701379]
[39]
Zhang Z, Zhang J, Fan C, Tang Y, Deng L. KATZLGO: Large-scale prediction of LncRNA functions by using the KATZ measure based on multiple networks. IEEE/ACM Trans Comput Biol Bioinformatics 2019; 16(2): 407-16.
[http://dx.doi.org/10.1109/TCBB.2017.2704587]
[40]
Zhang J, Zhang Z, Wang Z, Liu Y, Deng L. Ontological function annotation of long non-coding RNAs through hierarchical multi-label classification. Bioinformatics 2018; 34(10): 1750-7.
[http://dx.doi.org/10.1093/bioinformatics/btx833]
[41]
Deng L, Wu H, Liu C, Zhan W, Zhang J. Probing the functions of long non-coding RNAs by exploiting the topology of global association and interaction network. Comput Biol Chem 2018; 74: 360-7.
[http://dx.doi.org/10.1016/j.compbiolchem.2018.03.017]
[42]
Deng L, Wang J, Zhang J. Predicting gene ontology function of human MicroRNAs by integrating multiple networks. Front Genet 2019; 10: 3.
[http://dx.doi.org/10.3389/fgene.2019.00003]
[43]
Peng J, Zhu L, Wang Y, Chen J. Mining relationships among Multiple entities in biological networks. IEEE/ACM Trans Comput Biol Bioinformatics 2019; 1: 1.
[http://dx.doi.org/10.1109/TCBB.2019.2904965]
[44]
Deng L, Zhang W, Shi Y, Tang Y. Fusion of multiple heterogeneous networks for predicting circRNA-disease associations. Sci Rep 2019; 9(1): 9605.
[http://dx.doi.org/10.1038/s41598-019-45954-x]
[45]
Cheng L, Wang P, Tian R, et al. LncRNA2Target v2. 0: A comprehensive database for target genes of lncRNAs in human and mouse. Nucleic Acids Res 2018; 47(D1): D140-4.
[http://dx.doi.org/10.1093/nar/gky1051]
[46]
Cheng L, Hu Y, Sun J, Zhou M, Jiang Q. DincRNA: A comprehensive web-based bioinformatics toolkit for exploring disease associations and ncRNA function. Bioinformatics 2018; 34(11): 1953-6.
[http://dx.doi.org/10.1093/bioinformatics/bty002]
[47]
Cheng L, Yang H, Zhao H, et al. MetSigDis: A manually curated resource for the metabolic signatures of diseases. Brief Bioinform 2017; 20(1): 203-9.
[http://dx.doi.org/10.1093/bib/bbx103]
[48]
Gligorijevic V, Barot M, Bonneau R. deepNF: Deep network fusion for protein function prediction. Bioinformatics 2018; 34(22): 3873-81.
[http://dx.doi.org/10.1093/bioinformatics/bty440]
[49]
Ezzat A, Zhao P, Wu M, Li XL, Kwoh CK. Drug-target interaction prediction with graph regularized matrix factorization IEEE/ACM Trans Comput Biol Bioinform 2017; 14(3): 646-56.
[http://dx.doi.org/10.1109/TCBB.2016.2530062] [PMID: 26890921]
[50]
Masoudi-Sobhanzadeh Y, Omidi Y, Amanlou M, Masoudi-Nejad A. Trader as a new optimization algorithm predicts drug-target interactions efficiently Sci Rep. 2019; 9(1): 9348.
[http://dx.doi.org/10.1038/s41598-019-45814-8] [PMID: 31249365]
[51]
Durán C, Daminelli S, Thomas JM, Haupt VJ, Schroeder M, Cannistraci CV. Pioneering topological methods for network-based drug-target prediction by exploiting a brain-network self-organization theory Brief Bioinform 2018; 19(6): 1183-202.
[http://dx.doi.org/10.1093/bib/bbx041] [PMID: 28453640]
[52]
Shi C, Kong X, Huang Y, Yu PS, Wu B. HeteSim: A General framework for relevance measure in heterogeneous networks. IEEE Trans Knowl Data Eng 2014; 26(10): 2479-92.
[http://dx.doi.org/10.1109/TKDE.2013.2297920]
[53]
Deng L, Wang J, Xiao Y, Wang Z, Liu H. Accurate prediction of protein-lncRNA interactions by diffusion and HeteSim features across heterogeneous network. BMC Bioinformatics 2018; 19(1): 370.
[http://dx.doi.org/10.1186/s12859-018-2390-0]
[54]
Burges C. A tutorial on support vector machines for pattern recognition. Data Min Knowl Discov 1998; 2(2): 121-67.
[http://dx.doi.org/10.1023/A:1009715923555]
[55]
Friedman JH. Greedy function approximation: A gradient boosting machine. Ann Stat 2001; 29(5): 1189-232.
[http://dx.doi.org/10.1214/aos/1013203451]
[56]
Liaw A, Wiener M. Classification and regression by randomforest 2001; 2/3. Available from: https://pdfs.semanticscholar.org/6e63/3b41d93051375ef9135102d54fa097dc8cf8.pdf?_ga=2.228756444. 1905017368.1570531537-207683806.1553148490
[57]
Li A, Ge M, Zhang Y, Peng C, Wang M. Predicting long noncoding RNA and protein interactions using heterogeneous network model. BioMed Res Int 2015; 2015: 1-11.
[http://dx.doi.org/10.1155/2015/671950]
[58]
Ding L, Wang M, Sun D, Li A. TPGLDA: Novel prediction of associations between lncRNAs and diseases via lncRNA-disease-gene tripartite graph. Sci Rep 2018; 8(1): 1065.
[http://dx.doi.org/10.1038/s41598-018-19357-3]
[59]
Menche J, Sharma A, Kitsak M, et al. Uncovering disease-disease relationships through the incomplete interactome. Science 2015; 347(6224): 1257601 1.
[http://dx.doi.org/10.1126/science.1257601]
[60]
Wang L, Wang L, Zhang J, Wang B, Liu H. Association between diabetes mellitus and subsequent ovarian cancer in women: A systematic review and meta-analysis of cohort studies. Medicine (Baltimore) 2017; 96(16): e6396 6.
[http://dx.doi.org/10.1097/MD.0000000000006396]
[61]
Kanaji N, Watanabe N, Kita N, et al. Paraneoplastic syndromes associated with lung cancer. World J Clin Oncol 2014; 5(3): 197-223.
[http://dx.doi.org/10.5306/wjco.v5.i3.197]
[62]
Yu B, Wu C, Li T, Qin F, Yuan J. Advances in gene therapy for erectile dysfunction: Promises and challenges. Curr Gene Ther 2018; 18(6): 351-65.
[http://dx.doi.org/10.2174/1566523218666181004145424]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy